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Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer deaths world-
wide, and its early detection is a critical determinant of whether curative treatment is
achievable. Early stage HCC is typically asymptomatic. Thus, screening programmes are
used for cancer detection in patients at risk of tumour development. Radiological screen-
ing methods are limited by imperfect data, cost and associated risks, and additionally are
unable to detect lesions until they have grown to a certain size. Therefore, some screening
programmes use additional blood/serum biomarkers to help identify individuals in whom to
target diagnostic cancer investigations. The GALAD score, combining the levels of several
blood biomarkers, age and sex, has been developed to identify patients with early HCC.
Here we propose a Bayesian hierarchical model for an individual’s longitudinal GALAD
scores whilst in HCC surveillance to identify potentially significant changes in the trend
of the GALAD score, indicating the development of HCC, aiming to improve early detec-
tion compared to standard methods. An absorbent two-state continuous-time hidden Markov
model is developed for the individual level longitudinal data where the states correspond to
the presence/absence of HCC. The model is additionally informed by the information on the
diagnosis by standard clinical practice, taking into account that HCC can be present before
the actual diagnosis so that there may be false negatives within the diagnosis data. We fit
the model to a Japanese cohort of patients undergoing HCC surveillance and show that the
detection capability of this proposal is greater than using a fixed cut-point.
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1 Introduction

Primary liver cancer, of which hepatocellular carcinoma (HCC) is the most common form,
is the fourth highest cause of cancer deaths worldwide, accounting for 840,000 cases and
780,000 deaths annually with an age adjusted incidence of 9.5 case per 100,000 person
years [5]. The development of HCC is closely linked to the presence of underlying chronic
liver disease. Despite there being global prevention strategies, such as targeting Hepatitis
B and C through vaccination and treatment respectively [11], at present the incidence of
HCC in both low and high income countries is rising and outcomes for patients with HCC
remain typically among the worst of any cancer type [5]. HCC stage at diagnosis is the major
determinant of the treatment that can be applied and whether curative treatment is achiev-
able. Thus, early stage HCC detection is essential to improve outcomes for individuals who
develop HCC. Achieving detection of HCC at an early stage is challenging as the disease
is typically asymptomatic. Therefore, cancer surveillance strategies are required. Due to the
associated cost and practicality constraints, these programmes are generally targeted to those
at highest HCC risk, with stratification revolving centrally around the degree of liver fibro-
sis. Cirrhosis, the end-stage of liver fibrosis, is the highest risk factor associated with HCC,
with approximately 70–90% of HCC cases having established cirrhosis [8]. The incidence of
HCC among persons with cirrhosis is also high, with an estimated 1 in 3 people with cirrhosis
eventually developing HCC. Thus, significant underlying liver disease is typically used as an
entry point into HCC surveillance programmes. These surveillance programmes usually rely
upon imaging based HCC detection, typically using ultrasound, which may also be supple-
mented by serum biomarkers [12,14,20]. The actual diagnosis of HCC, following suspicion
of underlying tumour raised by screening, is achieved by diagnostic cross sectional imaging;
multiphasic computed tomography and/or dynamic contrast-enhanced magnetic resonance
imaging. Each of these radiological tests has their own limitations including expense, radia-
tion exposure, diagnostic accuracy—particularly in the presence of cirrhosis or presence of
fat in the liver—and an inability to accurately diagnose small lesions (< 1cm). These tests
may, however, be supplemented with the current gold standard of histopathological examina-
tion following a targeted liver biopsy, an invasive procedure itself carrying risk. An accepted
means of identifying screened individuals for diagnostic investigation is to use blood/serum
biomarkers either in isolation or jointly with image-based surveillance programmes. The
measurement of biomarkers using simple blood tests is less expensive than radiological
imaging tests and has the potential of detecting the development of tumours before they may
be confirming on imaging [17].

Levels of several blood biomarkers, including Alpha-fetoprotein (AFP), des-carboxy-
protrombin (DCP) and AFP-L3 (an isoform of AFP) have been shown to be indicative of the
development of HCC and are included in specific international guidelines [21]. The GALAD
score, defined to be a linear combination of the concentration of these three biomarkers
(log transformed for AFP and DCP) combined with age and gender, has been proposed for
distinguishing patients in HCC surveillance having underlying tumours. In the original cross-
sectional study by Johnson et al. [17], sensitivities of over 97% and specificities of over 62%
were reported using a (fixed) threshold score as the criterion. The construction of the threshold
score was based on a logistic regression analysis of data from a cross-sectional study and
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classifies a patient as having a high risk of developing HCC if their GALAD score exceeds
a given threshold. This approach was subsequently validated in cross sectional analysis of
international cohorts [3]. However, this does not necessarily imply that a fixed threshold for
the GALAD score (or any of the individual biomarkers) will be as effective in detecting
the start or growth of the tumour, nor that alternative strategies for detecting changes in
biomarker behaviour could not provide improved tumour detection accuracy. Observational
longitudinal data of individual biomarker levels (AFP) suggest that many patients who later
go on to be diagnosed as developing HCC show a gradual (approximately log-linear) increase
of their AFP biomarker level before being diagnosed with HCC [4].

