
Heterogeneity adjustment with applications to graphical model 
inference

Jianqing Fan,
Department of Operations Research and Financial Engineering, Princeton University, Princeton, 
NJ 08544, USA, jqfan@princeton.edu

Han Liu,
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, 
IL 60208, USA, hanliu@northwestern.edu

Weichen Wang,
Department of Operations Research and Financial Engineering, Princeton University, Princeton, 
NJ 08544, USA, nickweichwang@gmail.com

Ziwei Zhu
Department of Operations Research and Financial Engineering, Princeton University, Princeton, 
NJ 08544, USA, zzw9348ustc@gmail.com

Abstract

Heterogeneity is an unwanted variation when analyzing aggregated datasets from multiple sources. 

Though different methods have been proposed for heterogeneity adjustment, no systematic theory 

exists to justify these methods. In this work, we propose a generic framework named ALPHA 

(short for Adaptive Low-rank Principal Heterogeneity Adjustment) to model, estimate, and adjust 

heterogeneity from the original data. Once the heterogeneity is adjusted, we are able to remove the 

batch effects and to enhance the inferential power by aggregating the homogeneous residuals from 

multiple sources. Under a pervasive assumption that the latent heterogeneity factors 

simultaneously affect a fraction of observed variables, we provide a rigorous theory to justify the 

proposed framework. Our framework also allows the incorporation of informative covariates and 

appeals to the ‘Bless of Dimensionality’. As an illustrative application of this generic framework, 

we consider a problem of estimating high-dimensional precision matrix for graphical model 

inference based on multiple datasets. We also provide thorough numerical studies on both 

synthetic datasets and a brain imaging dataset to demonstrate the efficacy of the developed theory 

and methods.
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1. Introduction

Aggregating and analyzing heterogeneous data is one of the most fundamental challenges in 

scientific data analysis. In particular, the intrinsic heterogeneity across multiple data sources 
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violates the ideal ‘independent and identically distributed’ sampling assumption and may 

produce misleading results if it is ignored. For example, in genomics, data heterogeneity is 

ubiquitous and referred to as either ‘batch effect’ or ‘lab effect’. As characterized in [29], 

microarray gene expression data obtained from different labs on different processing dates 

may contain systematic variability. Furthermore, [30] pointed out that heterogeneity across 

multiple data sources may be caused by unobserved factors that have confounding effects on 

the variables of interest, generating spurious signals. In finance, it is also known that asset 

returns are driven by varying market regimes and economy status, which can be regarded as 

a temporal batch effect. Therefore, to properly analyze data aggregated from multiple 

sources, we need to carefully model and adjust the unwanted variations.

Modeling and estimating heterogeneity effect is challenging for two reasons. (i) Typically, 

we can only access a limited number of samples from an individual group, given the high 

cost of biological experiments, technological constraint or fast economy regime switching. 

(ii) The dimensionality can be much larger than the total aggregated number of samples. The 

past decade has witnessed the development of many methods for adjusting batch effect in 

high throughput genomics data. See, for example, [43], [2], [30], and [25]. Though 

progresses have been made, most of the aforementioned papers focus on the practical side 

and none of them has a systematic theoretical justification. In fact, most of these methods 

are developed in a case-by-case fashion and are only applicable to certain problem domains. 

Thus, there is still a gap that exists between practice and theory.

To bridge this gap, we propose a generic theoretical framework to model, estimate, and 

adjust heterogeneity across multiple datasets. Formally, we assume the data come from m 
different sources: the ith data source contributes ni samples, each having p measurements 

such as gene expressions of an individual or stock returns of a day. To explicitly model 

heterogeneity, we assume that the batch-specific latent factor ft
i influence the observed data 

X jt
i  in batch i (j indexes variables; t indexes samples) as in the approximate factor model:

X jt
i = λ j

i′ft
i + u jt

i , 1 ≤ j ≤ p, 1 ≤ t ≤ ni, 1 ≤ i ≤ m, (1.1)

where λ j
i  is an unknown factor loading for variable j and u jt

i  is a true uncorrupted signal. We 

consider a random loading λ j
i . The linear term λ j

i ′ft
i models the heterogeneity effect. We 

assume that ft
i is independent of u jt

i  and ut
i = (u1t, …, upt)′ shares the same common 

distribution with mean 0 and covariance Σp×p across all data sources. In the matrix-form 

model, (1.1) can be written as

Xi = ΛiFi′ + Ui, (1.2)

where Xi is a p×ni data matrix in the ith batch, Λi is a p×Ki factor loading matrix with λ j
i′ in 

the jth row, Fi is an ni × Ki factor matrix and Ui is a signal matrix of dimension p × ni. We 

allow the number of latent factors Ki to depend on batch i. We emphasize here that within 

one batch, our model is homogeneous. Heterogeneity in this paper refers to that the batch 
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effect terms ΛiFi′
i = 1
m

 are different across different groups i = 1,…,m, which are unwanted 

variations in our study.

To see more clearly on how model (1.2) characterizes the heterogeneity, note that for the tth 

sample Xt
i, which is the tth column of Xi,

var(Xt
i) = Λivar(ft

i)Λi′ + Σ . (1.3)

Therefore, the heterogeneity is carried by the low-rank component Λivar(ft
i)Λi′ in the 

population covariance matrix of Xt
i. We need to clarify that since we assume both Fi and Ui 

have mean zero, heterogeneity mentioned in this paper is for covariance structure as shown 

above instead of mean structure. In addition, our model differs from the random/mixed 

effect regression model studied in the literature [45, 23, 11] in that our models are factor 

models without any factors observed, while the mixed/random effect model is a regression 

model that requires covariate matrices to estimate the batch-specific term.

Under a pervasive assumption, the heterogeneity component can be estimated by directly 

applying principal component analysis (PCA) or Projected-PCA (PPCA), which is more 

accurate when there are sufficiently informative covariates Wi [18]. Let ΛiFi′ be the 

estimated heterogeneity component and Ui = Xt
i − ΛiFi′ the heterogeneity-adjusted signal, 

which can be treated as homogeneous across different datasets and thus can be combined 

together for downstream statistical analysis. This whole framework of heterogeneity 

adjustment is termed ALPHA (short for Adaptive Low-rank Principal Heterogeneity 

Adjustment) and is schematically shown in Figure 1.

The proposed ALPHA framework is fully generic and applicable to almost all kinds of 

multivariate analysis of the combined, heterogeneity adjusted datasets. As an illustrative 

example, in this paper, we focus on the problem of Gaussian graphical model inference 

based on multiple datasets. It is a powerful tool to explore complex dependence structure 

among variables X = (X1,…,Xp)′. The sparsity pattern of the precision matrix Ω = Σ−1 

encodes the information of an undirected graph G = (V,E) where V consists of p vertices 

corresponding to p variables in X and E describes their dependence relationship. To be 

specific, Vi and Vj are linked by an edge if and only if Ωi j ≠ 0 (the (i,j)th element of Ω), 

meaning that Xi and Xj are dependent conditioning on the rest of the variables. For 

heterogeneous data across m data sources, we need to first adjust for heterogeneity using the 

ALPHA framework. The idea of covariate-adjusted precision matrix estimation has been 

studied by [7], but they assumed observed factors and no heterogeneity issue, i.e., m = 1.

A significant amount of literature has focused on the estimation of the precision matrix Ω for 

graphical models for homogeneous data. [49] and [20] developed the Graphical Lasso 

method using the L1 penalty and [27] and [42] used a non-convex penalty. Furthermore, [40] 

and [33] studied the theoretical properties under different assumptions. Estimating Ω can be 

equivalently reformulated as a set of node-wise sparse linear regression that utilizes Lasso or 
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Danzig selector for each node [35, 48]. To relax the assumption of Gaussian data, [32] and 

[31] extend the graphical model to the case of semiparametric Gaussian copula and 

transelliptical family. Via the ALPHA framework, we can combine the adjusted data Ui to 

construct an estimator for the precision matrix Ω by the above methods. Recent works also 

focus on joint estimation of multiple Gaussian or discrete graphical models which share 

some common structure [22, 15, 47, 8, 21]. They are concerned with both the commonality 

and individual uniqueness of the graphs. In comparison, ALPHA emphasizes more on 

heterogeneity-adjusted aggregation for one single graph.

The rest of the paper is organized as follows. Section 2 lays out a basic problem setup and 

necessary assumptions. We model the heterogeneity by a semiparametric factor model. 

Section 3 introduces the ALPHA methodology for heterogeneity adjustment. Two main 

methods PCA and PPCA will be introduced for adjusting the factor effects under different 

regimes. A guiding rule of thumb is also proposed to determine which method is more 

appropriate. The heterogeneity-adjusted data will be combined to provide valid graph 

estimation in Section 4. The CLIME method of [9] is applied for precision matrix 

estimation. Synthetic and real data analyses are carried out to demonstrate the proposed 

framework in Section 5. Section 6 contains further discussions and all the proofs are 

relegated to the appendix.

2. Problem setup

To more efficiently use the external covariate information in removing heterogeneity effect, 

we first present a semiparametric factor model. Then, based on whether the collected 

external covariates have explaining power on factor loadings, we discuss two different 

regimes where PCA or PPCA should be used. We will state the conditions under which these 

methods can be formally justified.

2.1. Semiparametric factor model

We assume that for subgroup i, we have d external covariates W j
i = (W j1

i , …, W jd
i )′ for 

variable j. In stock returns, these can be attributes of a firm; in brain imaging, these can be 

the physical locations of voxels. We assume that these covariates have some explanatory 

power on the loading parameters λ j
i  in (1.1) so that it can be further modeled as 

λ j
i = gi(W j

i ) + γ j
i , where gi(·) is the external covariate effects on λ j

i  and γ j
i  is the part that can 

not be explained by the covariates. Thus, model (1.1) can be written as

X jt
i = λ j

i′ft
i + u jt

i = (gi(W j
i ) + γ j

i )′ft
i + u jt

i . (2.1)

Model (2.1) does not put much restriction. If W j
i  is not informative at all, i.e., gi(·) = 0, the 

model reduces to a regular factor model. In a matrix form, model (2.1) can be written as

Xi = ΛiFi′ + Ui where Λi = Gi(Wi) + Γi, 1 ≤ i ≤ m . (2.2)
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In (2.2), Gi(Wi) and Γi are p×Ki matrices. More specifically, gk
i (W j

i ) and γjk are the (j,k)th 

element of Gi(Wi) and Γi respectively. Expression (2.2) suggests that the observed data can 

be decomposed into a low-rank heterogeneity term ΛiFi′ and a homogeneous signal term Ui. 

Letting ut
i be the tth column of Ui, we assume all ut

i,s share the same distribution for any t ≤ 

ni and for all subgroups i ≤ m with 𝔼 ut
i = 0, var(ut

i) = Σ.

There has been a large literature on factor models in econometrics [3, 5, 17, 44], machine 

learning [10, 36] and random matrix theories [26, 38, 46]. We refer the interested readers to 

those relevant papers and the references therein. However, none of these models incorporate 

the external covariate information. The semiparametric factor model (2.1) was first proposed 

by [14] and further investigated by [13] and [18]. Using sufficiently informative external 

covariates, we are able to more accurately estimate the factors and loadings, and hence yield 

better adjustment for heterogeneity.

Here we collect some notations of eigenvalues and matrix norms used in the paper. For 

matrix M, we use λmax(M), λmin(M) and λi(M) to denote the maximum eigenvalue, the 

minimum eigenvalue and the ith eigenvalue of M respectively. We define the quantities 

M max = maxi, j Mi, j , M 2 = λmax
1/2 (M′M)( M for short), M F = (

i, j
Mi j

2 )1/2
, 

M 1 = max j i
Mi j  and M 1, 1 =

i j
Mi j  to be its entry-wise maximum, spectral, 

Frobenius, induced ℓ1 and element-wise ℓ1 norms.

2.2. Modeling assumptions and general methodology

In this subsection, we explicitly list all the required modeling assumptions. We start with an 

introduction of the data generating processes.

Assumption 2.1 (Data generating process). (i) ni
−1Fi′Fi = I.

