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Abstract

Aging is associated with enhanced oxidative stress and increased susceptibility to numerous 

diseases. This relationship is particularly striking with respect to the incidence of fibrotic lung 

disease. To identify potential mechanisms underlying the association between aging and 

susceptibility to fibrotic lung disease we analyzed transcriptome data from 342 disease-free human 

lung samples as a function of donor age. Our analysis reveals that aging in lung is accompanied by 

modest yet progressive changes in genes modulating redox homeostasis, the TGF-beta 1 signaling 

axis, and the extracellular matrix (ECM), pointing to an aging lung functional network (ALFN). 

Further, the transcriptional changes we document are tissue-specific, with age-dependent gene 

expression patterns differing across organ systems. Our findings suggest that the age-associated 

increased incidence of fibrotic pulmonary disease occurs in the context of tissue-specific, age-

dependent transcriptional changes. Understanding the relationship between age-associated gene 

expression and susceptibility to fibrotic pulmonary disease may allow for more accurate risk 

stratification and effective therapeutic interventions within this challenging clinical space.
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1. Introduction

The free radical theory of aging proposes that biological aging results from cellular damage 

mediated by the chronic accumulation of oxidants (also referred to as reactive oxygen 

species (ROS)) [1–12]. While this assertion remains in dispute, there is growing evidence 

that oxidative stress does increase with age [13,14]. Further, aging is recognized as a major 

risk factor for disease states linked to chronic oxidative damage, many of which manifest in 

the lung including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary 

disease (COPD), and lung cancer [15–17]. Nevertheless, the molecular mechanisms 

mediating these associations remain incompletely understood [18].

Many diseases exhibit a positive correlation with age. The association between age and 

fibrotic lung disease is particularly strong, exemplified by the exponential increase in IPF 

incidence beginning with the fifth decade of life [19]. Fibrosis is defined by dysregulated 

wound healing and excessive deposition of extracellular matrix in response to injury. The 

process can impact several different organs including the lung, skin, kidney, heart and liver 

[20]. Perturbation of redox homeostasis and the increased oxidative stress that results are 

hypothesized to mediate the dysfunctional healing that defines fibrosis pathogenesis by 

disrupting interactions between epithelial cells, fibroblasts, and immune cells [17,21–24]. In 

IPF this relationship is illustrated by the reciprocal dysregulation of cellular oxidant and 

antioxidant systems, including upregulation of NADPH oxidases (e.g. NOX4), and 

downregulation of antioxidant pathways (e.g. NRF2 and glutathione biosynthesis) [16,25–

32]. Whether these alterations are sufficient to explain the increased incidence of age-

associated fibrotic lung disease, or represent effects of an established disease process, 

remains to be established.

Understanding the molecular events predisposing the aging lung to pulmonary disease is a 

crucial step allowing for the rational design of novel therapies. We reasoned that 

characterizing naturally occurring, age-dependent transcriptional changes in disease-free 

lung might provide insights into the mechanisms that underlie age-associated susceptibility 

to fibrotic pulmonary disease. Using RNAseq data from The Genotype-Tissue Expression 

(GTEx) project we evaluated global changes in the lung transcriptome as a function of donor 

age. Our analyses reveal coordinated, age-dependent regulation of genes encoding cellular 

oxidation/reduction effectors, the TGF-beta 1 signaling pathway, and components of the 

extracellular matrix in aging disease-free human lung. Importantly, these transcriptional 

alterations exhibit tissue-specificity and are not simply a function of aging cells. While 

modest in magnitude, the expression changes impact genes involved in a subset of specific 

biologic processes. Taken together, the analysis of the pulmonary transcriptome highlights 

candidate genes for consideration as fibrotic disease-risk biomarkers, as well as potential 

therapeutic targets. Further, we propose that these transcriptional changes reflect a lung 

microenvironment that, in response to pulmonary injury, is increasingly susceptible to 

developing fibrosis in an age-dependent manner.
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2. Materials and methods

2.1. GTEx RNAseq data

RNAseq data used in our analyses were obtained from dbGaP (Accession phs000424.v7.p2, 

06/2018) as part of the Genotype-Tissue Expression (GTEx) Project. GTEx is supported by 

the Common Fund of the Office of the Director of the National Institutes of Health, and by 

NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. This dataset includes information on 

56,202 transcripts from 11,688 samples derived from 53 tissue types and 714 human donors. 

Our analyses utilize data from 342 human lung samples, 600 heart samples, 175 liver 

samples, and 387 sun-protected skin samples. Quantified RNA values are reported as 

transcripts per million reads (TPM).

2.2. Sample exclusion criteria

85 lung samples were removed from the GTEx dataset prior to analysis based on 

accompanying data indicating the donor suffered from a chronic interstitial lung disease.