Using the observational data and expert medical knowledge, several approaches have
been taken to build models that take into account the temporal evolution of the biomarker or
GALADscore per patient. These include, for example, a parametric empiricalBayes approach
that weights the population threshold with the historic observations of the patients at risk
of ovarian cancer [10,23] and HCC [33]; or joint longitudinal-survival models for prostate
cancer [28,36]; and modelling the transition probabilities from cirrhosis to HCC and/or death
via longitudinal hidden Markov models (HMMs; [2]). Here, we focus on directly modelling
the individual longitudinal GALAD scores of patients in HCC surveillance. To study this
we use a Bayesian hierarchical model to permit the identification of the potential change in
trend of the score (from no temporal trend to an increasing trend) corresponding to the onset
of a tumour. In particular, we develop an absorbent continuous-time HMM with two states,
corresponding to “tumour free” (or HCC absent) or “tumour present” (or HCC present) with
an associated observation process corresponding to the GALAD score with constant (but
individual-specific) mean for the state of tumour free and a linearly increasing mean for the
state of tumour present (from the onset of the tumour). Further, the transition probability of
moving from a tumour free state to the tumour present state (i.e. developing HCC) is also
increased with higher patient baseline GALAD levels. We have additional observational data
relating to the diagnosis of patients. The diagnosis of HCC is specified as a partial observation
of the underlying latent variable (presence versus absence of HCC) where we assume that
there are no false positive diagnoses (all individuals diagnosed with HCC do have a tumour)
but where there may be false negatives (an individual may not yet be diagnosed with HCC but
may have an underlying undiagnosed tumour). We note that permitting false negatives means
that the lack of a correct positive diagnosis (e.g. when the tumour is too small to identify
using image-based diagnostic techniques) does not lead to biased parameter estimation due
to this incorrectly assumed state of the individual. Finally, the proposed model incorporates
a mixture component which allows for a proportion of the patients that develop HCC to not
display any change in their AFP or GALAD score over time [3,4]. We note that this final
issue implies that sensitivity based on the use of such biomarkers will always be imperfect,
but we are able to estimate the proportion of individuals for whom such biomarker analyses
will not provide an early indicator of HCC, for the given representative population.

Similar modelling approaches have been proposed and applied to ovarian cancer [22,
30] and HCC [34], including the use of several biomarkers simultaneously. However, these
previous approaches have further limitations, such as the necessity for the training of the
models to distinguish patients with and without cancer without error; or not considering
the individual heterogeneity of the baseline biomarker level of each patient as a risk factor
for developing a tumour. Further, the time of developing HCC is modelled with respect to
the time of diagnosis, and so is specified retrospectively. Conversely in our approach we
more intuitively model the time until diagnosis, given the time of developing HCC, so that
prediction of the presence of HCC can be made without knowing a time of diagnosis (never
known in prospective detection).

123



70 R. Amoros et al.

The rest of the paper is structured as follows. In Sect. 2 we detail the patient dataset we use
in this work; Sect. 3 presents the proposed statistical model in detail; the results of applying
this model to our motivating dataset are presented in Sect. 4; and conclusions are given in
Sect. 5.

2 Patient data

We focus on the dataset provided by the Ogaki Municipal Hospital, Japan, comprising of
individual longitudinal data collected at irregular times over the period of several years
from patients with cirrhosis being screened for HCC. In total, data from 2273 patients were
available between the years 2009–2015.Wediscardedonepatient record as noGALADscores
were recorded; of the remaining 2272 patients, 113 (5%)were diagnosedwithHCCwithin the
study period. These data provided a total of 50,410 observations. Of these observations, 1807
corresponded to future GALAD scores after a patient is diagnosed with HCC and a further
13,805 observations failed to record a complete GALAD score, so that these observations
were omitted from the data—though we retained 93 observations corresponding to HCC
diagnosis dates that where kept in the database even though the GALAD score was not
recorded at the time—leaving a total of 35,001 observations (or a mean of approximately 15
observations per patient). In addition to theGALAD scores, additional covariates recorded on
each patient included sex, cirrhosis aetiology, vital status, age, date of observations and, for
those diagnosedwithHCC, the date ofHCCdiagnosis, number of tumours andmaximum size
of the tumours. Table 1 offers a description of these variables segmented by HCC-diagnosed
and non-diagnosed patients. The dataset was randomly divided into a training dataset and a
test dataset comprising 75% and 25% of the patients respectively stratified by HCC diagnosis
(26,356 and 8645 observations respectively). The distribution of the rest of the covariates
was checked and found to be similar in both training and test datasets. Importantly, in order to
minimize the possibility of false negatives from the earliest forms of HCC in the test dataset,
3380 observations were excluded, corresponding to all the observations from non-diagnosed
patients that were less than two years before their last observation of the study. This two year
period was chosen based upon a realistic timescale for the undiagnosed tumours to make
themselves apparent, taking into account both tumour doubling time and survival following
early diagnosis.

3 Method

In this sectionwe initially present the notation thatwe shall use throughout before constructing
the hidden Markov model motivated by the current clinical understanding of HCC.

3.1 Notation

We let I denote the total number of patients, and index each patient by i in 1, . . . , I . We
let Ji denote the number of observations recorded for patient i = 1, . . . , I , and index each
chronologically ordered observation for patient i by j = 1, . . . , Ji (observation occasion).
Finally we let ti j denote the time (in days) from the first screening of patient i to observation
j ; so that ti1 = 0 for all i = 1, . . . , I . The observed data correspond to the set of observed
GALAD scores for each patient i = 1, . . . , I denoted by Bi = {Bi j : j = 1, . . . , Ji }
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Table 1 Description of the database provided from the Ogaki Municipal Hospital, Japan, stratified by diag-
nosed and non-diagnosed with HCC patients

Diagnosed Non-diagnosed

Sex

Female 36 (31.9%) 1153 (53.4%)

Male 77 (68.1%) 1006 (44.6%)

Aetiology

HBV 15 (13.3%) 581 (26.9%)

HCV 83 (73.4%) 1078 (49.9%)

HC+BV 1 (0.9%) 40 (1.9%)

Other 14 (12.4%) 460 (21.3%)

Vital status

Alive 94 (83.2%) 2121 (98.2%)

Dead 19 (16.8%) 38 (1.8%)