(ii) ut
i

t ≤ ni, i ≤ m
 are independently and identically sub-Gaussian distributed with mean zero 

and covariance Σ within and between subgroups, and independent of W j
i , ft

i . Let 

Σ 2 = C0 < ∞.

(iii) ft
i

t ≤ ni
 is a stationary process, with arbitrary temporal dependency. The tail of the 

factors is sub-Gaussian, i.e., there exist C1, C2 > 0 such that for any α ∈ ℝKi
 and 

s > 0, ℙ( α′ft
i > s) ≤ C1exp(−C2s2/ α

2
).

The above set of assumptions are commonly used in the literature, see [5] and [18]. We omit 

detailed discussions here.

Based on whether the external covariates are informative, we specify two regimes, each of 

which requires some additional technical conditions.
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2.2.1. Regime 1: External covariates are not informative—For the case that the 

external covariates do not have enough explanatory power on the factor loadings Λi, we 

ignore the semiparametric structure and model (2.2) reduces to the traditional factor model, 

extensively studied in econometrics [3, 44, 37]. PCA will be employed in Section 3.1 to 

estimate the heterogeneous effect. It requires the following assumptions.

Assumption 2.2. (i) (Pervasiveness) There are two positive constants cmin, cmax > 0 so that

cmin < λmin(p−1Λi′Λi) < λmax(p−1Λi′Λi) < cmax, a . s . ∀i .

(ii) max
k ≤ Ki, j ≤ p

λ jk
i = Op( log p).

The first condition is common and essential in the factor model literature (e.g., [44]). It 

requires the factors to be strong enough such that the covariance matrix Λicov(ft
i)Λi + Σ has 

spiked eigenvalues. We emphasize here that this condition is actually not so stringent as it 

looks. Consider a single-factor model Yit = bift + uit, i = 1,…,p, t = 1,…,T. The pervasive 

assumptions actually imply that cminp ≤ i = 1
p bi

2 ≤ cmaxp. Note that since cmin can be a 

small constant, our pervasive assumption just says that the factors f t t = 1
T  have non-

negligible effect on a non-vanishing proportion of outcomes. In addition, this condition is 

trivially true if λ j
i

j = 1
p

’s can be regarded as random samples from a population with non-

degenerate covariance matrix [17]. Practically, in fMRI data analysis for instance, the lab 

environment (temperature, air pressure, etc.) or the mental status of the subject being 

scanned may cause the BOLD (Blood-Oxygen-Level Dependent) level to be uniformly 

higher at certain time t. This means the brain heterogeneity is globally driven by the factors 

f t t = 1
T . If the batch effect is only limited to a small number of dimensions, we think it is 

more appropriate to assume sparsity instead of pervasiveness on top eigenvectors, which is 

quite different from our problem setups and thus beyond the scope of our paper. The second 

condition holds if the population has a sub-Gaussian tail.

2.2.2. Regime 2: External covariates are informative—When covariates are 

informative, we will employ the PPCA [18] to estimate the heterogeneous effect. It requires 

the following assumptions.

Assumption 2.3. (i) (Pervasiveness) There are two positive constants cmin and cmax so that

cmin < λmin(p−1Gi(Wi)′Gi(Wi)) < λmax(p−1Gi(Wi)′Gi(Wi)) < cmax, a . s . ∀i .

(ii) max
k ≤ Ki, j ≤ p

Egk(W j
i )2 < ∞.
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This assumption is parallel to Assumption 2.2 (i). Pervasiveness is trivially satisfied if 

W j
i

j ≤ p
 are independent and Gi is sufficiently smooth.

Assumption 2.4. (i) Eγ jk
i = 0, max

k ≤ Ki, j ≤ p
γ jk
i = OP( log p).

(ii) Write γ j
i = (γ j1

i , …, γ jK
i )′. we assume γ j

i
j ≤ p

 are independent of W j
i

j ≤ p
.

(iii) Define νp = maxi ≤ mmax
k ≤ Kip

−1
j ≤ p

var(γ jk
i ) < ∞. We assume

max
k ≤ Ki, j ≤ p

∑
j′ ≤ p

|Eγ j′k
i γ jk

i | = O(νp) .

Condition (i) is parallel to Assumption 2.2 (ii) whereas Condition (ii) is natural since Γi can 

not be explained by Wi. Condition (iii) imposes cross-sectional weak dependence of γ j
i , 

which is much weaker than assuming independent and identically distributed γ j
i

j ≤ p
. This 

condition is mild as main serial dependency has been taken care of by gk(·)’s.

3. The ALPHA framework

We introduce the ALPHA framework for heterogeneity adjustment. Methodologically, for 

each sub-dataset we aim to estimate the heterogeneity component and subtract it from the 

raw data. Theoretically, we aim to obtain the explicit rates of convergence for both the 

corrected homogeneous signal and its sample covariance matrix. Those rates will be useful 

when aggregating the homogeneous residuals from multiple sources.

This section covers details for heterogeneity adjustments under the above two regimes: they 

correspond to estimating Ui by either PCA or PPCA. From now on, we drop the superscript i 
whenever there is no confusion as we focus on the ith data source. We use the notation F if F 

is estimated by PCA and F if estimated by PPCA. This convention applies to other related 

quantities such as U and U, the heterogeneity-adjusted estimator. In addition, we use 

notations such as F and U to denote the final estimators, which are F and U if PCA is used, 

and F and U if PPAC is used.

Estimators for latent factors under regimes 1 and 2 satisfy n−1F′F = I, which corresponds to 

normalization in Assumption 2.1 (i). By the principle of least squares, the residual estimator 

of U then admits the form

U = X(I − 1
nFF′) . (3.1)
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3.1. Estimating factors by PCA

In regime 1, we directly use PCA to adjust data heterogeneity. PCA estimates F by F where 

the kth column of F/ n is the eigenvector of X′X corresponding to the kth largest eigenvalue. 

We have the following theoretical results.

Theorem 3.1. Under Assumptions 2.1 and 2.2, we have

U − U = − 1
nUFF′ + Π,

UU′ − UU′ = − 1
nUFF′U′ + Δ,

where Π max = OP( log nlog p(1/ p + 1/n) + log n Σ 1/ p) and 

Δ max = OP((1 + n/ p)log p + n2 Σ 1
2/ p2).

Note that we do not explicitly assume bounded Σ 1. In some applications it might be 

natural to assume a sparse covariance so that all terms involving Σ 1 can be eliminated, 

while in other applications such as the graphical model, it is more natural to impose sparsity 

structure on the precision matrix. In this case, one may want to keep track of the effect of 

Σ 1 as it can be as large as O( p) as Σ 1 ≤ p Σ 2 = O( p).

3.2. Estimating factors by Projected-PCA

In regime 2, we would like to incorporate the external covariates using the Projected-PCA 

(PPCA) method proposed by [18]. The method applies PCA on the projected data and by 

projection, covariates information is leveraged to reduce dimensionality. We now briefly 

introduce the method.

For simplicity, we only consider d = 1, that is, we only have a single covariate. The general 

case can be found in [18]. To model the unknown function gk(Wj), we adopt a sieve based 

idea which approximates gk(·) by a linear combination of basis functions ϕ1(x), ϕ2(x), ⋯

(e.g., B-spline, Fourier series, polynomial series, wavelets). Then

gk(W j) =
ν = 1

J
bν, kϕν(W j) + Rk(W j), k ≤ K, j ≤ p . (3.2)

Here bν, k ν = 1
J  are the sieve coefficients of gk(Wj), corresponding to the kth factor loading; 

Rk is the remainder function representing the approximation error; J denotes the number of 

sieve bases which may grow slowly as p diverges. We take the same basis functions in (3.2) 

for all k though they can be different.

Define bk′ = (b1, k, ⋯, bJ, k) ∈ ℝJ for each k ≤ K, and correspondingly 

ϕ(W j)′ = (ϕ1(W j), ⋯, ϕJ(W j)) ∈ ℝJ. Then we can write
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gk(W j) = ϕ(W j)′bk + Rk(W j) .

Let BJ × K = (b1, ⋯, bK), Φ(W)p × J = (ϕ(W1), ⋯, ϕ(W p))′ and Rk(Wj) be the (j,k)th element of 

R(W)p×K. The matrix form (2.2) can be written as

X = Φ (W)BF′ + R(W)F′ + ΓF′ + U, (3.3)

recalling that the data index i is dropped. Thus the residual contains three parts: the sieve 

approximation error R(W)F′, unexplained loading ΓF′ and true signal U.

The idea of PPCA is simple: since the factor loadings are a function of the covariates in (3.3) 

and U and Γ are independent of W, if we project (smooth) the observed data onto the space 

of W, the effect of U and Γ will be significantly reduced and the problem becomes nearly a 

noiseless one, given that the approximation error R(W) is small.

Define P as the projection onto the space spanned by the basis functions of W:

P = Φ (W)( Φ (W)′ Φ (W))−1 Φ (W)′ . (3.4)

By (3.3), PX ≈ P Φ (W)BF′ ≈ G(W)F′. Thus, F can be estimated from the ‘noiseless 

projected data’ PX, using the conventional PCA. Let the columns of F/ n be the 

eigenvectors corresponding to the top K eigenvalues of the n × n matrix X′PX, which is the 

sample covariance of the projected data. Then, F is the PPCA estimator of F. It only differs 

from PCA in that we use smoothed or projected data PX.

We need the following conditions for basis functions and accuracy of sieve approximation.

Assumption 3.1. (i) There are dmin, dmax > 0 s.t.

dmin < λmin(p−1 Φ (W)′ Φ (W)) < λmax(p−1 Φ (W)′ Φ (W)) < dmax

almost surely and maxν≤J,j≤p Eϕν(Wj)2< ∞.

(ii) There exists k ≥ 4 s.t. as J ∞, supx ∈ χ |gk(x) −
ν = 1
J bν, kϕν(x)|2 = O(J−k) where X is 

the support of Wj and maxv,k |bv,k| < ∞.

Condition (ii) is mild; for instance, when {φν} is polynomial basis or Bsplines, it is implied 

by the condition that smooth curve gk(·) belongs to a Hölder class 

𝒢 = g: |g(r)(s) − g(r)(t) | ≤ L|s − t|α  for some L > 0, with k = 2(r + α) ≥ 4 [34,12].

Recalling the definition of νp in Assumption 2.4 (iii), we have the following results.

Theorem 3.2. Choose J = (pmin n, p, νp
−1 )1/k

 and assume J2ϕmax
2 log(nJ) = O(p) where 

ϕmax = maxν ≤ Jsupx ∈ Xϕν(x). Under Assumptions 2.1, 2.3, 2.4 and 3.1,
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U − U = − 1
nUFF′ + Π,

UU′ − UU′ = − 1
nUFF′U′ + Δ,

where Π max = OP( log n/ p(Jϕmax + log p) + Jϕmax Σ 1 log n/ p) and 

Δ max = OP(n νp/ p(J2ϕmax
2 + log p) + nJϕmax Σ 1(Jϕmax + log p)/ p + n2J2ϕmax

2 Σ 1
2/ p2) if 

there exists C s.t. vp>C/n.

3.3. A guiding rule for estimating the number of factors, the number of basis functions 
and determining regimes

We now address the problem of estimating the number of factors for two different regimes. 

Extensive literature has made contributions to this problem in regime 1, i.e., the regular 

factor model [4, 1, 28]. [28] and [1] proposed to use ratio of adjacent eigenvalues of X′X to 

infer the number of factors. They showed the estimator 

K = arg maxk ≤ Kmax
λk(X′X)/λk + 1(X′X) correctly identifies K with probability tending to 1, 

as long as Kmax ≥ K and Kmax = O(ni ∧ p).

For the semiparametric factor model, [18] proposed

K = arg max
k ≤ Kmax

λk(X′PX)/λk + 1(X′PX) .

Here Kmax is of the same order as Jd. It was shown that ℙ(K = K) 1 under regular 

assumptions which we omit here. When we have genuine and pervasive covariates, K

typically outperforms K. More details can be found in [18].

