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Abstract

A range of interactions between gut microbiota and iron (Fe) metabolism is described. Oral probiotics ameliorate host’s iron
status. However, this has been proven for single-strain probiotic supplements. Dose-dependence of beneficial probiotic supple-
mentation effect on iron turnover remains unexplored. Our study aimed to investigate the effects of oral multispecies probiotic
supplementation in two doses on iron status in rats. Thirty rats were randomized into three groups receiving multispecies
probiotic supplement at a daily dose of 2.5 x 10 CFU (PA group, n = 10) and 1 x 10'° CFU (PB group, n = 10) or placebo
(KK group, n = 10). After 6 weeks, rats were sacrificed for analysis, blood samples, and organs (the liver, heart, kidneys, spleen,
pancreas, femur, testicles, duodenum, and hair) were collected. The total fecal bacteria content was higher in the PB group vs. PA
group. Unsaturated iron-binding capacity was higher in the PB group vs. KK group. Serum Fe was lower in both PA and PB vs.
KK group. Iron content in the liver was higher in the PB group vs. KK group; in the pancreas, this was higher in the PB group vs.
the KK and PA group, and in the duodenum, it was higher in both supplemented groups vs. the KK group. A range of alterations
in zinc and copper status and correlations between analyzed parameters were found. Oral multispecies probiotic supplementation
exerts dose-independent and beneficial effect on iron bioavailability and duodenal iron absorption in the rat model, induces a
dose-independent iron shift from serum and intensifies dose-dependent pancreatic and liver iron uptake.
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Introduction deficiency leads to anemia [13], and iron excess may lead to

increased oxidative stress and insulin resistance [14—16]. Iron

The human microbiota can have a total mass of as much as 2 kg
(comparable to that of a human brain) and has been called a
“newly discovered organ” [1-4]. A wide range of interactions
between gut microbiota and iron (Fe) status have been exten-
sively documented [5—11]. Iron is an important component of
both hemoglobin, which is responsible for blood oxygen trans-
port, and of myoglobin. Iron is also a component of enzymes
such as cytochromes, catalase, and peroxidase [12]. Iron
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overload is a risk factor for renal dysfunction, hypogonadism
[17, 18], and diabetes [19]. In rats, high iron intake leads to
increased gonad mass [20]. Iron interacts with copper and zinc
[21], which are important components of a range of enzymes
[22, 23]; disturbances in the metabolism of these three minerals
frequently coexist [21]. Gut microbiota increases the availabil-
ity of dietary iron to the host by decreasing the amount of iron-
binding compounds in the gut [6] and by reducing Fe (I1I) to Fe
(1) [9], which can be absorbed by intestinal cells, unlike Fe (III)
[12]. In germ-free rodents, a lack of intestinal bacteria leads to
Fe deficits in enterocytes [10]. On the contrary, gut
Bifidobacterium can limit intestinal Fe content in order to pre-
serve pathogenic bacteria development, even under conditions
of iron deficiency [11]. Fe is also essential in intestinal bacteri-
a’s energy acquisition [5]. In rats, Fe deficiency leads to intes-
tinal bacterial translocation [13] and constitutes a major factor
in low gut bacteria diversity; Fe supplementation allows only
limited possibilities to reverse this state [ 7]. Correct Fe intestinal
levels diminish the colonization ability and virulence of patho-
genic microorganisms [8].
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Recently, the development of new methods to ameliorate the
quality of gut microbiota and its beneficial effect on the host’s
health has become the aim of a significant worldwide research
effort. Oral probiotic supplementation is the most effective in-
tervention in this range [24]. It has been demonstrated that
probiotic supplementation beneficially affects the host’s iron
status. Probiotic Lactobacillus plantarum increases Fe absorp-
tion from iron-supplemented beverages by 50% [25], and also
from meals [26]. Germ-free rodents are able to supplement Fe
deficit only with a simultaneous supply of the probiotic
Streptococcus thermophilus [27]. In contrast, unfavorable he-
patic iron accumulation in rats can be decreased with oral
Bificobacterium [28]. It has been demonstrated that iron acqui-
sition is the main mechanism through which probiotic bacteria
such as the Escherichia coli strain Nissle 1917 limit the intes-
tinal development of pathogenic Salmonella typhimurium [26].