Age (years) 68.1 (9.2) 34.1 → 85.0 61.6 (13.2) 11.7 → 92.2

Obs. per patient 13.5 (7.0) 2 → 39 15.5 (6.4) 6 → 70

GALAD score −1.08 (2.0) −6.1 → 12.4 −3.1 (1.9) −9.5 → 7.8

Screening time (years) 3.2 (1.2) 1.0 → 5.6 5.1 (0.7) 3.0 → 6.0

Num. tumours

1 85 (75.2%)

2 22 (19.5%)

3 4 (3.5%)

5 2 (1.8%)

Max. size tumours (cm) 2.1 (1.0), 0.7 → 7.6

Total patients 113 (100%) 2159 (100%)

Number of patients (percentage%) for discrete variables. Mean (SD), minimum → maximum for continuous
variables. Obs. observations, Num. number, Max . maximum, HBV hepatitis B virus, HCV hepatitis C virus,
HC+BV both hepatitis C and B virus

and for those individuals who are diagnosed with HCC, the associated time of diagnosis.
Consequently, from the date of positive diagnosis (if any) we obtain the associated diagnosis
status denoted by the indicator function Di j corresponding to whether or not individual
i = 1, . . . , I has been diagnosed with HCC at observation occasion j = 1, . . . , Ji ; and let
all of diagnosis states for individual i be denoted by Di = {Di j : j = 1, . . . , Ji }. Thus we
can express the data as the set of paired observations of GALAD score and diagnosis status
of each patient at each observation occasion, {Bi j , Di j : i = 1, . . . , I ; j = 1, . . . , Ji } which
we combine with the associated known set of screening times for each patient, {ti j : i =
1, . . . , I ; j = 1, . . . , Ji }.

3.2 Model

Wedevelop a continuous-time hiddenMarkovmodel to represent the processes that are acting
on the system. The overall model is summarised in Fig. 1 in the form of a directed graph,
providing the direct conditional relationships between the model parameters. We describe
each of the components of the hierarchical model in turn.
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Fig. 1 Directed graph representing the hierarchical model. The grey components correspond to the conditional
distribution for the observedGALAD scores; the green components to the specification of themean underlying
GALAD score over time; the red components to the mixture distribution to account for the behaviour of
biomarkers given a tumour present; the blue components to the underlying latent process of disease status;
and the orange components to represent the diagnosis observation, given the disease status of an individual
(colour figure online)

3.2.1 Observed GALAD score

For each patient i = 1, . . . , I and observation occasion j = 1, . . . , Ji , the GALAD score Bi j
(or more generally a biomarker score) is recorded. We assume that all the recorded GALAD
scores are conditionally independent observations from a Gaussian distribution with mean
μi j and variance σ 2, such that,

Bi j |μi j , σ
2 ∼ N (μi j , σ

2), (1)

where μi j is itself a function dependent on numerous factors, but critically on whether an
individual has a tumour or not—we discuss this mean in detail in Sect. 3.2.2. Component (1)
of the model is represented in grey in Fig. 1, and describes the first level of the hierarchical
model. We note that for our data there are 93 observation corresponding to a confirmed
diagnosis for which there is no associated GALAD score recorded, in this case we simply
omit these GALAD scores in this part of the model. In general, alternative distributions may
be appropriate for other biomarker data, such as raw AFP values which are constrained to be
positive so that a log-Normal distribution may be considered.
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3.2.2 Underlying mean GALAD level

Here we consider how the underlying mean GALAD score of an individual,μi j , may change
over time—and consider two separate cases: (i) individuals that do not develop HCC within
the study; and (ii) individuals who do develop HCC within the study and describe each in
turn.

Case (i): non-HCC patients

We assume that a patient without HCC has a constant underlying mean GALAD score.
However, this baseline score will be different for each patient, and therefore can be expressed
as the sum of a populationmean baseline, denoted by ν, and an individual heterogeneity term,
bi , modeled as a Gaussian random effect.

Case (ii): HCC-positive patients

We initially assume that individuals who develop HCC will experience an increase in their
underlying mean GALAD score. We note that this assumption is not always true, but for
simplicity we omit this complexity at this stage and we extend the model to account for this
below. We let τi denote the (unobserved) time when a tumour starts to grow for individual
i , given that they develop HCC within the study, and assume that this coincides with the
change in the mean underlying GALAD score. If there is a lag between a tumour developing
and a change in GALAD score then the definition of τi changes accordingly to be the time
at which the mean GALAD score changes (driven by changes in the biomarkers) following
the development of the tumour. Prior to the change-point τi the mean GALAD score for an
individual is as for non-HCC patients. Following the onset of the tumour, we assume that
underlying mean GALAD score increases linearly over time.

Mathematically combining the two cases together we can express the above in the form:

μi j = ν + bi + Ci jβ(ti j − τi ) ,

bi |σ 2
b ∼ N (0, σ 2

b ) , (2)

such that Ci j ≡ I (τi < ti j ), where I (·) denotes the indicator function and we use the
convention that τi = ∞ for individuals who do not develop a tumour within the study period.
In other words, Ci j = 0 if the patient does not have a tumour at time ti j ; and Ci j = 1 if the
patient does have a tumour at time ti j . Finally, we note that we constrain the slope parameter
β > 0 for clinical reasons. This aspect of the model is denoted by the green components of
Fig. 1.

However, as noted above, not all individuals who develop HCC have the same biological
reactions. In particular, there appears to be a proportion of HCC-positive individuals for
whom there is no discernible change in their GALAD score prior to diagnosis. To account
for this mathematically we consider a mixture model where there are two homogeneous sub-
populations. Sub-population (or mixture component) 1 corresponds to those whose mean
GALAD scores do increase following the onset of HCC (linearly in time as described above);
and sub-population (or mixture component) 2 to those for whom their mean underlying
GALAD score is unchanged despite the development of a tumour. We let pS denote the
probability that a patient who develops HCC will have an increased mean GALAD score

123



74 R. Amoros et al.

(i.e. belongs to sub-population 1). This additional mixture model is represented in Figure 1
by the red components.