Once we use K and K to estimate the number of factors under the regular factor model and 

semiparametric factor model respectively, we naturally have an adaptive rule to decide 

whether the covariates W are informative enough to use PPCA over PCA. We compare two 

eigen-ratios:

λ
K

(X′X)

λ
K + 1(X′X)vs

λ
K

(X′PX)
λ
K + 1(X′PX) .

If the former is larger we identify the dataset as regime 1 and apply regular PCA to get U; 

otherwise it is regime 2 and PPCA is used to obtain U. The intuition behind this comparison 

is that the maximal eigen-ratios can be perceived as signal-to-noise ratios in terms of 

estimating the spiky heterogeneity term. Given that n−1XX′ ≈ GG′ + ΓΓ′ + Σ and 

n−1PXX′P ≈ GG′ + PΓΓ′P + PΣP, the first ratio measures the eigen-gap between GG′ + ΓΓ′
and Σ and the second ratio measures the eigen-gap between GG′ + PΓΓ′P and PΣP. If G(W) 

is much more important than Γ in explaining the loading structure, projection preserves 
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signal and reduces error to improve the eigen-gap. Conversely, if W is weak in providing 

useful information, projection reduces both noise and signal. Therefore, if projection 

enlarges the maximum eigen-gap, we prefer PPCA over PCA to estimate the spiky 

heterogeneity part. Our proposed guiding rule effectively tells whether projection can further 

contrast spiky and non-spiky parts of covariance.

The above signal-to-noise ratio comparison can be extended to choose the number of basis 

functions. Notice that we can regard regular PCA as PPCA with number of basis J = p and 

hence P = I. In this line of thinking, we can index P by J and maximize 

λK(J)(X′PJK)/λK(J) + 1(X′PJX) over J ∈ 1, 2, …, Jmax, p , where J = p corresponds to PCA. 

Here we use notation K(J) and PJ to exhibit their dependency on J. We implement this 

guiding rule in real data analysis.

In practice, there is still chance of misspecification of the true number of factors K by 

ALPHA. One might be curious about how this will affect the performance of ALPHA and 

the subsequent statistical analysis. To clarify this issue, we conduct sensitivity analysis on 

the number of factors in Section G.3 in the appendix. The take-home message is that the 

overestimation of K will not hurt, while underestimation of K might mislead subsequent 

statistical inference.

3.4. Summary of ALPHA

We now summarize the final procedure and convergence rates. We first divide m subgroups 

into two classes based on whether the collected covariates have significant influence on the 

loadings.

ℳ1 = i ≤ m Wi is not informative , ℳ2 = i ≤ m Wi is informative .

ALPHA consists of the following three steps.

Step 1: (Preprocessing) For data source i, determine whether it belongs to ℳ1 or ℳ2
according to the guiding rule given in Section 3.3 and correspondingly estimate K by Ǩ, 

which equals K or K (and choose J if necessary).

Step 2: (Adjustment) Apply Projected-PCA to estimate if ΛiFi′ if i ∈ ℳ2, otherwise use 

PCA to remove the heterogeneity, resulting in adjusted data Ui, which is either Ui or Ui.

Step 3: (Aggregation) Combine adjusted data Ui
i = 1
m

 to conduct further statistical analysis. 

For example, estimate sample covariance Σ by Σ = (N − iKi)
−1

i = 1
m UiUi′ where N = ini

is the aggregated sample size; or estimate sparse precision matrix Ω by existing graphical 

model methods.

We summarize the ALPHA procedure in Algorithm 1 given in Section A. We also 

summarize the convergence of Ui and Ui below. To ease presentation, we consider a typical 
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regime in practice: ni < Cp,
i ≤ m

Ki < CN for some constant C. We focus on the situation 

of sufficiently smooth curves k = ∞ so that J diverges very slowly (say with rate O( log p)) 
and bounded ϕmax and νp (defined respectively in Theorem 3.2 and Assumption 2.4). Based 

on discussions of the previous subsections, for estimation of U in ‖ ⋅ ‖max, we have

Ui − Ui = − UiFiFi′/ni +
OP( lognilog p/ p + lognilog p/ni) if i ∈ ℳ1,

OP( lognilog p/ p) if i ∈ ℳ2 .

Therefore, PPCA dominates PCA as long as the effective covariates are provided However, 

UiFiFi′/ni dominates all the remaining terms so that 

| |Ui − Ui | |max = OP(| |UiFiFi′/ni | |max)OP( lognilog p/ni) .

In addition, for estimation of UU′, we have

UiUi′ − UiUi′ = − UiFiFi′Ui′/ni +
OP(log p + δ) if i ∈ ℳ1,
OP(nilog p νp/ p + δ) if i ∈ ℳ2, (3.5)

where δ = ni
2 Σ 1

2log p/ p2, depending on Σ 1. If we consider a very sparse covariance 

matrix so that Σ 1 is bounded, we can simply drop the term δ in both regimes. Then, 

regime 1 achieves better rate if p = O(ni
2νp) but regime 2 outperforms otherwise.

4. Post-ALPHA inference

We have summarized the order of biases caused by adjusting heterogeneity for each data 

source in Section 3.4. Now we combine the adjusted data together for further statistical 

analysis. As an example, we study estimation of the Gaussian graphical model. Assume 

further ut
i N(0, Σ) and consider the following class of the precision matrices:

ℱ(s, R) = Ω:Ω ≻ 0, Ω 1 ≤ R, max
1 ≤ i ≤ p j = 1

p
𝟙( Ωi, j ≠ 0) ≤ s . (4.1)

To simplify the analysis, we assume R is fixed, but all the analysis can be easily extended to 

include growing R.

To estimate Ω = Σ−1 via CLIME, we need a covariance estimator as the input. We assume 

here the number of factors is known, i.e., the exception probability of recovering Ki has been 

ignored for ease of discussion. Such an estimator is naturally given by

Σ = 1
N − i ≤ mKi

i = 1

m
UiUi′ . (4.2)

Since the number of data sources is huge, we focus on the case of diverging N and p.

Fan et al. Page 12

Electron J Stat. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Covariance estimation

Let ΣN be the oracle sample covariance matrix, i.e., ΣN = N−1
i = 1
m UiUi′. We consider the 

difference between our proposed Σ and ΣN in this subsection. The oracle estimator 

obviously attains the rate ΣN − Σ max = OP( log p/N).

Let ξk
i = Uifk

ī / ni where fk
ī  is the kth column of Fi. It is not hard to verify that ξk

i  is Gaussian 

distributed with mean zero and variance Σ. Note that ξk
i

1 ≤ i ≤ m, 1 ≤ k ≤ Ki are i.i.d. with 

respect to k and i, using the assumption Fi′Fi/ni = I. By the standard concentration bound 

(e.g. Lemma 4.2 of [19]),

i ≤ m
( 1
ni

UiFiFi′Ui′ − KiΣ)
max

=
i ≤ m k ≤ Ki

(ξk
i ξk

i′ − Σ)
max

= OP( Ktotlog p),

where Ktot = i ≤ mKi. Therefore, by (3.5), we have

Σ − ΣN max = N
N − i ≤ mKi

1
N i ≤ m

(UiUi′ − UiUi′ + KiΣ

) + i ∈ ℳKi

N − i ∈ ℳKi (
1
N i ≤ m

UiUi′ − Σ)
max

= :OP(am, N, P),
(4.3)

where am, N, P =
|ℳ1|log p

N +
N2log p

N

νp
p + Ktotlog p

N + Ktot

N
log p

N  and N2 = i ∈ ℳ2
ni.

We now examine the difference of the ALPHA estimator from the oracle estimator for two 

specific cases. In the first case, we apply PCA to all data sources, i.e., all i ∈ ℳ1 and Ki is 

bounded. We then have am,N,p = m log p/N. This rate is dominated by the oracle error rate 

logp/N if and only if m = O( N /log p). This means traditional PCA performs optimally for 

adjusting heterogeneity as long as the number of subgroups grows more slowly than the 

order of N /log p.

If we apply PPCA to all data sources, i.e., i ∈ ℳ2 and Ki is bounded, then 

am, N, p = νp/ plog p + mlog p/N. This rate is of smaller order than rate log p/N if p/log p > 

CN for some constant C > 0. The advantage of using PPCA is that when ni is bound so that 

m ≍ N, we can still achieve optimal rate of convergence so long as we have a large enough 

dimensionality at least of the order N.
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4.2. Precision matrix estimation

In order to obtain an estimator for the sparse precision matrix from Σ, we apply the CLIME 

estimator proposed by [9]. For a given Σ, CLIME solves the following optimization 

problem:

Ω = argmin
Ω

Ω 1, 1 subject to   ΣΩ − I max ≤ λ, (4.4)

where Ω 1, 1 =
i, j ≤ p

|Ωi j| and λ is a tuning parameter. Note that (4.4) can be solved 

column-wisely by linear programming. However, CLIME does not necessarily generate a 

symmetric matrix. We can simply symmetrize it by taking the one with minimal magnitude 

of σi j and σ ji. The resulting matrix after symmetrization, still denoted as Ω with a little bit 

abuse of notation, also attains good rate of convergence. In particular, we consider the sparse 

precision matrix class ℱ(s, C0) in (4.1). The following lemma guarantees recovery of any 

sparse matrix Ω ∈ ℱ(s, C0).

Theorem 4.1. Suppose Ω ∈ ℱ(s, C0) and let τm, N, p = log p/N + am, N . p. Choosing 

λ ≍ τm, N, p, we have

Ω − Ω max = Op(τm, N, p) .

Furthermore, Ω − Ω 1 = Op(sτm, N, p) and Ω − Ω 2 = Op(sτm, N, p).

Here we stress that we choose CLIME for the precision matrix estimation because it only 

relies on the max-norm guarantee Σ − Σ max. The intuition is that for any true Ω with 

bounded, Ω 1,

I − ΣΩ max = (Σ − Σ)Ω max ≤ Σ − Σ max Ω 1 = Oℙ( Σ − Σ max) .

One can see from above that fast convergence of Σ − Σ max encourages feasibility of Ω, 

which is a necessary step for establishing consistency of the resulting M-estimator. 

Interested readers can refer to the proof of Theorem 4.1 for more details. Other possible 

methods for precision matrix recovery (e.g. graphical Lasso in [20], graphical Dantzig 

selector in [48] and graphical neighborhood selection in [35]) can be considered for post-

ALPHA inference as well, but their convergence rate needs to be studied in a case-by-case 

fashion.

Theorem 4.1 shows that CLIME has strong theoretical guarantee of convergence under 

different matrix norms. The rate of convergence has two parts, one corresponding to the 

minimax optimal rate [48] while the other is due to the error caused by estimating the 

unknown factors under various situations. The discussions at the end of Section 4.1 suggest 

that the latter error is often negligible.

Fan et al. Page 14

Electron J Stat. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, we numerically investigate how misspecification of the number of factors K will 

affect the precision matrix estimation in Section G.3 in the appendix.

5. Numerical studies

In this section, we first validate the established theoretical results through Monte Carlo 

simulations. Our purpose is to show that after heterogeneity adjustment, the proposed 

aggregated covariance estimator Σ approximates well the oracle sample covariance ΣN, 

thereby leading to accurate estimation of the true co-variance matrix Σ and precision matrix 

Ω. We also compare the performance of PPCA and regular PCA on heterogeneity adjustment 

under different settings.

In addition, we analyze a real brain image data using the proposed procedure. The dataset to 

be analyzed is the ADHD-200 data [6]. It consists of rs-fMRI images of 608 subjects, of 

whom 465 are healthy and 143 are diagnosed with ADHD. We dropped subjects with 

missing values in our analysis. Following [39], we divided the whole brain into 264 regions 

of interest (ROI, p = 264), which are regarded as nodes in our graphical model. Each brain 

was scanned for multiple times with sample sizes ranging from 76 to 261 (76 ≤ ni ≤ 261). In 

each scan, we acquired the blood-oxygen-level dependent (BOLD) signal within each ROI. 

Note that subjects have different ages, genders etc., which results in heterogeneity over the 

covariance structure of the data. We need to remove this unwanted heterogeneity; otherwise 

it will dilute or corrupt the true biological signal, i.e., the difference in the brain functional 

network between healthy people and patients due to the disease ADHD.