According to Food and Agriculture Organization (FAO)
and World Health Organization (WHO) definitions, probiotics
are live microorganisms that confer a health benefit on the
host [29]. This definition emphasizes that the beneficial prop-
erties of probiotics are strain-dependent and must not be ex-
trapolated from one strain to different [29]. Thus, the health
advantages of probiotic supplementation must be well-
documented for each strain separately. For this reason, the vast
majority of studies on the effect of probiotics on the host’s
health are limited to one probiotic strain and to one dose of
probiotic microorganisms [24]. Lactobacillus,
Bifidobacterium, Propionibacterium, Enterococcus, and the
S. boulardii yeasts are the most investigated probiotic species
[30]. There is an evident dearth of actual knowledge on the
effect of multispecies probiotic supplementation on the host’s
health, especially in terms of Fe metabolism. Also, the ques-
tion of whether multispecies probiotic supplements exert ad-
ditive or synergistic effects remains unexplored. To date, only
one study has investigated the effects of probiotic supply on
total iron binding capacity (TIBC) level, but this was in a
single-strain and one-dose mode [26]. Moreover, the effect
of different probiotic doses on the host’s iron balance remains
insufficiently investigated [24].

The aim of this study was to investigate the effects of
6 weeks of oral multispecies probiotic supplementation in
two doses on selected parameters of iron status in the rat
model. To the best of our knowledge, this is the first study
worldwide to investigate the effect of multistrain probiotics on
iron balance in a dose-comparison model.

Material and Methods
Animals

Thirty male 10-week-old Wistar rats from the same strain
were purchased directly before the experiment from the

Department of Toxicology, Poznan Medical University,
Poland. The experiment conformed to Polish legal require-
ments and to the European Communities Council Directive
of 24 November 1986, as well as to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals
(National Institutes of Health Publications No. 80-23,
Revised 1978). All study procedures were performed in ac-
cordance with the protocols of Poznan University of Life
Sciences and were approved by the local bioethics committee
for animal studies (approval no. 24/2017). The baseline mean
body mass of the animals was 263 £22 g [31]. Adaptation to
laboratory conditions lasted 5 days prior to the beginning of
the experiment. During this period, the animals had unlimited
access to a standard AIN-93 M diet [32] (Altromin, Lage,
Germany) and deionized water. The animals were housed in
controlled and stable conditions at the Laboratory of the
Institute of Human Nutrition and Dietetics, Poznan
University of Life Sciences. The temperature in the animal
room was 21 + 2 °C, with light/dark cycles lasting 12 h/12 h
(light cycle starting at 7:00 am and dark cycle starting
7:00 pm); the relative humidity was 55-65% throughout the
adaptation period and the experiment. During the adaptation
period and the experiment, the rats were housed in pairs in
stainless steel cages coated with metal-free enamel.

Experimental Design

Thirty rats were randomly assigned to three study groups of
ten animals each using a random number generator. The group
were a control group (KK), a group receiving low doses of
probiotics (PA), and a group receiving high doses of probiotics
(PB). The experimental period was 6 weeks. Throughout the
experimental period, the animals were fed a standard AIN-
93 M maintenance diet (Altromin, Lage, Germany). There
were no additives to the diet in the KK group. In the diet of
the PA and PB groups, multispecies probiotic was added at a
daily dose of 2.5 x 10° CFU and 1 x 10'® CFU respectively.
The animals in all three groups were allowed to consume diet
and drink deionized water ad libitum through the whole ex-
perimental period. Each day, a fresh portion of diet and water
was supplied to the animals and the remains of diet and water
from the previous day were removed. The consumption of diet
and water was monitored daily and the rats’ body mass was
monitored weekly. At baseline, throughout the whole study,
and at completion, there were no differences in rats’ body
weight, body weight increase [31], or diet and water consump-
tion between all three groups.

Probiotic
The Ecologic Barrier probiotic mixture (Winclove Probiotics,

Amsterdam, Netherlands) contains nine probiotic bacterial
strains (Bifidobacterium bifidum W23, B. lactis W51,
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B. lactis W52, Lactobacillus acidophilus W37, L. brevis W63,
L. casei W56, L. salivarius W24, Lactococcus lactis W19, and
Le. lactis W58) in equal proportions, at a dose of 2.5 x
10° CFU/g. The probiotic took the form of a freeze-dried
powder with maize starch and maltodextrins as the carrier
matrix [33]. The probiotic was disseminated in a portion of
diet in order to prepare a homogeneous mixture each day
directly before supplying it to the rats. The probiotic was
added to the diet of the PA and PB groups after the accommo-
dation period.