The underlying mean GALAD score can then be written as a mixture distribution. How-
ever, we will consider a (Bayesian) data augmentation approach, and introduce the additional
indicator variable Si such that Si = 1 if individual i belongs to sub-population 1 (for which
there is a change in their mean underlying GALAD score if a tumour develops); and Si = 0
if individual i belongs to sub-population 2 (for which there is no change in their mean
underlying GALAD score if a tumour develops). We specify,

Si |pS ∼ Bernoulli(pS). (3)

For mathematical convenience we set S = {Si : i = 1, . . . , I }. Further we can extend the
above mathematical expression for the underlying mean GALAD score to account for the
heterogeneity due to the two different sub-populations, specifying,

μi j = ν + bi + Ci j Siβ(ti j − τi ) ,

bi |σ 2
b ∼ N (0, σ 2

b ). (4)

3.2.3 True underlying HCC state

In the above model specification the set of all variables C = {Ci j : j = 1, . . . , Ji ; i =
1, . . . , I } determines the underlying disease status of the individuals over time. For notational
purposes we also define Ci = {Ci j : j = 1, . . . , Ji } corresponding to the disease status of
individual i within the study period at the observation occasions. These variables are the
latent states of the process (although we note that they are actually partially observed since
we assume that there are no incorrect positive diagnoses—see Sect. 3.2.4). We assume a
first-order Markov process for this latent process defined through the associated transition
matrix, which defines the probability of the state (value) of the hidden variable at observation
occasion j + 1, denoted, Ci j+1 given the current state Ci j at observation occasion j . This
HMM is represented by the blue components in Fig. 1. In our case there are two possible
states, 0 corresponding to the individual without HCC and 1 corresponding to an individual
with HCC. The transition matrix, for individual i at observation occasion j , denoted Γi j , can
be expressed in the form:

Γi j =
⎡
⎣

γ00,i j γ01,i j

γ10,i j γ11,i j

⎤
⎦ , (5)

with γab,i j = P(Ci j+1 = b |Ci j = a) for a, b = 0, 1. Thus γ01,i j denotes the probability of
developing HCC between the observation occasions j and j+1. HCC is almost universally a
progressive disease and thus we assume that once a tumour has developed, it remains until it
is diagnosed. In other words, state 1 (tumour present) is an absorbing state, so that, γ11,i j = 1
and conversely, γ10,i j = 0, for all i = 1, . . . , I and j = 1, . . . , Ji .

Contiguous observations are not equidistant, so that the probability of developing cancer
at observation j +1 should be dependent on the elapsed time since the previous observation,
j , that is, dependent on Δti j+1 = ti j+1 − ti j . Therefore, we consider a continuous-time
transition matrix [9,15] to model the development of HCC. In this case, the transition matrix
Γi j take the following form:

Γi j = exp(Δti j+1 × Λi j ) , (6)

123



A continuous-time hidden Markov model for cancer surveillance. . . 75

where,

Λi j =
⎡
⎣

−λi λi

0 0

⎤
⎦ ,

such that λi > 0. We note that the second row of Λi j is set equal to zeros because we assume
that the HCC present state is an absorbing state.

We can explicitly express the associated transition matrix by computing the matrix expo-
nential:

Γi j =
⎡
⎣
e−λiΔti j+1 1 − e−λiΔti j+1

0 1

⎤
⎦ . (7)

We note that this part of the model takes the form of a survival model with instant hazard
function λi for the time until the development of HCC, with the peculiarity that this event
is not observed but is a hidden variable in our model. Previous studies have suggested that
patients with higher levels of the biomarker AFP orGALAD scores aremore prone to develop
cancer [6,17,32]. To incorporate this within our model we specify the hazard rate λi to be
a log-linear function of the (instantaneous) mean individual random effect GALAD score
component, bi , such that:

log(λi ) = ζ + ξbi , (8)

where ζ and ξ are parameters to be estimated. Thus the individual random effect component
contributes to both the underlyingmeanGALAD score and acts as a risk factor for developing
HCC within the model.

Now, if patient i develops HCC during the screening programmes, the time that the HCC
develops (recall this is denoted by τi ) will be located between the time of the last observation
when the patient was tumour free, denoted t0i , and the time of the following observation
when the patient has developed a tumour, denoted t1i .We assume a conditional uniform prior
distribution for the time of development of HCC, τi , for the interval between consecutive
screening times in which the tumour is developed (though not necessarily confirmed via
diagnosis):

τi ∼ U(t0i , t1i ),

t0i = ti j such that Ci j = 0 and Ci j+1 = 1,

t1i = ti j+1 such that Ci j = 0 and Ci j+1 = 1. (9)

These dependencies are represented with magenta arrows in Fig. 1. Note that if a patient has
HCC at their first observation time ti1 (a very unlikely situation in our database), we assume
that the time of development of the tumour is equal to ti1 = 0.

Finally,we note thatwithin ourmodel, the time of the development ofHCC is conditionally
dependent on the underlying HCC state of the individual and not on the time of diagnosis
as is the case of other models previously proposed [30,34]. This allows us to model this
time realistically in prospective screening for future patients, where the information about a
possible future diagnosis time will, by definition, be absent.

3.2.4 Diagnosis

A positive HCC diagnosis confirmed through the standard clinical diagnostic procedures
(either imaging or biopsy) is only feasible after several months after the establishment of the
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first tumoural cell clones based upon tumour doubling times [1,24,29]. Consequently, the
greater the time elapsed since the onset of the tumour, the longer the tumour has had to grow
and, therefore, the larger it should be and the easier to detect. Therefore, the probability of a
patient being diagnosed by standard clinical procedures can be modelled in the fashion of a
survival analysis by means of the instant hazard of being diagnosed δ and the time elapsed
since the development of HCC (ti j − τi ).