5.1. Preliminary analysis

To apply our ALPHA framework, we need to first argue the pervasiveness condition 

Assumption 2.2 holds for the real dataset considered. This is done in Section G.2, together 

with further discussions on pervasiveness. We also collect the physical locations of the 264 

regions as the external covariates. Ideally, we hope these covariates to be pervasive in 

explaining the batch effect (Assumption 2.3), while bearing no association with the graph 

structure of ut. This is reasonably true because: the level of batch effect is non-uniform over 

different locations of the brain when scanned in fMRI machines; furthermore it has been 

widely acknowledged in biological studies that spatial adjacency does not necessarily imply 

brain functional connectivity.

To construct W j
i  from the physical locations, we simply split the 264 regions into 10 clusters 

(J = 10) by the hierarchy clustering (Ward’s minimum variance method) and use the 

categorical indices as the covariates of the nodes. The clustering result is shown in Figure 2 

and the spatial locations of the 264 regions are shown in Figure 6 in 10 different colors. 

Black (middle), green (left) and blue (right) represent roughly the region of frontal lobe; 

gray (middle), pink (left) and magenta (right) occupy the region of parietal lobe; red (left) 

and orange (right) are in the area of occipital lobe; finally yellow (left) and navy (right) 

provide information about temporal lobe.

Here J = 10 is only used to calibrate our synthetic model in the next subsection. In the real 

data analysis, we will choose J adaptively according to our heuristic guiding rule of the 
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maximal eigen-gap discussed in Section 3.3. Note that here since the covariate W is one-

dimensional (d = 1) and discrete, the sieve basis functions are just indicator functions 𝟙(w 
− 0.5 ≤ W < w + 0.5) for w = 1,…,10. We use the same external covariates for all subjects in 

both healthy and diseased groups.

The next question is how to divide the subjects into ℳ1 and ℳ2 based on whether the 

selected covariates explain the loadings effectively. We implemented the method given in 

Section 3.3 and discovered that 398 healthy (85.6%) and 126 diseased samples (88.1%) 

prefer PPCA over PCA, meaning that the physical locations indeed have explanatory powers 

on factor loadings of most subjects. We identified them as subjects in ℳ2 while the others 

were classified as in ℳ1. Based on the class labels, we employed the corresponding method 

to estimate the number of factors and adjust the heterogeneity. We used Kmax = 3. The 

estimated number of factors for the two groups are summarized in Table 1.

5.2. Synthetic datasets

In this simulation study, for stability, we use the first 15 subjects in the healthy group to 

calibrate the simulation models. We specify four asymptotic settings for our simulation 

studies:

1. m = 500, ni = 10 for i = 1,..,m, p = 100, 200,…,600 and G(W) ≠ 0;

2. m = 100, 200,…,1000, ni = 10 for i = 1,…,m, p = 264 and G(W) ≠ 0;

3. m = 100, ni = 10, 20,…,100 for i = 1,…,m, p = 264 and G(W) ≠ 0;

4. m = 20, 40,…,200, ni = 20, 40,…,200 for i = 1,…,m, p = 264 and G(W) = 0.

Here the last setting represents regime 1, where we should expect PCA to work well when 

the number of subjects is of order of square root of the total sample size, i.e., m ≍ N. The 

first three settings represent regime 2 with informative covariates; they present asymptotics 

with growing p, m and ni respectively. The details on model calibration and data generation 

can be found in Section G.1.

We first investigate the errors of estimating covariance of ut in max-norm after applying 

PPCA or PCA for heterogeneity adjustment. We also compare them with the estimation 

errors if we naively pool all the data together without any heterogeneity adjustment. 

However, the estimation error of the naively pooled sample covariance is too large to fit in 

the graph for the first 3 cases, which we thus do not plot. Denote the oracle sample 

covariance of ut by ΣN as before. The estimation errors, based on 100 simulations, under the 

four settings are presented in Figure 3.

In Case 1, m and ni are fixed while dimension p increases. This setting highlights the 

advantages of Projected-PCA over regular PCA. From the left panel, we observe that 

increase of dimensionality improves the performance of Projected-PCA. This is consistent 

with the rate we derived in theories. In Case 2, ni and p are fixed while m increases. Both 

PPCA and PCA benefit from an increasing number of subjects. However, since ni is small, 

again PPCA outperforms. In Case 3, m and p are fixed while ni increases. Both methods 
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achieve better estimation as ni increases, but more importantly, regular PCA outperforms 

PPCA when ni is large enough. This is again consistent with our theories. As illustrated by 

Section 4.1, when m is fixed, PCA attains the convergence rate Σ − Σ max = OP( log p/N), 

while PPCA only achieves Σ − Σ max = OP(log p/ p), which is worse than PCA when p/log 

p = o(N). In Case 4, p is fixed, and both m and ni increase. Note that the covariates have no 

explanation power at all, i.e., Condition 2.3 about pervasiveness does not hold so that PPCA 

is not applicable. Adjusting by PCA behaves much better and PPCA sometimes is as bad as 

‘nPCA’, corresponding to no heterogeneity adjustment. This is not unexpected as we utilize 

a noisy external covariates.

Now we focus on estimation error of the precision matrix. We plug Σ, obtained from data 

after adjusting for heterogeneity, into CLIME to get the estimator Ω of Ω. In Figure 4, 

Ω − Ω max and Ω − Ω 1 are depicted under the four asymptotic settings. From the plots we 

see Ω − Ω max and Ω − Ω 1 share similar behavior with Σ − Σ max shown in Figure 3: in 

Case 1, ni is small, so it is advantageous to use PPCA and PPCA behaves better as 

dimension increases; in Case 2, both PPCA and PCA benefit from an increasing number of 

subjects and PPCA outperforms PCA; in Case 3, PCA outperforms PPCA when ni is large 

enough since m is fixed; in Case 4, the covariates have no explanation power at all so that 

PPCA does not make sense. In the first three cases, if we do not adjust data heterogeneity, 

Ω − Ω max and Ω − Ω 1 will be too large to fit in the current scale.

We also present the ROC curves of our proposed methods in Figure 5, which is of interest to 

readers concerned with sparsity pattern recovery. The black dashed line is the 45 degree line, 

representing performance of random guess. It is obvious from those plots that heterogeneity 

adjustment very much improves the sparsity recovery of the precision matrix. When the 

sample size of each subject is small, genuine pervasive covariates increase the power of 

PPCA while if the sample size is relatively large, PCA is sufficiently good in recovering 

graph structures. Also notice that in all cases, the naive method without heterogeneity 

adjustment can still achieve a certain amount of power, but we can improve the performance 

dramatically by correcting the batch effects.

5.3. Brain image network data

We report the estimated graphs for both the healthy group and the ADHD patient group with 

batch effects removed using our ALPHA framework in this subsection. We took various 

sparsity levels of the networks from 1% to 5% (corresponding to the same set of λ’s for two 

groups) and selected the common edges, which are stable with respect to tuning, to be 

depicted.

The brain network produced by our proposed method is presented in Figure 6. It gives 

90.7% identical edges for the two networks. However if we ignore heterogeneity and naively 

pool the data from all subjects together, it generates 10.2% unshared edges, roughly 1% 

more than ALPHA produces. Therefore, by heterogeneity adjustment, we found less 

difference in brain functional networks between ADHD patients and healthy people. In 

addition, we investigate how those unshared edges are distributed across the 10 clusters. We 
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summarized the total degree of unshared edge vertices within each cluster in Table 2. As we 

can see, in the left occipital lobe (red) and the left parietal lobe (pink), there are significant 

difference in functional connectivity structure between healthy people and patients, although 

in general the difference is weak. These are signs that ADHD is a complex disease that 

affects many regions of the brain. The general methodology we provide here could be 

valuable for further understanding the mechanism of the disease.

6. Discussions

Heterogeneity is usually informed by the domain knowledge of the dataset. In particular, it 

occurs with high chance when the data come from different sources or subgroups. In the 

brain image dataset we used in the numerical study, heterogeneity across patients can stem 

from difference in age, gender, etc. When it is less clear whether heterogeneity exists, we 

can calculate multiple summary statistics for all the subgroups and see whether they are 

significantly different. In the case of pervasive heterogeneity, we can test it by the magnitude 

of dominating eigenvalues of the covariance matrix in each subgroup. A systematic testing 

method for heterogeneity is important and we leave it for now as a future research topic. 

Note that even if all the subgroups are actually homogeneous, ALPHA does not hurt the 

statistical efficiency under appropriate scaling assumptions. Specifically, for the PCA-based 

ALPHA, we showed in Section 4.1 that as long as the number of subgroups m = O( N /log p), 
Σ enjoys the oracle max-norm rate. This means that given homogeneous data, when the 

number of data splits is not large, ALPHA yields the same statistical rate as the full-sample 

oracle estimator. For the PPCA-based ALPHA, Σ enjoys the oracle rate when 

p/log p = Ω( N /log p).

As we have seen, ALPHA is adaptive to factor structures and is flexible to include external 

information. However, this advantage of PPCA is accompanied by more assumptions and the 

practical issue of selecting proper basis functions and the number of them in sieve 

approximation. One contribution of the paper lies in seamless integration of PCA and PPCA, 

which leverages effective external covariates. If no valuable covariates exist and the sample 

size is relatively large for each data source, we have shown conventional PCA is still an 

effective tool.

Note that our framework is compatible with any statistical procedure that only requires an 

accurate estimator as the input, like CLIME we illustrate in this work. The ALPHA 

procedure gives theoretical guarantee for | |U − U | |max and | |Σ − Σ | |max, which serve as 

foundations for establishing the statistical properties of the subsequent procedure. Besides, 

ALPHA has potential application and in regression analysis. If the residual terms Ui
i = 1
m

are true predictors for the response of interest Yi
i = 1
m

, we can first apply ALPHA to extract 

the residuals before the regression procedure. For example, the residual BOLD signal we 

obtained by ALPHA in the brain functional network analysis (Section 5.3) is potentially 

useful in predicting whether a person has ADHD. This is a typical logistic regression 

problem based on ALPHA adjustment. We leave the detailed study of combining ALPHA 
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with regression models for future investigation. One recent work [16] has adopted a method 

similar to ALPHA that extracts residuals for model selection in high dimensional regression.

Finally, we point out two current limitations of ALPHA. The first limitation lies in its 

pervasiveness assumption of the heterogeneity terms ΛiFi′
i = 1
m

. More specifically, for each 

subgroup i, ALPHA requires the signal strength of the heterogeneous part ΛiFi′ to 

overwhelm the homogeneous residual part Ui so that PCA or PPCA can accurately estimate 

ΛiFi′ and remove it. Such requirement can be violated in practice when the heterogeneous 

term has similar signal strength as the homogeneous term. Additionally, statistical methods 

that require more than the max-norm error guarantee (| |U − U | |max , | |Σ − Σ | |max), say in the 

general non-sparse situation, may be inappropriate for the post-ALPHA inference for now.
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Appendix A:: Algorithm for ALPHA

The pseudo code for the algorithm ALPHA is shown as follows.
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Algorithm 1 Algorithm for adaptive low‐rank principal heterogeneity adjustment

Input: Panel Xp × ni
i  and d‐dimensional  W j

i
j = 1
p  from m data sources,

Jmax, Kmax(Jmax ≥ (Kmax + 1)/d)

Output: Ui, Kiand Σ
1: procedure ALPHA
2: for each subject i ≤ m do

3: Ki argmaxK ≤ Kmax
λk(Xi′Xi)/λk + 1(Xi′Xi)

4: Δ λ0
i λ

Ki
(Xi′Xi)/λ

Ki + 1
(Xi′Xi)

5: for each (Kmax + 1)/d ≤ J ≤ Jmax do

6: PJ
i Φ (Wi)( Φ (Wi)′ Φ (Wi))−1 Φ (Wi)′ for J

7: KJ
i argmaxK ≤ Kmax

λk(Xi′PJ
i Xi)/λk + 1(Xi′PJ

i Xi)

8: Δ λJ
i λ

KJ
i

(Xi′PJ
i Xi)/λ

KJ
i + 1

(Xi′PJ
i Xi)

9: end for
10: J*

i argmaxJΔλJ
i

11: Ki K
J*
i

i

12:

13: if Δλ0
i > Δλ

J*
i

i (i ∈ ℳ1) then

14: Fi/ ni eigenvectors of Xi′Xi of the top Ki eigenvalues

15: Λi XiFi/ni, Ui Xi − ΛiFi

16: Ui Ui, Ki Ki

17: else

18: Fi/ ni eigenvectors of Xi′P
J*
i

i Xi of the top Ki eigenvalues

19: Λi XiFi/ni, Ui Xi − ΛiFi

20: Ui Ui, Ki Ki

21: end if
22: end for
23:

24: Σ ( ini − iKi)
−1

i = 1

m
UiUi′

25: return {Ui}i = 1
m

, {Ki}i = 1
m

 and Σ
26: end procedure
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Appendix B:: A key lemma

Recall that we defined

U = X(I − 1
nFF′) . (B.1)

where we used notations such as F and U to denote the final estimators, which are F and U if 

PCA is used, and F and U if PPCA is used.