Blood and Organ Collection

After 6 weeks of the experiment, the rats were weighted and
then euthanized by carbon dioxide inhalation. The body
length was measured from the top of the nose to the end of
the tail. Blood samples were collected by cardiac puncture
after a 12-h fasting period to obtain whole blood for morpho-
logical analysis and were held in serum-separated tubes to
obtain serum. The coagulated blood was left to clot for
30 min at room temperature. Afterwards, the blood was cen-
trifuged at 2000 rpm for 15 min at 4 °C. The supernatant fluid
was separated and stored frozen at —80 °C for analysis.
During sectioning, the liver, heart, kidneys, spleen, pancreas,
femur, testicles, duodenum, and hair were removed, washed in
saline, weighed, and stored at —20 °C. Hair was collected
from the same anatomical area (the interscapular region) of
each rat.

Biochemical and Mineral Measurements

Whole-blood morphological analysis was performed by a
commercial laboratory (Synevo, Poznan, Poland). The unsat-
urated iron-binding capacity (UIBC) was determined using
the colorimetric method with ferrozine [34, 35]. The TIBC
was calculated as: TIBC = UIBC + serum iron concentration
[35]. The Fe serum concentration and the Fe, Zn, and Cu
contents of the internal organs (liver, heart, kidneys, spleen,
pancreas, femur, testicles, and duodenum, along with the hair)
were determined after digestion in 65% (w/w) spectra pure
HNO; (Merck, Kenilworth, NJ, USA) in a Microwave
Digestion system (Speedwave Xpert, Berghof, Eningen,
Germany). After digestion and dilution with deionized water,
the concentrations of Fe, Zn, and Cu in the mineral solutions
were determined using flame atomic absorption spectrometry
(AAS-3, Carl Zeiss, Jena, Germany). The mineral contents of
the internal organs and hair were measured at wavelengths of
248.3 nm for iron, 213.9 nm for zinc, and 324.8 nm for copper.
The accuracy of the method was verified using certified ref-
erence materials (Bovine liver 1577C, Sigma-Aldrich, Saint
Louis, MO, USA) and was 97% for iron, 95% for zinc, and
103% for copper.
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Microbiological Analysis

For the last 3 days of the experiment, before the fasting period,
feces were collected from all three study groups for microbi-
ological analysis of the total fecal bacteria content and
Lactobacillus fecal content. The rat feces were weighted and
soaked in saline supplemented with 0.1% Tween 80, then
homogenized in a Stomacher device. The suspension of feces
was serially diluted and plated in duplicate on MRS (De Man,
Rogosa and Sharpe) Agar (BTL, Poland) for Lactobacillus
spp. enumeration and Columbia Agar with 5% Sheep Blood
(BTL, Poland) for total bacteria enumeration. The plated agar
media were incubated in gas-tight boxes with anaerobic gas
generating sachets (AnaeroGen, Thermo Scientific Oxoid)
and incubated at 37 °C for 48 h (MRS agar plates) or 72 h
(Columbia agar plates). After incubation, the bacterial colo-
nies were counted and the bacterial cells counts in feces were
calculated.

Statistical Analysis

Statistical analysis was performed using Statistica for
Windows 10.0 (StatSoft, Krakoéw, Poland). The data were
expressed as arithmetic means + standard deviations. The
Shapiro—Wilk test was used to check the variables’ normal
distribution. Comparison between groups was carried out
using one-way ANOVA analysis of variance with Tukey’s
post hoc test. A Pearson correlation test was performed to
calculate correlation coefficients. A p value of less than 0.05
was regarded as significant.

Results

The masses of the organs removed during the sectioning are
presented in Table 1. The liver mass was significantly lower in
both supplemented groups than in the control group. The mass
of'the pancreas was higher in the PB group than in the KK and
PA groups.

TIBC and UIBC values and iron serum concentrations are
presented in Table 2. At the completion of the experiment,
UIBC was significantly higher in the PB group than in the
KK group. On the contrary, Fe serum concentration was sig-
nificantly lower in both PA and PB groups than in the KK
group, with no differences between the groups receiving
probiotics.

The results of whole-blood morphological analysis are pre-
sented in Table 3. They reveal that upon completion of the
study, the platelet concentration was significantly higher in the
PB group than in the KK group.