Recall that the observed variable diagnosis, Di j , takes the value 1 if patient i has been
diagnosed at observation j and 0 otherwise, modelled with a Bernoulli distribution with
parameter qCi j ,i j :

Di j |qCi j ,i j ∼ Bernoulli(qCi j ,i j ) ,

such that,

q1,i j = 1 − e−δ(ti j−τi ) ,

q0,i j = 0 . (10)

Defining q0,i j = 0 ensures that if a patient has no HCC at observation j , they cannot be
diagnosed, i.e. there are no false positives.

This way of modelling the diagnosis (represented in Fig. 1 in orange) allows the informa-
tion of the diagnosis to inform the values of the variable Ci j (and the rest of the parameters)
by means of the inverse conditional relation between the two sets of variables. This has two
distinct advantages. The first is that this modelling assumes the possibility for a patient in the
training dataset to have HCC but have not yet been diagnosed. The second is that this part
of the model can be ignored for the prediction (where diagnosis is always negative), as τi
(the time of HCC development) is not directly dependent on any diagnosis—in other words
the time of HCC development is conditionally independent of the diagnosis given the latent
states C = {Ci j : i = 1, . . . , I , j = 1, . . . , Ji }.

3.3 Prior distributions for the hyperparameters

Themodel specification is completed by the prior distributions specified on themodel param-
eters:

β ∼ U(0, hβ), ν ∼ N (0, hν), δ ∼ U(0, hδ),

σ ∼ U(0, hσ ), ζ ∼ U(hζ1, hζ2), ps ∼ Beta(hS1, hS2),

σb ∼ U(0, hσb ), ξ ∼ U(hξ1, hξ2), (11)

where hβ, hσ , hσb , hν, hζ1, hζ2, hξ1, hξ2, hδ, hS1 and hS2, are defined such that they reflect
the prior information available concerning the parameters or be chosen to express vague prior
beliefs.

3.4 Joint posterior distribution

We consider a Bayesian (data augmentation) approach to fit the model to the observed data
corresponding to longitudinal GALAD scores, B, and diagnosis output, D. The associated
model parameters are given by θ = {β, σ 2, σ 2

b , ν, ζ, ξ, δ, pS}. We introduce the auxiliary
variables, denoted φ = {C, τ ,S,b}, corresponding to the unobserved (and hence unknown)
system state variables of the true HCC state for all individuals over screening times (C); the
time of onset of HCC (if any) for all individuals (τ ); sub-population mixture components
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(S); and associated underlying mean random effect terms (b). We form the joint posterior
distribution over both the model parameters and auxiliary variables, given the observed data:

π(θ ,φ|B,D) ∝ f (B,D,φ|θ)p(θ),

where f (D,B,φ|θ) denotes the joint likelihood of the observed data and associated auxiliary
variables; and p(θ) the corresponding priors for the parameters (as defined in Sect. 3.3).
The likelihood can be decomposed into the separate likelihood components described in
Sects. 3.2.1–3.2.4. In particular, we can decompose the joint likelihood written as a product
over each individual as follows:

f (B,D,φ|θ) =
I∏

i=1

f (Bi |θ,φ) f (Di |θ ,φ)︸ ︷︷ ︸
observation process

× f (Si |pS) f (bi |σ 2
b ) f (τi |Ci ) f (Ci |λi )︸ ︷︷ ︸

system process

,

where λi is a deterministic function of ζ , ξ and bi—see Eq. (8); and noting that the data (and
auxiliary variables) are assumed to be conditionally independent given the parameters for
each individual. Thefirst two components of the joint likelihood correspond to the observation
processes for the GALAD scores and diagnosis output given the true system states andmodel
parameters (described in Sects. 3.2.1 and 3.2.4); the latter four components correspond to
the underlying (unobserved) system process (described in Sects. 3.2.2 and 3.2.3).

Inference is carried out using Markov chain Monte Carlo (MCMC), obtaining a sample
from the joint posterior distribution over the parameters and unknown system states (or aux-
iliary variables) given the observed data. To obtain a sample of the parameter values from
the posterior distribution of only the parameters given the data, π(θ |B,D), (i.e. integrat-
ing out the auxiliary variables), we simply consider the simulated parameter values within
the MCMC algorithm ignoring the associated simulated auxiliary variables. However, this
Bayesian approach also provides immediate estimation of the associated auxiliary variables
(or system states) by considering the associated simulated values within the MCMC algo-
rithm, i.e. we also obtain a sample from the posterior distribution of the auxiliary variables.
To conduct the MCMC simulations, we use the JAGS software (version 4.3.0) [25] and the
R (version 3.5.0) [27] package rjags (version 4-6) [26]. The code for the JAGS model is
available as supplementary material.

3.5 Posterior predictive inference

The application to the detection of HCC using this model is based on the posterior predictive
probability of the variable Ci j = 1 for new observations of patients, as they indicate the
probability of having developed HCC by time ti j . Thus to assess this we consider this for
the test dataset. Prediction by means of the GALAD score or serum biomarker will only be
useful if this is before a diagnosis is made by other means. Therefore, within our assessment
of our method for predicting the development of HCC we remove the diagnosis part of
the prediction model (Eq. (10), nodes in orange in Fig. 1). Furthermore, patients who do
not develop a change in their biomarker trend when developing HCC (i.e. sub-population
2) will not be distinguishable in prediction from those who do not develop HCC. To avoid
competition of the parameter Si and the parameterCi j tomodel the lack of change of trend,we
remove this mixture component and associated terms from the prediction model (Equation
(3), nodes in red in Fig. 1). The variables to be predicted are not the GALAD scores (or
biomarker levels) but the hidden states in the middle of the hierarchical model, i.e. the Ci j

values corresponding towhether or not an individual has HCC or not. Analytically expressing
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Table 2 Mean and quantiles 0.05 and 0.95 of the simulations of the estimated posterior distributions for the
parameters of the model