The following lemma holds for U no matter whether PCA or PPCA is applied.

Lemma B.1. For any K by K matrix H such that H = OP(1), if log P = O(n),

U − U = − 1
nUFF′ + Π,

where Π max = OP( log n/n ⋅ (| |F′(F − FH) | |max Λ max + | |U(F − FH) | |max) + | |F − FH
| |max Λ max + log n ⋅ HH′ − I max Λ max)

; and 

furthermore

UU′ − UU′ = − 1
nUFF′U′ + Δ,

where 

Δ max = OP( | |U(F − FH) | |max Λ max + | |U(F − FH) | |max
2 + | |F′(F − FH) | |max | |Λ | |max

2 + n |
|HH′ − I | |max | |Λ | |max

2 )
.

The above lemma states that the error of estimating U by U (or estimating UU′ by UU′ ) is 

decomposed into two parts. The first part is inevitable even when the factor matrix F in (3.1) 

is known in advance. The second part is caused by the uncertainty from estimating F. Since 

the true F is identifiable up to an orthonormal transformation H, we need to carefully choose 

H to bound the error Π (or Δ). We will provide explicit rates of convergence for those terms 

in the following two sections.

Proof. By definition of U, U = U(I − n−1FF′) + n−1X(FF′ − FF′). We first look at the converge 

of U − U. Obviously Π = n−1X(FF′ − FF′) = I + II where

I = 1
nΛF′(FF′ − FF′), II = 1

nU(FF′ − FF′) .

Since F′(FF′ − FF′) = F′(F − FH)F′ + nH(F − FH)′ + n(HH′ − I)F′, we have

I max = OP( Λ max( | |F′(F − FH) | |max | |F/n | |max + | |F − FH | |max + | |HH′ − I | |max | |F | |max)) .
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Similarly U(FF′ − FF′) = U(F − FH)F′ + UFH(F − FH)′ + UF(HH′ − I)F′, so

II max = OP( U′(F − FH) max F/n max + UF/n max( F − FH max + HH′ − I max F max))
.

According to Lemma F.4 (i), ||UF/n ||max = OP (1) and noting both ||F||max and | |F | |max are 

OP( n), we conclude the result for Π max easily.

Now we consider UU′ in the following.

UU′ = U(I − n−1FF′)U′ + n−1U(I − n−1FF′)(FF′ − FF′)X′ + n−2X(FF′ − FF′)2X′

= :UU′ − 1
nUFF′U′ + III + IV .

So Δ = III + IV and it suffices to bound the two terms.

III max = OP( n−1U(I − FF′/n)FF′F max Λ max + n−1U(I − FF′/n)FF′U′ max)

= :OP( J1 max Λ max + J2 max) .

Decompose J1 by J1 = n−1U(F − FH)F′F − n−2UF ⋅ F′(F − FH)F′F. Therefore,

J1 max = OP( U(F − FH) max + n−1 UF max F′(F − FH) max),

since | |F′F/n | |max ≤ | |F′F/n | |F ≤ | |F′ | |F | |F | |F /n = K. Similar to J1, we decompose J2 only 

replacing F′F with F′U′. According to Lemma F.4 (i), 

| |F′U′/n | |max = OP( | |UF/n | |max + | |U(F − FH) | |max ) = OP(1 + | |U(F − FH) | |max ), hence 

J2 max = OP(( | |J1 | |max (1 + | |U(F − FH)||max)). We then conclude that 

| | III | |max = OP(( | |U(F − FH) | |max + n−1 | |UF | |max | |F′(F − FH) | |max )( | |Λ | |max + | |U(F − FH
) | |max ))

.

Now let us take a look at IV. IV max = | |D1 + D2 + D2′ + D3 | |max where

D1 = n−2ΛF′(FF′ − FF′)2FΛ′ = Λ(nI − n−1F′FF′F)Λ′,

D2 = n−2U(FF′ − FF′)2FΛ′ = − n−2UFF′(FF′ − FF′)FΛ′

D3 = n−2U(FF′ − FF′)2U′ .

By assumption, ||H||max ≤ ||H|| = OP (1). Simple decompositions of D1 gives
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D1 max = OP(( F′(F − FH) max + n HH′ − I max) Λ max
2 ) .

Since D2 = − n−2UFF′(F − FH)F′FΛ′ − n−1UFH(F − FH)′FΛ′ − UF(HH′ − I)Λ′, we have

D2 max = OP( UF/n max D1 max) = OP( D1 max) .

It is also not hard to show D3 max = OP III max + D1 max . Under both Theorems C.1 

and D.1 (replacing F by F for regime 1 and F for regime 2), we can check the following 

relationship holds:

n−1 UF max U(F − FH) max = OP( Λ max
2 ) .

Therefore we have

Δ max = III + IV max

= OP( U(F − FH) max Λ max + U(F − FH) max
2

+ F′(F − FH) max Λ max
2 + n HH′ − I max Λ max

2 ) .

□

Appendix C:: Proof of Theorem 3.1

Recall that PCA estimates F by F where the kth column of F/ n is the eigenvector of 

(pn)−1X′X corresponding to the kth largest eigenvalue. By the definition of F, we have

1
npX′XF = FK,

where K is a K by K diagonal matrix with top K eigenvalues of (np)−1X′X in descending 

order as diagonal elements. Define a K by K matrix H as in [17]:

H = 1
npΛ′ΛF′FK−1 .

It has been shown that K , K−1 and H , H−1  are all OP(1).

The following lemma provides all the rates of convergences that are needed for downstream 

analysis.

Lemma C.1. Under Assumptions 2.1 and 2.2, we have | |Λ | |max = OP( log p) and
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(i) | |F − FH | |F = OP( n/ p + 1/ n) and | |F − FH | |max = OP( log n/ p + log n/n);

(ii) | |F′(F − FH) | |max = OP(1 + n/ p);

(iii) | |U(F − FH) | |max = OP((1 + n/ p) log p + n | |Σ | |1 / p);

(iv) | |HH′ − I | |max = OP(1/n + 1/ p).

Combining the above results with Lemma B.1, we have

U − U = − 1
nUFF′ + Π,

where | |Π | |max = OP( log nlog p(1/ p + 1/n) + log n | |Σ | |1 / p) and additionally

UU′ − UU′ = − 1
nUFF′U′ + Δ ,

where | | Δ | |max = OP((1 + n/P)log p + n2 | |Σ | |1
2 / p2). Thus we complete the proof for 

Theorem 3.1. We are left to check Lemma C.1, which is done in the following three 

subsections.

C.1. Convergence of factors F

Recall H = (np)−1Λ′ΛF′FK−1. Substituting X = ΛF′ + U, we have,

F − FH = (
i = 1

3
Ei)K−1,

Ε1 = 1
npFΛ′UF, Ε2 = 1

npU′ΛF′F, Ε3 = 1
npU′UF .

(C.1)

To bound | |F − FH | |max, note that there is a constant C > 0, so that

F − FH
max

≤ C K−1

2 i = 1

3
Ei max .

Hence we need to bound | |Ei | |max for i = 1, 2, 3 since | |K−1 | |2 = OP(1). The following lemma 

gives the stochastic bounds for each individual term.

Lemma C.2. (i) E1 F
= OP( n/ p) = E2 F

, E3 F
= OP(1/ n + 1/ p + n/ p) .

(ii) E1 max = OP( logn/ p) = E2 max, E3 max = OP(1/ p + log n/n) .
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Proof. (i) Obviously E1 F
≤ p−1 Λ′U F = OP( n/ p) according to Lemma F.1. E2 F

 attains 

the same rate. In addition, E3 F
≤ n−1/2p−1 U′U F = OP(1 + n/ p) again according to 

Lemma F.1. So combining the three terms, we have F − FH F = OP(1 + n/ p) . We now 

refine the bound for 

E3 F ⋅ E3 F
≤ (np)−1( U′UF F H F + U′U F F − FH F) = OP(1/ n + 1/ p + n/ p) . Then 

the refined rate of F − FH F is OP( n/ p + 1/ n) .

(ii) Since Λ′UF F = OP(n p) by Lemma F.1,

E1 max = OP((np)−1 F max Λ′UF F) = OP( logn/ p) .

E2 max is bounded by p−1 U′ Λ max = OP( logn/ p) while E3 max is bounded by

OP((np)−1( U′UF max + n U′U max F − FH F)),

which based on results of Lemma F.2 and (i) is OP(1/ p + log n/n) . □

The final rate of convergence for F − FH max and F − FH F are summarized as follows.

Proposition C.1.

F − FH max = OP( log n
p + log n

n ) and F − FH F = OP( n
p + 1

n
) . (C.2)

Proof. The results follow from Lemmas C.2. □

C.2. Rates of F′(F − FH) max and HH′ − I max

Note first that the two matrices under consideration is both K by K, so we do not lose rates 

bounding them by their Frobenius norm.

Let us find out rate for F′(F − FH) F. Basically we need to bound F′Ei F
 for i = 1, 2, 3. 

Firstly

F′E1 F
= p−1 Λ′UF F ≤ p−1( Λ′UF F H F + Λ′U F F − FH F) .

Since Λ′UF F = OP( np) and Λ′U F = OP( np) by Lemma F.1, we have 

F′E1 F
= OP( n/ p + n/ p) . Secondly,
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F′E2 F
≤ p−1 F′U′Λ F = OP( n/ p) .

Finally,

F′E3 F
= OP( 1

np UF F
2 + 1

np F′U′U F F − FH F) = OP(1 + n/ p) .

So combining three terms we have F′(F − FH) max ≤ F′(F − FH) F = OP(1 + n/ p) .

Now we bound HH′ − I F. Since H′H = n−1(FH − F)′FH + n−1F′(FH − F) + I, we have

H′H − I F = OP(1
n F′(F − FH) F + 1

n F − FH F
2 ) = OP(1

n + 1
p ) .

Therefore HH′ − I F has the same rate since HH′ − I F ≤ H F H′H − I F H−1
F. So 

HH′ − I max = OP(1/n + 1/ p) .

C.3. Rate of U(F − FH) max

In order to study rate of U(F − FH) max,we essentially need to bound UEi max for i = 1, 2, 

3. We handle each term separately.

UE1 max = OP( 1
np UF max Λ′UF F) = OP(1

n UF max F′E1 F
)

= OP( log p
p + nlog p

p ) .

By Lemma F.5, UU′Λ max = OP( nplog p + n ∑ 1) . Therefore,

UE2 max = OP( 1
p UU′Λ max) = OP(

n ∑ 1
p + nlog p

p ) .

From bounding E3 F
, the last term has rate

UE3 max = 1
np UU′UF max ≤ 1

np
U max U′UF F

= OP((1 + n/ p) log p) .

So combining three terms, we conclude U(F − FH) max = OP((1 + n/ p) log p + n ∑ 1/ p) .
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Appendix D:: Proof of Theorem 3.2

Recall that by the definition of F, we have

1
npX′PXF = FK,

where K is a K × K diagonal matrix with the first K largest eigenvalues of (np)−1X′PX in 

descending order as its diagonal elements. Define the K by K matrix H as in [18]:

H = 1
npB′ Φ (W)′ Φ (W)BF′FK−1 .