The results of the microbiological analysis are presented in
Table 4. At the end of the study, the total fecal bacteria content
was significantly higher in the PB group than in the PA group.
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Table 1  Masses of organs

Group n  Liver [g] Heart [g] Kidney [g] Spleen [g] Pancreas [g] Femur [g] Testicle [g] Duodenum [g]
KK 10 12.136 £ 1.267° 1.094 +£0.055 1.148 £ 0.004 0.575 +0.052 0.874 = 0.095* 0.936 = 0.083 3.578 £ 0.247 0.332 £ 0.050
PA 10 10.456 +1.260" 1.097 +0.082 1.096 + 0.005 0.556 +0.070 0.978 + 0.141* 0.903 = 0.066 3.629 + 0.298 0.345 + 0.065
PB 10 10361 £ 1.560° 1.113 +£0.102 1.860 +0.013 0.517 £0.100 1.051 = 0.126" 0.934 £ 0.062 3.535 £0.270 0.350 £ 0.059

Data are presented as mean + SD. KK, control group; PA, group with low dose of probiotic; PB, group with high dose of probiotic; SD, standard deviation

b significantly different (p < 0.05)

The mineral concentration in tissues is shown in Table 5.
Iron content in the liver was significantly higher in the PB
group than in the KK group; in the pancreas, this was signif-
icantly higher in the PB group than in the KK and PA group,
and in the duodenum, it was significantly higher in both sup-
plemented groups than in the KK group. The zinc content in
the heart was significantly higher in the PA group than in the
KK group; in the testicles, this was significantly higher in the
PA and PB groups than in the KK group, and in the pancreas,
it was significantly lower in the PA and PB groups than in the
KK group. The copper content in the liver was significantly
higher in the PA group than in the KK group and in the heart
was significantly lower in the PB group than in the KK and PA
groups.

Correlation analysis of the entire study population (z =30
rats), comparing the determined parameters, was performed: a
range of positive correlations were found between the Fe con-
tent of the pancreas and UIBC, between the Cu content of the
kidneys and RBC count, between the Cu content of the pan-
creas and UIBC, and between the Fe content of the liver and
the Fe content of the pancreas; a negative correlation was seen
between PLT count and serum Fe concentration. The signifi-
cant correlations found in this study are presented in Table 6.

Discussion

According to the FAO/WHO definition, the essence of
probiotics is their viability and beneficial effect on the host
after administration in the appropriate amounts [29]. Our
study registered significantly higher total fecal bacteria levels
in the PB group than in the PA group and higher (though not
significant) total fecal bacteria content in the PB group than in
the control group. This shows that the supplemented probiotic
bacteria remained alive in the rats’ gastrointestinal track and
administration in a higher dose resulted in greater intestinal
bacterial abundance. It can be hypothesized that the higher of
the two probiotic doses has a greater effect on host health. Our
study positively reflects this hypothesis, showing more signif-
icant differences in analyzed parameters between the PB and
KK groups than between the PA and KK groups.

A range of significant differences were also found in the
examined parameters between the PA and KK groups, despite
there being no significant difference in the total fecal bacteria
content between these groups. It can thus be hypothesized that
the multispecies probiotic mixture administered at the lower
dose has the ability to alter gut microbiota composition, but
not its quantity, bringing significant health effects to the host.
Aktas and al. have shown that the probiotic Lactobacillus in
particular, which dominates in the probiotic mixture adminis-
tered here can induce significant alterations in intestinal mi-
crobiota composition, altering the abundance of bacteria such
as Bacteroidales, Lachnospiraceae, Oscillospira,
Ruminococcaceae, Clostridiales, Clostridia, and Firmicutes.
Two main mechanisms lead to these alterations: changes in the
regulation of pattern recognition receptor (PRR), which is
responsible for cytokine activity modulation in response to
bacterial surface patterns, and modifications of antimicrobial
peptide (AMP), which is a component of the innate immune
system responsible for gut mucosal defense [36]. In our study,
the diversity of the hosts’ gut microbiota response to
probiotics was shown by the diversity of total fecal bacteria
content (demonstrated by its standard deviation), which was
higher in the probiotic-supplemented groups than in the con-
trol group. However, Lactobacillus remained the most abun-
dant bacteria in feces in all three study groups.