β σ σb ν ζ ξ δ pS

Q.05 0.00569 0.457 1.757 −3.219 −10.312 0.379 0.000236 0.564

Mean 0.00604 0.460 1.805 −3.218 −10.123 0.445 0.000312 0.656

Q.95 0.00637 0.464 1.857 −3.144 −9.939 0.509 0.000398 0.741

the posterior predictive distribution of the variable Ci j is not feasible, therefore we use a
computational approach fitting the model using the posterior distributions of the parameters
for the training data as informative prior distributions for the parameters for the test data.
As the information we have about the posterior distribution for the training data is a set of
simulations, we approximate these distributions, checking that they fit the mean, variance
and general form of the simulations. In particular, we use gamma distributions for σ and
σb, a normal distribution for β and, due to the observed correlation of the simulations, a
multivariate normal distribution for (ν, ζ, ξ).

4 Results

In this section we apply our proposed methodology to our motivating dataset of patients with
cirrhosis being screened for HCC from the Ogaki Municipal Hospital, Japan, first estimating
the parameters of the model using the training part of the dataset and then estimating the
probability of having developed HCC at each observation for the test dataset. We evaluate
the detection of HCC by our model in terms of sensitivity, specificity and timeliness (elapsed
time between the model detection and the clinical diagnosis of HCC) and compare it with
the established use of a static cut-point over the GALAD score.

4.1 Estimation for the training data

Wefitted the proposedmodel to the training dataset.Hyper-parameterswere chosen to express
vague prior beliefs of the parameters.

β ∼ U(0, 0.1), ν ∼ N (0, 1000), δ ∼ U(0, 0.15),

σ ∼ U(0, 100), ζ ∼ U(−60, 0), ps ∼ Beta(0.5, 0.5),

σb ∼ U(0, 100), ξ ∼ U(−1, 5), (12)

The simulations were run on an Intel®Xeon®CPU E7-4830 v2 at 2.20GHz and 64-bit
Scientific Linux 7.4, part of a computer cluster, but the process was not parallelized, so
only one core was used at a time. Two chains were run, each with 1000 non-Markovian
adaptation iterations and 45,000MCMC iterations, from which the first 7500 were discarded
as burn-in. The convergence of the chains was checked by the Gelman-Rubin statistic [13]
and by direct inspection of the plotted chains. The estimation of the parameters for the training
data took 41.8h. Mean values and 5th and 95th quantiles of the simulations for the posterior
distributions of the parameters are shown in Table 2.

The estimation of β indicates that the mean GALAD level is estimated to increase around
0.006 points a day for those patients who have developed HCC (1.1 points over 6-months).
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The variability between patients, σb, is remarkably higher than within patients, σ , which
indicates the importance to consider the personal baseline of the GALAD score in the model.
The mean estimation of ζ is equivalent, by Eq. (8), to a mean intensity parameter λ of
0.00004 for a person with average GALAD score level, which is equivalent to a probability
of developingHCCof 0.0073 per 6months (Eq. (6)). Following the estimation for ξ , themean
intensity parameter λ for a patient with 2 points above and below the average GALAD score
would be 0.00010 and 0.00002 respectively, with a corresponding probability of developing
HCC in 6 months of 0.018 and 0.003, respectively. The estimated mean probability of being
diagnosed in the trimester following the development of HCC according to Eq. (10) is 0.029,
0.11 in the following year and 0.30 in the following 3 years. The estimated probability pS
of showing a change of trend on the GALAD scores for those patients who develop HCC is
0.66.

4.2 Prediction for the test dataset

Predictions for the probability of having HCC were estimated for every observation within
the last 1500 observed days for each patient. The prediction for each one of these observations
was obtained by running the prediction model with informative priors several times, one for
each of those observations of each patient. The model was run each time on a small dataset
comprising the observation for which the prediction is to be made and all previous (but not
posterior) observations for that particular patient, emulating the way that data would have
been available in the real-life screening. The estimation took a total of 6909s for the 4717
predictions, 1.5 s per estimation on average, which would be a reasonable computational
time in real-life practice, where only one estimation would be done per visit. The informative
prior distributions for the parameters were based in the estimations of the parameters for the
training data:

β ∼ N (0.00604, 0.0002072),

⎛
⎝

ν

ζ

ξ

⎞
⎠ ∼ N

⎛
⎜⎝

⎛
⎝

−3.218
−10.123
0.445

⎞
⎠ ,

⎛
⎝
523 −35 −44
−35 113 175
−44 175 908

⎞
⎠

−1
⎞
⎟⎠ ,

σ ∼ Gamma(47,309, 102,754) , σb ∼ Gamma(3320, 1839), (13)

with the parameters of the Gamma distributions expressed as shape and rate. The posterior
probability of HCC can be interpreted as the risk of a person having developed a tumour that
is associated with a change of trend of the GALAD score.

In order to evaluate the performance of the proposal as a detection tool for the develop-
ment ofHCC,measures of sensitivity, specificity and timeliness can be checked. Furthermore,
receiver operating characteristic (ROC) curves can be built by varying the cut-points over
the probability for declaring a detection. We shall compare the performance of this proposal
with the use of a fixed threshold on the GALAD scores (from now on, just ‘threshold’ for
simplicity), where a detection is declared whenever it is surpassed. The measures used have
to consider the longitudinal nature of this problem. In that way, we consider the sensitivity
per patient (proportion of detected patients over all patients diagnosed with HCC) and two
different specificities; per patient (proportion of patients never detected over all patients not
diagnosed with HCC) and per observation (proportions of non-detected observations belong-
ing to patients not diagnosed over all the observations belonging to patients not diagnosed
with HCC). We will also measure the timeliness of each method taken to be the mean dis-
tance between the diagnosis of HCC and the first time that a method consistently detects
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Fig. 2 ROC curves using specificity per observation and per patient, sensitivity against timeliness and sensi-
tivity against cut-point for the proposal (blue) and the threshold on the GALAD (red). Triangles (high) indicate
0.50 probability and 0.74GALAD score cut-points. Circles (low) indicate 0.02 probability and−1.87GALAD
score cut-points (optimums) (colour figure online)

every observation from that one on (e.g. a value of 500 for the timeliness of one patient
implies that the method detected that patient 500 days before being clinically diagnosed and
that patient was also detected on every following observation).