2.3. Statistical analyses

Spearman correlation analysis was performed for each transcript as a function of donor age. 

Genes in disease-free lung whose expression significantly correlated with donor age (p-value 

< 0.05) were flagged and included in gene lists used in downstream analyses. Statistical 

analyses were completed using base R (v3.5.1) within RStudio (v1.1.453).

2.4. Functional network analysis (FNA)

To determine whether functionally related clusters exist among the genes significantly 

correlated with age by Spearman analysis, we queried our gene lists in the genome-scale 

integrated analysis of gene networks in human tissues (GIANT 2.0)33 using the “lung” 

network available for download at the URL: https://hb.flatironinstitute.org/download. The 

GIANT networks are tissue-specific gene-gene interaction networks that encode predicted 

functional interactions among genes based on gene co-expression, co-regulation by a 

transcription factor, and protein interactions [33,34]. To reduce network complexity, we set 

the edge weight minimum threshold to 0.5 to obtain the aging lung functional network 
(ALFN). The choice of 0.5 as a threshold was motivated by two factors. First, in 

comprehensive and systematic network comparisons, Huang et al. noted that, at the network 

level, prediction of disease genes scales with network size and edge density, so that 

including more interactions outweighs the downsides of false positive interactions [35]. 

Second, before integrating any data, the GIANT networks assume a baseline probability of 

0.1 that two genes functionally interact. Thus, an edge weight of 0.5 in the network indicates 

that the integrated data predict a five-fold increase in confidence that the genes are 

functionally related. Therefore, the 0.5 threshold allowed for a network analysis of a 

reasonably dense, high confidence network, while removing a substantial amount of the 

noise. We then clustered the resulting network using the fast greedy community detection 

algorithm [36], implemented in the Gephi (v0.9.2) network visualization software [37]. This 

allowed the identification of clusters within the network having denser within-cluster 

connections compared to outsidecluster connections. Annotation of the resulting 
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subnetworks was completed using the ‘gProfileR’ R package [38] resulting in the 

identification of functional enrichments.

2.5. Gene ontology (GO) analysis

Gene Ontology (GO) analysis was performed separately on gene lists containing all protein 

coding genes exhibiting positive correlation with age, or gene lists containing all protein 

coding genes demonstrating negative correlation with age, using the online classification 

software ToppGene [39] (https://toppgene.cchmc.org). Member genes within identified GO 

terms with significant age-dependent expression correlation were then visualized using base 

R (v3.5.1) and the ggplots2 package within RStudio (v1.1.453).

3. Results

3.1. Age-associated changes in the human lung transcriptome

Using RNAseq data from the Genotype-Tissue Expression (GTEx) Project we evaluated 

transcriptional changes as a function of age in 342 disease-free human lung samples. The 

GTEx v7.p2 dataset contains 427 human lung samples, 85 of which were removed prior to 

analysis based on accompanying data indicating the donor suffered from a chronic 

interstitial lung disease (Table 1). Of the 342 samples included in our analysis, 236 were 

derived from male donors aged 21 to 70, while 106 were derived from female donors aged 

21 to 70 (Table 1). Each sample analyzed included data for 56,202 RNA species, 

representing both protein coding and non-protein coding genes. Spearman correlation 

analysis was completed for each transcript as a function of donor age identifying 8,231 

protein coding transcripts exhibiting significant age-dependent expression (p < 0.05; Fig. 1 

and Table S1). Scatter plots for two representative genes (CAT and ITGB5) demonstrating 

significant age-dependent expression changes are included in Fig. 1 (panel 3). These 

examples visualize the patterns identified by our analysis pipeline resulting in the gene lists 

used in subsequent analyses.

3.2. Functional network analysis identifies processes likely altered in aging human lung

In order to identify the biologic processes potentially affected by age-associated 

transcriptional changes in the lung, we interrogated the list of 8,231 genes exhibiting 

significant age-dependent expression correlation through a functional network analysis 

workflow based upon the genome-scale integrated analysis of gene networks in human 

tissues (GIANT 2.0) [33]. The GIANT networks are tissue-specific, gene-gene interaction 

networks that encode predicted functional interactions among genes based on published 

gene co-expression, co-regulation by a transcription factor, and protein-protein interactions. 

Each putative interaction has an associated probability, with high probabilities corresponding 

to highly likely interactions. By setting the edge weight minimum threshold to 0.5, our 

analysis focused on strongly predicted interactions [35]. This effective filtering trimmed our 

list of 8,231 genes down to a highly interconnected aging lung functional network (ALFN) 

composed of 2,073 genes. We then clustered the ALFN using the fast greedy community 

detection algorithm [36], implemented in the Gephi network visualization software [37], to 

identify gene subgroups within the network having denser within-cluster connections 

compared to outside-cluster connections. These distinct clusters effectively correspond to 
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functionally related subsets of genes within the network and are illustrated by shared dot 

color (Fig. 2A). In order to annotate these clusters we used the R package ‘gProfileR’ [38]. 