Dietary iron absorption is only possible in the form of Fe**
ion and takes place in the duodenum and small intestine. In the
intestinal mucosa, iron is bound with apoferritin, creating fer-
ritin, which is then stored in the liver. The iron in ferritin has
the form of ion Fe**. In blood, iron is bound to transferin,
which is responsible for blood iron transportation [12]. In
our study, we found significantly higher duodenal iron levels
in both groups that received probiotics, compared to the con-
trols, which indicate higher duodenal iron absorption in these
groups. This demonstrates the ability of probiotics to increase
iron bioavailability. In vitro studies have shown that probiotic
bacteria increase dietary iron bioavailability through a com-
plex mechanism. In the first stage, bacteria converts ellagic
acid (EA) to urolithin A (UA) which, unlike EA, is not capable
of binding Fe** [37]. Secondly, Fe’* is reduced to Fe** by the
p-hydroxyphenyllactic acid excreted by Lactobacillus, which
increases the amount of the form of Fe that can be absorbed by
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Table 2 TIBC and UIBC values

and Fe serum concentration Group n TIBC UIBC Fe serum
[ng/dl] [ng/dl] concentration [pg/dl]
KK 10 528.88 + 35.88 349.28 + 35.23% 171.91 + 27.68°
PA 10 521.40 £ 24.70 388.99 + 33.72% 132.44 + 17.86"
PB 10 520.22 £+ 36.62 395.40 + 45.29° 134.56 = 7.76%

Data are presented as mean + SD. KK, control group; PA, group with low dose of probiotic; PB, group with high
dose of probiotic; T/BC, total iron binding capacity; UIBC, unsaturated iron-binding capacity; SD, standard

deviation

b Sisnificantly different (p < 0.05)

the host [38]. In our study, Lactobacillus fecal content in the
PB group was the highest (though not significantly) of all
three study groups. This enables us to hypothesize that the
above mechanism [37, 38] was crucial in increasing the duo-
denal iron absorption found in our experiment as a result of
multispecies probiotic supplementation. We can emphasize
that the probiotic mechanism involving UA, EA, and p-
hydroxyphenyllactic acid, which lead to an increase in Fe
duodenal absorption, to date, has only been described in
in vitro studies; confirmation of its impact on Fe metabolism
in living organisms requires further research.

Aside from the increased Fe availability, our study docu-
ments elevated liver Fe content as a result of probiotic supple-
mentation in the higher of the two doses, compared to the
controls. This finding was accompanied by lower serum Fe
concentrations in both supplemented groups compared to the
controls; however, there was no anemia, due to hemoglobin
values remaining in the normal range and being undifferenti-
ated between groups. We can thus state that probiotic supple-
mentation resulted in a shift of Fe from the blood to the liver
and elevated liver Fe accumulation, especially in the group
supplemented with a higher dose of probiotic. In adult rats,
hematopoiesis takes place in the bone marrow and hematopoi-
etic stem cells (HSC), and nestin” mesenchymal stem cells
(MSC) are directly involved in this process [39]. In adult rats,
the liver also provides an appropriate environment for migrat-
ing HSC. Hepatic stellate cells also present the expression
pattern of marrow MSC and exert their function; they are thus
liver-resident MSC [39]. When serum Fe concentrations drop,
adult rats can (at least partially) shift to liver hematopoiesis
[39]. Moreover, a decrease in iron serum content can lead to
an increase by as much as a factor of 3 in the levels of hepatic
divalent metal-ion transporter-1 protein and divalent metal-ion
transporter-1 gene expression, which augments liver Fe up-
take [40]. Thus, it can be presumed that probiotic supplemen-
tation in multistrain mode may be able to ameliorate hepatic
hematopoiesis and hepatic Fe intake. On the other hand, he-
patic iron overload might be responsible for increased oxida-
tive stress, nonalcoholic steatohepatitis, and hepatic cancer
[41]. Thus, the effect of probiotic supply on the liver needs
further investigation, with special concern being paid to the
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health effects of hepatic iron accumulation. However, it is
worth noticing that, in our study, we observed that liver mass
in rats supplemented with probiotics was lower than in con-
trols [31]. Elevated liver mass in individuals not consuming
alcohol is caused by increased lipid accumulation and oxida-
tive stress [42]. This allows us to hypothesize that multistrain
probiotic supplementation may prevent excess lipid storage in
the liver [31].