In addition to comparing the ROC curves (for both specificity per patient and per obser-
vation), we also provide curves of sensitivity versus timeliness and sensitivity versus the
cut-point selected in Fig. 2.

In these curves we compare two different options for a cut-point for eachmethod to further
illustrate their performance. An obvious cut-point for our proposal is 0.5 probability of HCC
as, when this cut-point is surpassed, our model estimates that the patient is more likely to
have HCC than not. We compare this with a threshold of 0.74 over the GALADwhich offers
the same sensitivity per patient. Another option is to consider the cut-point or threshold
that maximizes the sum of sensitivity and specificity per patient. In this way, a cut-point
of 0.02 for the probability of HCC and a threshold for the GALAD score of −1.87 are the
optimums for both sensitivity and specificity per patient. The optimum for our test dataset for
the threshold is close to a previous optimum estimated over the same (whole) cohort [3] of
−1.95. Sensitivity, specificity and timeliness for these two thresholds are very similar so we
only show them for the optimum of our analysis for simplicity. Measures for the two pairs of
cut-points are represented in Fig. 2 and shown in Table 3. Graphs of the detection for these
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Table 3 Estimatedmeasures of sensitivity (Sensit.), specificity per patient (Spec. P.), specificity per observation
(Spec. O.) and timeliness for two different pairs of cut-points for our proposal and the threshold method

Method Cut-point Sensit. Spec. P. Spec. O. Timeliness

Proposal 0.50 0.429 0.960 0.985 75

GALAD 0.74 0.464 0.960 0.968 163

Proposal 0.02 0.821 0.796 0.916 208

GALAD −1.87 0.821 0.781 0.794 708

The first two have been matched by same specificity per patient. The last two are the optimums for the sum of
sensitivity and specificity per patient
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Fig. 3 GALAD scores for the test dataset segmented by diagnosed and non-diagnosed with HCC. The top
panels correspond to the static threshold method and the bottom panels correspond to the proposal. In red,
observations that each method detects using the 0.50 probability and 0.74 GALAD score cut-points. In green
and red, observations that each method detects using the 0.02 probability and−1.87 GALAD score cut-points
(optimums). P(HCC) probability of HCC estimated by the new proposal (colour figure online)

cut-points for all the patients in the test dataset, segregated by diagnosed or non-diagnosed
are shown in Fig. 3.

The ROC curve with specificity per patient (Fig. 2, bottom left panel) suggests similar
performance of our approach when compared to the single threshold method, with area under
the ROC curve (AUROC) for our proposal of 0.854 and for the threshold approach, 0.867.
On the other hand, the ROC curve considering specificity per observation (Fig. 2, top left
panel) shows consistently better performance for our proposal, with an AUROC of 0.926
compared to 0.880 for the threshold approach. In general, the sensitivity and specificity per
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patient of the twomethods is comparable, but the specificity per observation (relevant for real
time decision making) is consistently better for our proposed approach. The mean timeliness
(Fig. 2, top right panel) is notably higher for the threshold, but the performance of the model
over the longitudinal data depicted in Fig. 3 shows how this detection seems a significant
period of time before diagnosis and sometimes reaches back a number of years prior to
formal diagnosis. This suggests that the threshold may not be indicating the development of
HCC but alternatively may identify individuals at particularly high risk of developing HCC
in the future. Also, one can observe that the quantity of false positives per observation of our
proposal seems to be lower and with less continuity over time, several times being just one
isolated observation that shows a notorious increase in the level from the previous one.

5 Discussion and conclusions

The early detection of many tumour types is a major clinical challenge across the world.
Most tumours lie within the body thus are not visible and most are asymptomatic at least
until they reach an advanced stage when treatment options become increasingly challenging.
Thresholds for specific circulating blood biomarkers have been used to try to improve the
sensitivity and timeliness of the detection for several types of cancer such as ovarian, prostate
orHCC in a non-invasive and low costsmanner, butwith limited success [31,35]. Actually, the
longitudinal nature of the data when developing or evaluating thesemethods has generally not
been taken into account, but instead only interpretation of a single measurement (possibly
repeating the process over time) per patient has been used to aid in the discrimination of
tumour development.Our evaluation of the performance of a simple threshold for theGALAD
score suggests that this threshold could better be interpreted as an indicator of which patients
are at higher risk of developing HCC in the long run than as an actual indicator of when a
patient develops HCC.

In our new approach we address these issues by directly modelling the longitudinal data
of the patients. Several authors have proposed methods which do consider the longitudinal
nature of the data [2,23,36] but typically they consider a retrospective approach and focus
on identifying the date of diagnosis for estimating the onset of disease. In this work we
concentrate on the date of development of the tumour using the GALAD score, which is
usually several months before a diagnosis by imaging or biopsy is able to detect the cancer.
We propose a model based on current clinical understanding with a change-point component
following a similar philosophy as othermethods applied onovarian cancer orHCC [22,30,34],
while also dealing with important additional aspects of the nature of the data. This includes
the use of an individual’s underlying mean GALAD score to be an associated risk factor
for developing HCC, which was also identified independently using our investigation of the
(traditional) threshold approach. Indeed, the strictly positive estimation of the parameter ζ

indicates that the change of the risk of developing HCC for a patient regarding their baseline
level is notable, more than doubling or halving the probability of developing HCC per half-
year with a change of 2 points on the baseline GALAD score. Therefore taking account of
this observed association between an individual’s baseline biomarker values and future HCC
risk acts to strengthen the likeliness of tumour detection using this method.