It has been shown that K , K−1  and H , H−1  are all OP(1). Here we remind that 

though H and K are different from those in regime 1 defined in the previous section, they 

play essentially the same roles (thus with same notations).

The following lemma provides all the rates of convergences that are needed for downstream 

analysis.

Lemma D.1. Choose J = (pmin n, p, νp
−1 )1/k

 and assume J2ϕmax
2 log(nJ) = O(p) where 

ϕmax = maxν ≤ Jsupx ∈ Xϕν(x) . Under Assumptions 2.1, 2.3, 2.4 and 3.1, we have 

Λ max = OP(Jϕmax + log p) and

(i) F − FH F = OP( n/ p) and F − FH max = OP( log n/ p);

(ii) F′(F − FH) max = OP( n/ p + n/ p + n νp/ p);

(iii) U(F − FH) max = OP( nlogp/ p + nJϕmax ∑ 1/ p);

(iv) HH′ − I max = OP(1/ p + 1/ pn + νp/ p) .

Combining the above lemma with Lemma B.1, we obtain

U − U = − 1
nUFF′ + Π,

where Π max = OP( log n/ p(Jϕmax + log p) + Jϕmax Σ 1 logn/ p) and

UU′ − UU′ = − 1
nUFF′U′ + Δ,

where 

Δ max = OP(n νp/ p(J2ϕmax
2 + log p) + nJϕmax Σ 1(Jϕmax + log p)/ p + n2J2ϕmax

2 Σ 1
2/ p2) if 
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there exists C s.t. νp > C/n. We choose to keep Σ 1 terms here although it makes a long 

presentation of the rate.

Thus we complete the proof for Theorem 3.2. We are left to check Lemma D.1, which is 

done in the following three subsections.

D.1. Convergence of factors F

Recall H = (np)−1B′ Φ (W)′ Φ (W)BF′FK−1. Substituting X = Φ (W)BF′ + R(W)F′ + ΓF′ + U, 

we have,

F − FH = (
i = 1

15
A j)K−1 (D.1)

where Ai,i ≤ 3 has nothing to do with R(W) and Γ:

A1 = 1
npFB′ Φ (W)′UF, A2 = 1

npU′ Φ (W)BF′F, A3 = 1
npU′PUF;

Ai, 3 ≤ i ≤ 8 takes care of terms involving R(W):

A4 = 1
npFB′ Φ (W)′R(W)F′F, A5 = 1

np FR W ′ Φ( W BF′F,

A6 = 1
npFR(W)′PR(W)F′F, A7= 1

npFR(W ′PUF,

A8 = 1
npU′PR(W)F′F;

the remaining are terms involving Γ:

A9 = 1
npFB′ Φ (W)′ΓF′F, A10= 1

npFΓ′Φ(W)BF′F,

A11 = 1
npFΓ′PΓF′F, A12= 1

npFΓ′PUF,

A13 = 1
npU′PΓF′F, A14= 1

npFR′PΓF′F, A15= 1
npFΓ′PRF′F .

To bound F − FH max, as in Theorem C.1 we only need to bound Ai max for i = 1,…,15 

since again we have K−1
2 = OP(1) . The following lemma gives the rate for each term.

Lemma D.2. (i) A1 max = OP( logn/ p) = A2 max,

(ii) A3 max = OP(Jϕmax log(nJ)/ p),

(iii) A4 max = OP(J−k /2 log n) = A5 max and A9 max = OP( νplogn/ p) = A10 max,
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(iv) A6 max = OP(J−k log n) and A11 max = OP(Jνp log n/ p),

(v) A7 max = OP(ϕmax p−1J1 − klog(nJ)log n) = A8 max and 

A12 max = OP(Jϕmax νplog(nJ)logn/ p) = A13 max,

(vi) A14 max = OP( p−1J1 − kνplog n) = A15 max .

Proof. (i) Because F max = OP( log n), F F = OP( n) . By Lemma F.3 and F.4, 

U′ Φ (W)B F = OP( pn) and U′ Φ (W)B max = OP( plog n) .

Hence

A1 max ≤ K
np F max B′ Φ (W)′U F F F = OP( log n/ p),

A2 max ≤ K
np U′ Φ (W)B max F F F F = OP( log n/ p) .

(ii) We have A3 = 1
npU′ Φ (W)( Φ (W)′ Φ (W))−1 Φ (W)′UF . By Lemma F.3 and F.4, 

U′ Φ (W) F = OP( npJ) and U′ Φ (W) max = OP(ϕmax plog(nJ)) . By Assumption 3.1, 

( Φ (W)′ Φ (W))−1
2 = OP(p−1) . Note the fact that for matrix Am × n, Bn × n, Cn × r,

ABC max = maxi ≤ m, k ≤ r|ai′Bck| ≤ n A max B 2 C F. So

A3 max ≤ Jd
np U′ Φ (W) max ( Φ (W)′ Φ (W))−1

2 Φ (W)′U F F F

= OP(Jϕmax log(nJ)/ p) .

(iii) Note that Φ (W)B 2 ≤ G(W) 2 + R(W) 2 = OP( p), and R(W) max = OP(J−k /2) .

Hence we have 

B′ Φ (W)′R(W) max ≤ B′ Φ (W)′ 1 R(W) max ≤ p B′ Φ (W)′ 2 R(W) max = OP(pJ−k /2) .

Thus

A4 max ≤ K3/2
np F max B′ Φ (W)′R(W) max FF F = OP(J−k /2 log n) .

Similarly, A5 max attains the same rate of convergence.

In addition, notice A9, A10 have similar representation as A4, A5. The only difference is to 

replace R by Γ. It is not hard to see B′ Φ′ Γ max = OP( pνp) . Therefore 

A9 max = OP( νplogn/ p) = A10 max.

(iv) Note that
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P 2 = ( Φ (W)′ Φ (W))−1/2 Φ (W)′ Φ (W)( Φ (W)′ Φ (W))−1/2
2 = 1

and R(W)′PR(W) max ≤ p R(W) max
2 P 2 = OP(pJ−κ) . Hence

A6 max ≤ K
np F max R(W)′PR(W) max FF F = OP(J−κ log n) .

A11 has similar representation as A6. Since

Γ′PΓ max ≤ Φ′ Γ F
2 ( Φ′ Φ)−1

2 = OP(Jνp),

we have A11 max = OP(Jνp log n/ p) .

(v) According to Lemma F.4, U′ Φ (W) max = OP(ϕmax plog(nJ)) . Thus

A7 max ≤ K
np

F max F F R′ Φ ( Φ′ Φ)−1 Φ′ U max

≤ OP(p−1 Jlog n) R′ Φ F ( Φ′ Φ)−1
2 Φ′ U max

= OP(ϕmax
Jlog(nJ)log n

pJκ ),

since R′ Φ F ≤ R F Φ 2 = OP(pJ−k /2) . The rate of convergence for A8 can be bounded 

in the same way. So do A12 and A13. Given that Γ′ Φ F = OP(pJνp), we have 

A12 max = OP(Jϕmax νplog(nJ)logn/ p) = A13 max.

(vi) Obviously, A14 max = OP(p−1 log n R′PΓ max) and 

| |R′PΓ | |max ≤ | |R′ Φ | |F | | ( Φ′ Φ )−1 | | Φ′ Γ F. We conclude 

A14 max = OP( p−1J1 − kνplog n). Same bound holds for A15. □

The final rate of convergence for F − FH max and F − FH F are summarized as follows.

Proposition D.1. Choose J = pmin n, p, νp
−1 1/k

 and assume J2ϕmax
2 log nJ = O p  and νp = 

O(1),

F − FH max = OP
log n

p and F − FH F = OP
n
p . (D.2)

Proof. The max norm result follows from Lemmas D.2 and (D.1), while the Frobenius norm 

result has been shown in [18]. □

Fan et al. Page 30

Electron J Stat. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D.2. Rates of F′(F − FH) max and HH′ − I max

Note first that the two matrices under consideration is both K by K, so we do not lose rates 

bounding them by their Frobenius norm.

It has been proved in [18] that F′(F − FH) F = OP( n/ p + n/ p + n νp/ p + nJ−k /2). By the 

choice of J, the last term vanishes. So

F′(F − FH) max ≤ F′(F − FH) F = OP( n/ p + n/ p + n νp/ p) .

[18] also showed that H′H − I F = OP(1/ p + 1/ pn + J−κ /2 + νp/ p). Since H  and H−1

are both OP(1), we easily show 

HH′ − I max ≤ HH′ − I F ≤ H H′H − I F H−1 = OP(1/ p + 1/ pn + νp/ p) since 

Jκ ≥ p/νp .

D.3. Rate of U(F − FH) max

By (D.1), in order to bound U(F − FH) max we essentially need to bound UAi max for 

i = 1 , …, 15. We do not bother going into the details of each term again as in Lemma D.2. 

However, we point out the difference here. All Ai are separated into two types: the ones 

starting with F and the ones starting with U.

If a term Ai starts with F, say Ai = FQ, in Lemma D.2, we bound Ai max in using 

K F max Q F. Now we use bound UAi max ≤ K UF max Q F so that we obtain all 

related rates by just changing rate F max = OP( log n) to UF max = OP( nlog p).

Terms starting with U includes Ai, i = 2,3,8,13. In Lemma D.2, we bound Ai max, i = 3,8,13 

using U′ Φ max while we bound A2 max using U′ Φ B max. Correspondingly now we 

need to control UU′ Φ max and UU′ Φ B max separately to update the rates. The derivation 

is relegated to Lemma F.5. We have UU′ Φ (W) max = OP(ϕmax( nplog p + n Σ 1)) and 

UU′ Φ W B max = OP( nplog p + nJϕmax Σ 1).

So we replace the corresponding terms in Lemma D.2. It is not hard to see the dominating 

term is UA2 max = OP( nlog p/ p + nJϕmax Σ 1/ p). Therefore, U(F − FH) max has the same 

rate.

Appendix E:: Proof of Theorem 4.1

Proof. Denote the oracle empirical covariance matrix as
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ΣN = 1
N i = 1

m
UiUi′ .

As in [9] the upper bound on Ω − Ω  is obtained by proving

(Σ − ΣN) Ω max = Op(τm, N, p) and (ΣN − Σ)Ω max = Op(τm, N, p) . (E.1)

Once the two bounds are established, we proceed by observing

Ip − ΣΩ max = (Σ − Σ)Ω max = Op(τm, N, p),

and then it readily follows that if λ ≍ τm, N, p,

Ω − Ω max ≤ Ω(Ip − ΣΩ) max + (Ip − ΣΩ)′Ω max
≤ Ω 1 Ip − ΣΩ max + Ip − ΣΩ max Ω 1 ≤ λ Ω 1 + τ Ω 1
= Op(τm, N, p),

where the first term of the last inequality uses the constraint of (4.4) while the optimality 

condition of (4.4) is applied to bound Ω 1 by Ω 1. So it remains to find τm, N, p in (E.1). 

Since Ω ∈ ℱ(s, C0), Ω 1 ≤ C0, so we just need to bound Σ − ΣN max and ΣN − Σ max. 

Obviously,

ΣN − Σ max = Op( log p
N ) .

We have shown in (4.3) that Σ given by (4.2) attains the rate Σ − ΣN max = OP(am, N, p). 

Thus τm, N, p = logp/N + am, N, p. Similar proof as in [9] can also reach error bounds under 

⋅
1
 and ⋅

2
, which we omit. The proof is now complete. □

Appendix F:: Technical lemmas

Lemma F.1. (i) Λ′U F
2 = OP(np),

(ii) U′U F
2 = Op(np2 + pn2),

(iii) U′UF F
2 = OP(np2 + pn2) .

Proof. We simply apply Markov inequality to get the rates.
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𝔼 Λ′U F
2 = 𝔼 tr(Λ′UU′Λ) = n ⋅ tr(Λ′ΣΛ) ≤ n Σ ⋅ tr(Λ′Λ) = O(np) .