Interestingly, in the PB group, higher platelet counts were
observed than in the controls. Moreover, in the entire study
population, the platelet count correlated negatively with serum
Fe content. Decreased serum iron content is in most cases
accompanied by normal platelet count (84.6%), but both
thrombocytosis (13.3%) and thrombocytopenia (2.1%) have
been observed [43]. Thrombocytosis induced by decreased
serum Fe content does not usually lead to clinical conse-
quences. Its mechanisms have not been investigated suffi-
ciently so far. It has been suggested that platelet production
might be stimulated by increased erythropoietin. The amino
acid sequence homology of erythropoietin and
thrombopoietin may also play a role in this process [43].

The study group receiving the higher dose of probiotics
was characterized by higher pancreatic Fe content and
higher pancreas mass than the group receiving the lower
dose of probiotic and controls. Pancreas Fe content has
recently been considered an important element in the
pathogenesis of diabetes. Pancreas Fe deficiency results
in upregulated transcription of arachidonate 15-
lipoxygenase (Alox15), a molecule involved in the devel-
opment of diabetes. On the other hand, increased pancre-
atic Fe content leads to upregulation of Regla, Reg3a,
and Reg3b transcription [44]. The Reg genes are a family
of islet-derived genes highly expressed in pancreatic
stress [44]. It can thus be hypothesized that the increased
pancreatic Fe content observed in our study upon supply-
ing probiotics in the higher of the two doses may consti-
tute a biological stress factor in the pancreas. The main
mechanism of pancreatic cell damage due to pancreas Fe
overload is intensified oxidation [45]. However, Reg
genes are also engaged in pancreatic islet regeneration
[46] and protection against diabetes [47].
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Table 3 Whole blood morphological analysis

Group n RBC [T/] HGB [g/1] HCT [1/1] MCV [f] MCH [pg] MCHC [g/1] PLT [g/1]

KK 10 8.58 + 0.38 147.13 + 6.64 0.50 £ 0.03 58.13 + 1.15 17.19 £ 0.36 295.88 £ 5.54 862.71 + 152.95%
PA 10 8.63 £ 0.32 147.50 £2.95 0.50 £ 0.01 57.96 £ 1.33 17.12 £ 0.51 295.10 £ 4.58 930.20 + 149.41%
PB 10 8.88 + 0.47 152.00 + 7.60 0.51 +0.02 57.69 +1.28 17.12 £ 0.36 296.60 + 3.69 1077.00 + 169.62°

Data are presented as mean + SD. KK, control group; PA, group with low dose of probiotic; PB, group with high dose of probiotic; RBC, red blood cells;
HGB, hemoglobin serum concentration; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean
corpuscular hemoglobin concentration; PLT, platelets; SD, standard deviation

b Significantly different (p <0.05)

Cu pancreas deficiency results in pancreas atrophy [44] and
beta-cell neogenesis [48]. Cu deficiency has been demonstrat-
ed to induce pancreatic islet hyperplasia and hepatic metapla-
sia in the pancreas [49]. Islet hyperplasia is engaged in diabe-
tes pathogenesis [50]. In our study, we observed higher
(though not significant) pancreatic Cu content in the
probiotics groups than in the controls, accompanied with
higher pancreatic mass in the PB group than in the controls,
as described above. It can thus be theorized that probiotic
supplementation in multistrain mode may play a role in the
prevention of diabetes and counteract pancreas degeneration.

Interestingly, correlation analysis of the entire study popu-
lation revealed that Fe content in the liver and pancreas was
positively correlated. This is due to common Fe transporters in
both the liver and pancreas: ZRT/IRT-like protein 14 (ZIP14)
and divalent metal-ion transporter-1 (DMT1) [40], which is
also engaged in Cu metabolism [51]. Moreover, the ZIP14
level is upregulated in the Fe-loaded pancreas and liver [40].
In the entire study population, we registered a positive corre-
lation between the UIBC level and the pancreas Fe content.
Elevated UIBC level is a marker of a decrease in serum Fe
concentration [52]. This observation of a reduction in iron
serum content proportional to an increase in iron pancreas
content confirms our hypothesis on the shift of iron from the
serum to parenchymal organs, such as the liver and pancreas,
as a result of multistrain probiotic supplementation. In our
study, UIBC level was also positively correlated with copper
pancreas content in the entire study group. These data suggest
that the observed alterations in Cu status may follow on from
alterations in Fe homeostasis.