An additional issue that our model directly addresses by using a HMM-type model is the
existence of false negatives within the data, which are present due to the fact that imaging
based diagnosis is only feasible months after the tumours initially develop. Ignoring these
false negatives will lead to biased estimates of the model parameters, which could also
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have significant implications for predictive inference. The HMM components are able to
address this issue by directly imputing the true HCC state of an individual within the MCMC
algorithm—we note that the states are partially known in our case without error, in that a
positive diagnosis implies that the true HCC state is known to be positive without error.
In addition we directly model the time of onset of HCC without making it conditionally
dependent on the diagnosis date, in contrast to previous works which typically model the
onset by specifying prior distributions on the elapsed time between the onset and the diagnosis
date. This previous approach leads to issues whenwe have no diagnosis within the test dataset
(as it is the case in a real surveillance problem). One could evaluate such models with the test
dataset where the time of diagnosis matches the last observation of the patient, but applying
this prediction procedure to real data would necessarily diminish the capability of the model
to detect the cancer on its first stages, as the time between the development of the tumour and
the last observation available for that patient would be expected to be higher. In contrast our
proposed prediction model does not use the information of the diagnosis date and therefore
is suited to deal with real-time acquired data. Furthermore, we show that although complex
to devise, this MCMC algorithm based approach is feasible to run from a data processing
perspective within a healthcare system with individual sample estimation being possible in
under 2 s.

The evaluation of the performance of longitudinal disease detection methods can present
several problems, as is the ambiguity of the definition of specificity. The use of two different
definitions of specificity—per patient and per observation—allows us to explore not only how
many people would be given a false positive but also howmany times that would happen over
time. Another problem in evaluating these longitudinal methods is the correct separation of
cases and controls of the prediction dataset. We have minimized the presence of potentially
spurious controls (patients who have developed a tumour but it has not been diagnosed yet)
by not considering the last 2 years of observations of the non-diagnosed patients of the
test dataset. This, or other approaches, such as doing a follow-up of the diagnosis state of
the patients during several years afterwards is necessary to avoid biased estimation of the
specificity.

Another issue with basing cancer detection upon changes of serum biomarkers is the
fact that some patients who develop HCC do not show a change of trend in their GALAD
scores. They therefore will not be detected via the analysis of their biomarker data. In the
present study, we have estimated that only around 66% of the patients developing HCC
show a change of trend, when using a composite score based upon three biomarkers. This
proportion was estimated to be 81% for Ovarian cancer detection based on the change of
trend of the antigen CA125 [30] when combining the information of a previous study [18]
(by means of an informative prior distribution) with the analysis of the data of a United
Kingdom screening cohort [16]. Another study with data from the UK Collaborative Trial
of Ovarian Cancer Screening (UKCTOCS), also using a similar prior distribution from the
same previous information, estimated this probability to be 89% for CA125 and 84% for both
Glycodelin and Human Epididymis Protein 4, but much lower (20–50%) for other selected
biomarkers. For HCC it was found in a Taiwanese cohort that, when using an low absolute
cut-point of AFP (9ng/ml), over 30% of HCCs will not be detected [7], which is consistent
with the data from another cohort in theUnitedKingdom [4]. In general, this lack of change of
the biomarker is a limitation that inevitably prevents the detection of some patients with any
tumour type, but is particularly relevant for HCC surveillance. It is perhaps disappointing that
when assessing changes in trends the inclusion of multiple biomarkers in the GALAD score
does not improve this rate more significantly. It is notable the improvement that multiple
biomarkers made to HCC detection sensitivity when comparing GALAD alone and AFP
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[17]. However, the detection of a change-point for at least one of several biomarkers could
improve this situation [34].

This study uses a dataset from Japan, a country with a leading reputation in HCC detection
and management [19]. Further work is required to validate this approach in other interna-
tional cohorts. Given that, in general, tumours in this Japanese cohort were diagnosed at
early stage (median maximum diameter 1.8cm at diagnosis) then, conditional on those indi-
viduals who do develop a tumour, there is a potential drawback to a diagnostic technique
such as the (static) GALAD threshold approach that provided repeated positive indications
significantly before diagnosis—to the extent that many of these are likely to be prior to the
establishment of a tumour. Consequently this could mean repeated futile attempts at diagnos-
tic based imagingwhile no tumour has yet developed (so that there is a false positive screening
indicator) or while the tumour is not of diagnosable size. Further, given the observed individ-
ual heterogeneity of the mean baseline GALAD scores, this may lead to repeated attempts
of diagnostic tests of individuals with higher baseline scores due to natural variability, as
opposed to a tumour present. Alternatively the proposed dynamic HMM approach using
the complete patient longitudinal data has additional benefits over the traditional threshold
based detection by both (i) using the change in GALAD scores which consequently removes
the dependence on the individual mean baseline; and (ii) providing realistic (shorter) times
between biomarker based indication and early stage diagnosis.

Current active research focuses on extending the proposed approach further by modelling
several blood biomarkers simultaneously (AFP, AFP-L3 and DCP) [34], taking into account
that they can evolve differently over time and with the onset of HCC. We are also exploring
other ways of modelling the time from the HCC onset to the diagnosis, where an increas-
ing instead of constant hazard is considered. Further we are investigating the inclusion of
additional covariates such as age, gender, aetiology of the cirrhosis and time-varying health
indicators in order to improve the predictive performance of the model.

In conclusion, in this paper we have presented a method for the analysis of longitudinal
tumour biomarker data which permits the detection of the moment when a change in its trend
occurs. This method is able to deal with real data both in the training of the parameters and
the surveillance phases and could potentially be implemented within healthcare systems in
the longer term.
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