𝔼 U′U F
2 = 𝔼

t = 1

n

t′ = 1

n
(

j = 1

p
u jtu jt′)

2

=
j1, j2 = 1

p

t = 1

n
𝔼 u j1t

2 u j2t
2 +

1 ≤ t ≠ t1 ≤ n
σ j1 j2

2

= OP(np2 + pn2),

since 
j1, j2

σ j1 j2
2 = tr(Σ2) ≤ Σ tr(Σ) = O(p) .

𝔼 U′UF F
2 = 𝔼

t = 1

n

k = 1

K
(
t′ = 1

n

j = 1

p
u jtu jt′ f t′k)

2

=
k = 1

K

j1, j2 = 1

p

t = 1

n
𝔼 u j1t

2 u j2t
2 f tk

2 +
1 ≤ t ≠ t1 ≤ n

σ j1 j2
2 f t1k

2

= OP(np2 + pn2) .

□

Lemma F.2. (i) Λ′U max = OP( p log n).

(ii) U′U max = OP(p),

(iii) U′UF max = OP( np log n + p log n) .

Proof. (i) Λ′U max = maxt, k|ut′λk| where λk is the kth column of Λ. Since ut′λk is mean zero 

sub-Gaussian with variance proxy λk′ Σλk ≤ Σ λk
2 = O(p), we have 

Λ′U max = Op( p log n).

(ii) U′U max = maxt, t′|ut′ut′| ≤ maxt ≠ t′|ut′ut′| + maxt|ut′ut|. We need tobound each term 

separately. The second term is bounded by the upper tail bound of Hanson-Wright inequality 

for sub-Gaussian vector [24, 41] i.e.

ℙ( ut
2 > tr(Σ) + 2 tr(Σ)s + 2 Σ s) ≤ e−s .
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Choose s = log n and apply union bound, we have 

maxt|ut′ut| = Op(tr(Σ) + 2 tr(Σ)s) = Op(p + p log n) = Op(p). Then we deal with the first 

term. By Chernoff bound,

ℙ( max
t ≠ t′

|ut′ut′| > s) ≤ 2n2e−sθ𝔼 exp(θut′ut′) ,

where 𝔼 exp(θut′ut′) = E exp(θ2ut′Σut /2) ≤ E exp(Cθ2 ut
2) . [24] showed that

𝔼 exp(η ut
2) ≤ exp (tr(Σ)η + tr(Σ2)η2

1 − 2 Σ η
)

For η < 1/(4 Σ ) ≤ tr(Σ)/(4tr(Σ2)), the right hand side is less than exp(3tr(Σ)η/2) ≤ 

exp(Cpη). Choose η = Cθ2, we have

ℙ( max
t ≠ t′

|ut′ut′| > s) ≤ 2n2 exp(−sθ + Cθ2p) .

We minimize the right hand side and choose θ = s/(2Cp), it is easy to check η < 1/(4 Σ )
and see that maxt ≠ t′ |ut′ut′| = Op( p log n). So we conclude that U′U max = Op(p).

(iii) Let fk be the kth column of F. 

U′UF max = maxt, k|ut′Ufk| ≤ maxt, k|ut′U(−t)fk(−t)| + maxt, k |ut′ut f tk| where U(−t), fk(−t) are 

U and fk canceling the tth column and element respectively. From (ii) we know the second 

term is of order Op(p maxtk| f tk|) = Op(p log n). Define ξ = U(−t)fk(−t) ∼ subGaussian 

(0, Σ fk(−t)
2), which is independent with ut. Thus

ℙ(max
t, k

|ut′ξ| > s) ≤ 2nKe−sθ𝔼 exp(θut′ξ) ,

where 𝔼 exp(θut′ξ) ≤ 𝔼 exp(θ2ut′Σut fk(−t)
2/2) ≤ 𝔼 exp(Cθ2n ut

2) . Similar to (ii), we 

choose η = Cθ2n here. It is not hard to see maxt, k|ut′ξ| = Op( np log n). Thus 

U′UF max = Op( np log n + p log n). □

Lemma F.3.(i) F′U′ F
2 = Op(np).

(ii) U′ Φ (W) F
2 = Op(npJ), U′ Φ (W)B F

2 = Op(np).

(iii) Φ (W)′UF F
2 = Op(npJ), B′ Φ (W)′UF F

2 = Op(np).
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Proof. This results can be found in the paper of Fan, Liao and Wang (2014). But the 

conditions they used are a little bit different from our conditions. In particular, we allow no 

time (sample) dependence and only require bounded Σ 2 instead of Σ 1. By Markov 

inequality, it is sufficient to show the expected value of each term attains the corresponding 

rate of convergence.

𝔼 F′U′ F
2 = 𝔼 tr(F′𝔼 U′U F) = 𝔼 tr(F′tr(Σ)F) = n ⋅ tr(Σ) = O(np) .

𝔼 U′ Φ (W) F
2 = 𝔼 tr( Φ′ 𝔼 UU′|W Φ) = n ⋅ 𝔼 tr( Φ′ Σ Φ) ≤ nJd ⋅ 𝔼 Φ′ Σ Φ 2

≤ nJdC0𝔼 Φ′ Φ 2 = O(npJ) .

𝔼 Φ (W)′UF F
2 = 𝔼 tr( Φ′ 𝔼 UFF′U′ W Φ) = 𝔼 tr(FF′)tr( Φ′ Σ Φ) = O(npJ) .𝔼 U′ Φ (W)B F

2

and B′ Φ (W)′UF F
2  are both O(np) following the same proof as above. Thus the proof is 

complete. □

Lemma F.4. (i) F′U′ max = OP( n log p)

(ii) U′ Φ (W) max = OP(ϕmax p log(nJ)), U′ Φ (W)B max = OP( p log n).

(iii) Φ (W)′UF max = OP(ϕmax np log J), B′ Φ (W)′UF max = OP( np).

Proof. (i) It is not hard to see F′U′ max = maxk ≤ K, j ≤ p|
t = 1
n f tku jt| = Op( n log p). The 

detailed proof by Chernoff bound is given in the following. By union bound and Chernoff 

bound, we have

ℙ( max
k ≤ K, i ≤ p

|
t = 1

n
f tku jt| > t) ≤ 2pKe−tθ ⋅ 𝔼 e

θ
t = 1
n

f tku jt .

The expectation is calculated by fist conditioning on F,

E e
θ

t = 1
n

f tku jt = 𝔼 𝔼 e
θ

t = 1
n

f tku jt F ≤ 𝔼 e
θ2

t = 1
n

f tk
2 σ j j/2 ≤ e

1
2nC0θ2

,

where the second equality uses the sub-Gaussianity of ujt and the last inequality is from 

n−1F′F = I and Σ 2 ≤ C0. Therefore, choosing θ = t
nC0

, we have
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ℙ( max
k ≤ K, j ≤ p

|
t = 1

n
f tku jt| > t) ≤ 2pKe−tθe

C0
2 nθ2

= 2pKe
− t2

2C0n
.

Thus F′U′ max = Op( n log p).

(ii) U′ Φ (W) max = maxν, l, t |
j = 1
p u jtϕν(W jl)| = maxν, l, t|ϕνl′ ut|, where 

ϕνl = (ϕν(W1l), …, ϕν(Wpl))′. Consider the tail probability condition on W:

ℙ max
ν ≤ J, l ≤ d, k ≤ n

|ϕνl′ uk| > t|W ≤ 2Jdn ⋅ e−tθ𝔼 e
θϕνl′ uk|W

≤ 2Jdn ⋅ exp −tθ + 1
2θ2ϕνl′ Σϕνl .

The right hand side can be further bounded by

2Jdn ⋅ exp(−tθ + 1
2θ2C0 ϕνl

2) ≤ 2Jdn ⋅ exp(−tθ + 1
2 pC0θ2ϕmax

2 ) .

Choose θ to minimize the upper bound and take expectation with respect to W, we obtain

ℙ( max
ν ≤ J, l ≤ d, k ≤ n

|ϕνl′ uk| > t) ≤ 2Jdn ⋅ exp − t2

2pC0ϕmax
2 .

Finally choose t ≍ ϕmax p log(nJ), the tail probability is arbitrarily small with a proper 

constant. So U′ Φ (W) max = Op(ϕmax p log(nJ)). The second part of the results follows 

similarly. Note U′ Φ (W)B max ≤ U′G(W) max + U′R(W) max and the first term 

dominates. So the same derivation gives

ℙ( U′G(W) max > t) ≤ 2Kn ⋅ exp − t2

2C0 gk
2 ,

where gk = (gk(W1), …, gk(Wp)) . gk
2 = Op(p) since it is assumed eigenvalues of 

p−1G(W)′G(W) is bounded almost surely. Hence, U′ Φ (W)B max = Op( p log n).

(iii) Φ (W)′UF max = maxν ≤ J, l ≤ d, k ≤ K|
j = 1
p

i = 1
n ϕν(W jl)u ji f ik|. Using Chernoff 

bound again, we get
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ℙ( max
ν ≤ J, l ≤ d, k ≤ K

|
j = 1

p

i = 1

n
ϕν(W jl)u ji f ik| > t) ≤ 2JdK ⋅ e−tθ . 𝔼 e

θ t = 1
n f tkϕνl′ ut .

Since t = 1
n f tkϕνl′ ut |F~sub‐Gaussian(0, t = 1

n f tk
2 ϕνl′ Σϕνl) = sub‐Gaussian(0, nϕνl′ Σϕνl), the right 

hand side is easy to bound by first conditioning on F.

𝔼 e
θ t = 1

n f tkϕνl′ ut ≤ 𝔼 exp 1
2nθ2ϕνl′ Σϕνl ≤ E exp 1

2npC0ϕmax
2 θ2 .

Therefore, choosing θ = t

npC0ϕmax
2 , we have

ℙ( Φ (W)′UF max > t) ≤ 2JdK . exp −tθ + 1
2npC0ϕmax

2 θ2

= 2JdKexp − t2

2npC0ϕmax
2 .

So we conclude | | Φ (W)′UF | |max = Op(ϕmax nplog J). By similar derivation as in (ii), we 

also have | |B′ Φ (W)′UF | |max and | |G(W)′UF | |max are both of order OP( np). □

Lemma F.5. (i) | |UU′Λ | |max = OP( nplog p + n | |Σ | |1),

(ii) | |UU′ Φ (W) | |max = OP(ϕmax( nplog p + n | |Σ | |1)) and 

| |UU′ Φ (W)B | |max = OP( nplog p + nJϕmax | |Σ | |1).

Proof. (i) | |UU′Λ | |max ≤ max j, k |
t = 1
n u jtut′λk − n

j′ = 1
p σ j j′λ j′k | + n max j, k j′ = 1

p |σ j j′ | | λ j′k|. 

The second term is O(n | |Σ | |1 ). So it suffices to focus on the first term. Let Σ = AA′ and 

ut = Avt so that Var(vt) = I. Write A′ = (a1, …, ap), so we have u jt = a j′vt. Also denote 

dk = A′λk. Thus u jtut′λk = a j′vtvt′dk and 
j′ = 1
p σ j j′λ j′k = a j′dk.

ℙ(max
j, k

|
t = 1

n
(a j′vtvt′dk − a j′dk)| > s)

≤ pKℙ(|
t = 1

n
(a j′vtvt′dk − a j′dk)| > s

max j, k a j dk
),

(F.1)

where a j and dk are two unit vectors of dimension p. We will bound the right hand side with 

arbitrary unit vectors a j and dk.
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ℙ
t = 1

n
a j′vtvt′dk − na j′dk > s

≤ ℙ
t = 1

n
((a j + dk)′vt)

2 − n | |a j + dk | |2 > 2s

+ℙ
t = 1

n
((a j − dk)′vt)

2 − n | |a j − dk | |2 > 2s .

Note that (a j + dk)′vt subGaussian(0,||a j + dk | |2 ) and | |a j + dk | |2 ≤ 4. By Bernstein inequality, 

we have for constant C > 0,

ℙ
t = 1

n
(a j′vtvt′dk − a j′dk) > s ≤ 2exp − Cmin(s2/n, s) .