Fe metabolism is strongly connected with Cu and Zn
homeostasis, thus studies of Fe alterations should also
include Cu and Zn content analysis [22]. Studies on the
effects of probiotic supply on Cu and Zn status are very
scant. Despite this, it has been shown that probiotic sup-
plementation in rats may correct such mineral imbalance
[53]. In our study, we observed higher liver Cu contents
in the group receiving the lower dose of probiotics than in
the controls, accompanied by lower heart Cu content in
the PB group than in the KK and PA groups. It can thus
be hypothesized that the multistrain probiotic supply has
led to a shift in Cu ions. The liver Cu deficiency plays a
role in the pathogenesis of diseases such as nonalcoholic
fatty liver disease, bile duct ligation-induced liver injury,
fibrosis, inhibited ceruloplasmin activity, and disturbed
heme oxygenase-1 gene expression [54-56]. Multistrain
probiotic supplementation that increases hepatic Cu con-
tent may thus play a protective role against a range of
liver diseases. On the other hand, heart Cu deficiency
may lead to unfavorable copper-deficient heart hypertro-
phy [57]. However, the observed shift of Cu ions is prob-
ably secondary to the changes in Fe status [22]. There is
an evident need for further studies on Cu status alterations
as the result of probiotic supplementation. In the entire
study population, we observed a positive correlation be-
tween kidney Cu content and red blood cell (RBC) count.
The probiotic-supplemented rats did not show markers of
anemization, compared to the controls, despite the lower
Fe serum content. We thus hypothesize that renal Cu con-
tent takes part in preventing anemia though a mechanism

Table 4 Fecal microbiological

analysis Group n Total fecal bacteria Lactobacillus fecal Lb/T Lb/KK-
content (T) content (Lb) Lb
KK 10 9.658 + 0.093 9.479 £ 0.220 0.981 1.000
PA 10 9.60 = 0.23% 9.52 +0.33 0.99 1.004
PB 10 9.931 £ 0.133" 9.697 = 0.117 0.976 1.023

Data are presented as mean = SD. KK, control group; PA, group with low dose of probiotic; PB, group with high
dose of probiotic; bacterial content in feces (T, Lb) given in Log(CFU/g); KK-Lb, Lactobacillus fecal content in

KK group; SD, standard deviation

b Significantly different (p < 0.05)

@ Springer



240

Skrypnik et al.

Table 5 Mineral concentration in tissues
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Hair

Testicles Duodenum

Femur

Heart Kidney Spleen Pancreas

Liver

Group

12.28 +1.65

82.83 +18.25%

101.46 £16.62
122.75+23.05
119.95+16.20
70.96 +£26.73%

168.85 + 25.83
164.88 + 18.04
178.06 + 23.77
981.13 + 136.52

67.00 + 6.34%

2568.93 +£357.76
2514.93 £222.39
2276.99+371.80

56.45+11.73

340.85 + 52.69
336.36 + 22.48

605.70 + 61.31
360.22 + 45.55

393.19 + 72.43*

KK
PA
PB
KK
PA
PB
KK
PA
PB

Fe [pg/g]

11.97+3.42
9.56+1.28

165.06 £41.56°

70.65 £+ 16.87%

657.28 £ 143.48
619.35 + 82.06
52.97 £ 7.57°

438.77 + 63.38%®
479.98 + 75.38°

72.41 £ 7.61

166.81 = 169.61°

<LOD
<LOD
<LOD
<LOD
<LOD
<LOD

79.97 + 22.26°

124.72 +£31.84

62.43 + 16.93°

69.26 £ 12.25
57.82 +28.01
65.94 + 15.88

Zn [ug/g]

116.60+12.58
112.92+9.96
<LOD
<LOD
<LOD

99.07 +19.84°

1008.97 + 220.13
1040.94 + 269.07

6.05 +0.33
5.56 +£0.79
5.49 £ 0.83

50.61 + 11.34*

63.60+21.31

64.97 + 10.13°

84.12 + 16.22
77.73 + 14.62
8.30 + 1.41°

96.47 £25.02°
<LOD
<LOD
<LOD

54.96 + 21.18*
2.61 +0.67

62.93+15.10
<LOD
<LOD
<LOD

59.77 £ 9.56%
15.45 + 1.96°
13.06 + 2.83°
9.70 + 0.97°

19.12 £2.97
18.93 +3.38
19.55 £ 4.06

Cu [ng/g]

3.58 £0.91
3.50 £ 0.91

10.32 £ 2.23°
9.82 + 1.60%

Data are presented as mean + SD. KK, control group; PA, group with low dose of probiotic; PB, group with high dose of probiotic; SD, standard deviation; LOD, limit of detection. Mineral content are

presented as Fe, Zn, and Cu content in pg per g of organ dry mass

b Sjgnificantly different (p < 0.05)

that has so far not been well investigated. It is worth
underlining that probiotic supplemented rats showed no
differences in renal Cu levels when compared to the con-
trols [58].

Our study showed lower zinc content in the pancreas in
groups receiving probiotic than in the control group, accom-
panied by the above-described higher levels of pancreatic Fe
in the group receiving higher doses of probiotic than the con-
trols and the group receiving the lower dose of probiotic. Zn
plays a protective role in the pancreas against the unfavorable
effects of oxidative stress [59]. A decrease in pancreatic Zn
content, and also the oxidative stress caused by an increase in
pancreas Fe content [45], may cause damage to pancreatic
tissue [59]. Moreover, zinc is an element crucial to undis-
turbed insulin synthesis, and a deficit of it may result in dis-
turbances to glucose metabolism [60]. We thus hypothesize
that multistrain probiotic supplementation, on account of al-
teration to pancreatic Zn and Fe contents, may increase the
risk of the development of diabetes. This issue undoubtedly
needs further investigation. However, the pancreas has mech-
anisms to minimize carbohydrate metabolism disorders, de-
spite zinc deficiency [60].

Zn plays a protective role against homocysteine-induced
peroxidation-based cardiac disorders [61], and its deficiency
leads to unfavorable enzymatic alterations in the heart [62]. In
our study, we found heart Zn contents to be higher in the PA
group than in the KK group. It can thus be hypothesized that
multistrain probiotic supplementation can serve as an inter-
vention to prevent potential Zn-deficiency-derived heart dis-
turbances. Moreover, it allows us to suppose that the Zn-
dependent cardioprotective effect of probiotic supply would
counteract the development of copper-deficient heart hyper-
trophy [57], which may be an effect of lower heart Cu content
in the PB group than in the KK and PA groups in our study
after probiotic supply. This issue requires deeper research
efforts.

There is an evident dearth of studies on Zn metabolism in
the testicles. In one study, Vanderlei et al. demonstrated that
zinc deficiency leads to germinative epithelium degeneration,
atrophy of seminiferous tubules, and spermatogenesis distur-
bances [63]. Our study found higher testicle Zn content in
both groups receiving the probiotic than in the control group,
which allows us to theorize that a multistrain probiotic supply
would prevent the testicular disturbances observed by
Vanderlei et al.

Study Strengths

The strongest point of our study is its pioneering character,
emplying multistrain probiotic supplementation and a dose-
comparatory mode not previously implemented in studies of
the effect of probiotic supplementation on Fe, Zn, and Cu
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Table 6 Significant (p <

0.05) correlations Correlated parameters r
registered in the study
Fe pancreas and UIBC 0.52
Cu kidney and RBC 0.53
Cu pancreas and UIBC 0.61
Fe liver and Fe pancreas 0.42

PLT and Fe serum -0.50

RBC, red blood cells; PLT, platelets count;
UIBC, unsaturated iron-binding capacity

status. Our study can serve as a basis for future worldwide
guidelines on probiotic supplementation.

Study Limitations

The main limitation of our study was its slightly limited dura-
tion. However, an experiment as short as 6 weeks was suffi-
cient to detect significant and partially dose-dependent effects
of multistrain probiotic supply on the selected parameters of
iron status. Moreover, our study was performed only on
healthy males, omitting females and rats in a state of illness.

Conclusion

Our study has provided evidence for dose-independent and
beneficial effect of 6-week oral multispecies probiotic supple-
mentation on iron bioavailability and duodenal iron absorp-
tion in the rat model. Moreover, multistrain probiotic supply
induces a dose-independent iron shift from serum and inten-
sifies dose-dependent pancreatic and liver iron uptake, as an
effect of as little as 1 x 10'® CFU daily dose. The iron status
modifications resulting from multispecies probiotic supply
were accompanied by a range of changes in copper and zinc
status, especially in the heart, pancreas, and testicles; these
need further investigation. Subsequent studies on a large scale
should be undertaken to draw a precise conclusion, with spe-
cial attention on the health effects of these mineral alterations.
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