Choose s = C nlog p max jk a j dk  in (F.1), we can easily show that the exception 

probability is small as long as C is large enough. Therefore, noting 

max jk a j dk ≤ C maxk | |λk | |,

max j, k |
t = 1
n u jtut′λk − n

j′ = 1
p σ j j′λ j′, k | = OP( nlog p maxk | |λk | |) = OP( nplog p). Finally 

| |UU′Λ | |max = OP( nplog p + n | |Σ | |1).

(ii) The rates of | |UU′ Φ (W) | |max and |UU′ Φ (W)B | |max can be similarly derived as (i). 

Denote Φνl = (ϕν(W1l), …, ϕν(W pl))′, so

UU′ Φ (W)
max

≤ max
j, ν, l t = 1

n
u jtut′Φνl − n

j′ = 1

p
σ j j′ϕν(W j′l)

+ n max
j, ν, l j′ = 1

p
|σ j j′||ϕν(W j′l)|

= OP( nlog pmax
ν, l

Φνl + nϕmax Σ 1)

= OP(ϕmax( nplog p + n Σ 1)) .

Denote the kth column of Φ(W)B by (ΦB)k, we have

UU′ Φ (W)B
max

≤ max
j, k t = 1

n
u jtut′(ΦB)k − n

j′ = 1

p
σ j j′(ΦB) j′k

+ nmax
j, k j′ = 1

p
|σ j j′||(ΦB) j′k|

= OP( nlog pmax
k

(ΦB)k + nJϕmax Σ 1)

= OP( nplog p + nJϕmax Σ 1),

Fan et al. Page 38

Electron J Stat. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where we use max maxk (ΦB)k ≤ ΦB F = OP( p). □

Appendix G:: More details on synthetic data analysis

G.1. Model calibration and data generation

We calibrate (estimate) the 264 by 264 covariance matrix Σ of ut by our proposed method to 

the data in the healthy group. Plugging it as input in CLIME solver delivers a sparse 

precision matrix Ω, which will be taken as truth in the simulation. Note that after 

regularization in CLIME, Ω−1 is not the same as Σ, and we set the true covariance Σ = Ω−1. 

To obtain the covariance matrix used, in setting 1, we also calibrate, using the same method, 

a sub-model that involves only the first 100 regions. We then copy this 100 × 100 matrix 

multiple times to form a p × p block diagonal matrix and use it for simulations in setting 1. 

We describe how we calibrate these ‘true models’ and generate data from the models as 

follows.

1. (External covariates) For each j ≤ p, generate the external covariate W i.i.d. 

from the multinomial distribution with ℙ(Wj = s) = ws,s ≤ 10 where ws s = 1
10  are 

calibrated with the hierarchy clustering results of the real data.

2. (Calibration) For the first 15 healthy subjects, obtain estimators for F, B and Γ 
by PPCA, resulting in F, B = n−1( Φ (W)′ Φ (W))−1 Φ (W)′XF and 

Γ = n−1(I − P)XF according to [18]. Use the rows of the estimated factors to fit a 

stationary VAR model ft = Aft−1 + ∈t, where ∈t ∼ N(0, Σ∈), and obtain the 

estimators A and Σ∈.

3. (Simulation) For each subject i ≤ m, pick one of the 15 calibrated models and 

their associated parameters from above at random and do the following.

(a) Generate γ jk
i  (entries of Γi) i.i.d. from N(0, σγ

2) where σγ
2 is the sample 

variance of all entries of Γ. For the first three settings, compute the 

‘true’ loading matrix Λi = Φ (W)B + Γi. For the last setting, set Λi = Γi 

since G(W) = 0.

(b) Generate factors ft
i from the VAR model ft

i = Aft − 1
i + ∈t with 

∈t N(0, Σ∈) where the parameters A and Σ∈ are taken from the fitted 

values in step 2.

(c) Finally, generate the observed data Xi = ΛiFi′ + Ui, where each column 

of Ui is randomly sampled from N(0,Ω−1), where Ω has been calibrated 

by the CLIME solver as described at beginning of the section.

G.2. More on pervasiveness

In this subsection, we discuss the pervasive assumption, which requires the spikes to grow 

with order p, and present numerical performance of ALPHA for different levels of cmin and 
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cmax (defined in Assumption 2.3). The readers will have a rough idea about how the 

spikiness (or the constant in front of the rate) affects the performance. We particularly 

consider the cases when cmax is small or cmin is large. As a threshold matter, we verify that 

the real data is consistent with the pervasive assumption.

Denote the maximum and minimum eigenvalues of the matrix Λ′Λ/ p by λmax and λmin 

respectively, and denote the maximum eigenvalue of the matrix U′U/ p by λmax
u . We first 

investigate the magnitude of λmin, λmax and λmax
u  derived from the real data. Following 

exactly the same data generation procedure as in the original simulation study, we randomly 

generate 1,000 subjects. We find that λmax has mean 15.352 and standard deviation 4.918, 

λmin has mean 10.069 and standard deviation 5.416 and λmax
u  has mean 1.317 and standard 

deviation 0.119. We also investigate the signal-to-noise ratio λmin/λmax
u , which has mean 

7.711 and standard deviation 4.230. Therefore, our real data demonstrates a spiked 

covariance structure while the spikes are not extremely spiky.

Then we manipulate the data generation process correspondent to two different cases. One is 

to multiply the original loading matrix Λ by 3, called Modified (a), while the other is to 

divide Λ by 3, called Modified (b). Note that in the case of Modified (b), λmin will be 1/9 of 

the original λmin and thus smaller than λmax
u , so we do not see a clear eigen-gap in this case. 

Table 3 compares the performance of recovering the precision matrix Ω under the original 

and modified setting when ni = 100.

We can see from the table above that the performance of ALPHA in the case of Modified (a) 

is slightly better than that in the original case. Note that increasing cmin makes the 

heterogeneity part more spiky. Larger cmin allows PCA or PPCA to distinguish the spiky 

heterogeneity term more easily. In contrast, decreasing cmax makes the original spiky 

heterogeneity term hard to detect. We also tend to miss several heterogeneity factors while 

extracting them. Therefore, in Modified (b), the estimation error becomes significantly larger 

compared with the original case.

G.3. Sensitivity analysis on the number of factors

In this section, we study how the estimated number of factors affects the recovery of the 

Gaussian graphical model through simulations. The specification of the number of factors is 

critical to the validity of our ALPHA method, which inspires us to assess the performance of 

K and K on our simulated datasets in the first place. Recall that

K = arg maxk ≤ Kmax
λk(X′X)/λk + 1(X′X),

K = arg maxk ≤ Kmax
λk(X′PX)/λk + 1(X′PX),

where P is the projection operator defined in (3.5) in the main text. The final estimator of the 

number of factors, denote by Ǩ, comes from the heuristic strategy we developed for 

choosing between PCA or PPCA. We choose PCA if 
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λ
K

(X′X)/λ
K + 1(X′X) ≥ λK(X′PX)/λK + 1(X′PX) and choose PPCA vice versa. The intuition is 

that we favor the method that yields larger eigen-ratio between the spiked and non-spiked 

part of the covariance.

Analogous to the simulation study in our paper, we generate m = 1,000 people’s BOLD data 

based on calibrated “true” data. We investigate the accuracy of the proposed K, K and Ǩ for 

two cases: (i) ni = 20,p = 264 and (ii) ni = 100, p = 264, presented in Table 4. As we can see 

from the table, when ni is small, K outperforms K, and when ni is large, K is better. Note also 

that our heuristic estimator Ǩ has great performance in both cases of large and small ni.

Given the performance of our proposed estimators of the factor number, we now artificially 

enlarge this estimation error and see how it affects the Gaussian graphical model analysis. 

Let η be a random perturbation with P(η = 0) = 1/2, P(η = 1) = 1/3 and P(η = 2) = 1/6. 

Define K+: = K + η and K−: = max(K−η,0), where K is the true number of factors. As the 

notations indicate, K+ overestimates the factor number while K− underestimates it. Since 

P(η ≠ 0) = 1/2, their estimation accuracy is only 50%, worse than that of K and K as 

presented. We use K+ and K− as the estimators of the number of factors respectively to 

recover the precision matrix of U and compare their performance with that of Ǩ. The results 

are presented in Table 5.

“Oracle” above means that we directly use the generated noise U to calculate its sample 

covariance and plug it in CLIME to recover the precision matrix. Ko means we know the 

true number of pervasive factors, and use PCA or Projected-PCA (choosing the method that 

yields larger eigen-ratio) to adjust factors. As we can see from the table above, K+ is nearly 

as good as Ko, which means that overestimating the number of factors does not hurt the 

recovery accuracy. In contrast, underestimating the number factors will seriously increase 

the estimation error of Ω, as shown by K−, because the unadjusted pervasive factors heavily 

corrupt the covariance of U. Nevertheless, both K+ and K− uses partial information of the 

true number of factors. In comparison, our procedure Ǩ, without any prior knowledge about 

the number of factors, have a great performance in recovering Ω.
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Fig 1. 
Schematic illustration of ALPHA: Depending on whether we can find some sufficiently 

informative covariates W, we implement principal component analysis (PCA) or Projected-

PCA (PPCA) methods (labeled respectively M1 and M2) to remove the heterogeneity effects 

ΛF′ for each batch of data. This decision was made adaptively by a heuristic method. After 

removing the unwanted variations, the homogeneous data U(i)
i = 1
m

 are aggregrated for 

further analysis.
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Fig 2. 
Cluster Dendrogram for physical locations with J = 10.
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Fig 3. 
Estimation of Σ by PCA, PPCA and the oracle sample covariance matrix for 4 different 

settings. Case 1: m and ni are fixed while the dimension p increases; case 2: ni and p are 

fixed while m increases; case 3: m and p are fixed while ni increases; case 4: p is fixed, and 

both m and ni increase and conditions for PPCA are violated.
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Fig 4. 
Estimation of Ω. Presented are the estimation errors in max-norm and L1-norm for 4 

different settings. In Case 4, nPCA refers to no PCA, i.e., we do not adjust heterogeneity.
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Fig 5. 
ROC curves for sparsity recovery of Ω for 4 different settings.
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Fig 6. 
Estimated brain functional connectivity networks using physical locations as covariates to 

correct heterogeneity. 10 region clusters are labeled in 10 colors. Black, blue and red edges 

represent respectively common edges, unshared edges in the healthy group and in the 

ADHD group.
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Table 1

Distribution of estimated number of factors for healthy and ADHD groups

Ki 1 2 3

Healthy 253 148 64

ADHD 78 40 25
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Table 2

The degree of unshared edge vertices for each cluster

red orange blue green yellow navy pink black magenta gray

Health 3 4 3 2 7 6 10 12 11 6

ADHD 9 6 7 5 12 5 6 15 9 10
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Table 3

Gaussian Graphical Model Analysis

| |Ω − Ω | |max | |Ω − Ω | |1 | |Ω − Ω | |2
Original 0.564 3.445 1.188

Modified (a) 0.524 3.052 1.066

Modified (b) 0.749 4.914 1.719
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Table 4

Accuracy of K, K and Ǩ

ni = 20 ni = 100

TotErr OverEst UnderEst TotErr OverEst UnderEst

K 38.7% 0% 38.7% 0.7% 0% 0.7%

K 29.7% 6.8% 22.9% 4.7% 2.7% 2.0%

Ǩ 29.7% 6.8% 22.9% 3.5% 2.3% 1.2%
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Table 5

Gaussian Graphical Model Analysis

ni = 20 ni = 100

| |Ω − Ω | |max | |Ω − Ω | |1 | |Ω − Ω | |2 | |Ω − Ω | |max | |Ω − Ω | |1 | |Ω − Ω | |2
Oracle 0.687 4.131 1.311 0.335 2.018 0.695

Ko 0.873 2.824 1.351 0.536 2.006 2.017

Ǩ 1.156 8.581 2.950 0.564 3.445 1.188

K + 0.771 3.27 1.49 0.586 2.154 1.074

K − 1.618 11.384 4.062 1.84 15.133 4.941
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