This resulted in the identification of four major subnetworks, descriptions of which were 

manually curated based upon formal enrichment analysis and visualized using color-

coordinated circles (Fig. 2A, Table S2). These sub-networks are described in Fig. 2 as 

Redox/Mitochondria (green circle), Cell Cycle (orange circle), Metabolism (yellow circle), 

and TGFB1/ECM (black circle).

Importantly, by using this approach the analysis was blind to whether expression of specific 

member genes within the network were positively or negatively correlated with age, only 

that the correlation was significant. To address the question of directional correlation 

between significant gene expression changes and age, we next overlaid the associated 

Spearman Rho values for each gene onto the network map (Fig. 2B). A positive rho value 

(red dot) indicates a gene whose expression increases with age, while a negative value (blue 

dot) represents a gene whose expression decreases with age in disease-free human lung. 

Intriguingly, a striking separation emerged from within the self-assembled network, 

revealing that genes exhibiting enhanced expression with age (red dots) enriched in the 

subnetwork dominated by ECM and TGF-beta 1 pathway members (Fig. 2A&B). 

Conversely, genes exhibiting reduced expression with age (blue dots) were clustered within 

the subnetworks characterized by redox effectors, mitochondrial function, metabolism and 

cell cycle regulation (Fig. 2A&B). The inferred implication of this dichotomy is that the 

functionally-related processes represented by the subnetworks may themselves be 

coordinately regulated by the transcriptional alterations we report. In this way, the 

transcriptional data derived from aging disease-free lung can be viewed as a surrogate for the 

associated biologic function. Ultimately these data suggest that the biologic pathways 

governing the TGFB1/ECM axis become more active with age, while those underlying 

metabolism and redox homeostasis exhibit reduced functionality with age.

3.3. Expression of oxidoreductase-related genes negatively correlates with age in human 
lung

Given the bifurcation observed within the self-assembled functional network between genes 

positively or negatively correlated with age, we next conducted formal gene ontology 

analysis on the complete lists of significant positively and negatively regulated genes, using 

ToppGene [39]. Of the 8,231 protein coding transcripts identified as significantly correlating 

with age, 4,379 exhibited a significant negative correlation (Spearman rho <0; p < 0.05), 

while 3,852 a significant positive age-dependent correlation (Spearman rho > 0; p < 0.05) 

(Table 2, Table S3). GO analysis performed on these gene lists identified terms overlapping 

with the self-assembled subnetworks observed for the ALFN shown in Fig. 2. Specifically, 

GO terms for oxidation/reduction activity and mitochondrial function were notably enriched 

in the results for genes displaying a significant negative correlation with age (Table 2, Table 

S4). Similarly, genes exhibiting a significant positive correlation with age resulted in GO 

terms describing ECM remodeling and TGF-beta 1 signaling (Table 2, Table S5). When the 

intersection of representative GO term member genes are overlaid on the self-assembled 

functional networks, the terms segregated into their respective functionally derived clusters 

(Fig. 3B&D). Due to the filtering parameters used to generate the ALFN, many genes 
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demonstrating significant age-dependent expression were removed (8,231 down to 2,073). 

For example, the GO term entitled “oxidoreductase activity” (GO:0016491), is strongly 

enriched for genes downregulated with age (p = 3.92 × 10 −22; Table 2), with 297 member 

genes exhibiting significant negative Spearman correlations (Fig. 3A, Table S4). However, 

only a third of these genes passed our functional network filter, which required an edge 

weight value of at least 0.5. Similarly, for the GO term entitled “response to transforming 

growth factor beta” (GO:0071559), many genes with significant positive age correlations 

(Table 2, Fig. 3C) were also filtered from the functional network analysis. This observation 

may reflect an inherent weakness or incompleteness in the functional network annotations. 

Despite this loss of granularity, the genes represented by these GO terms clustered within 

their predicted functional nodes (Fig. 3B&D), supporting the inference that corresponding 

biologic processes may be altered with age in disease-free lung.

3.4. Gene expression with age exhibits tissue specificity

To address whether the changes in gene expression we observe relate to mechanisms with 

potential relevance to age-associated fibrotic pulmonary disease susceptibility, or are simply 

changes universal to aging cells, we repeated the Spearman correlation analysis with age on 

RNAseq data from other tissues known to experience age-associated fibrotic disease [40–

42], notably heart, liver and skin (Tables S5–S7). We then compared age-dependent 

expression patterns across all four tissues using gene members from GO terms described in 

Fig. 3, namely “oxidoreductase activity” (GO:0016491) and “response to transforming 

growth factor beta” (GO:0071559) (Fig. 4). With respect to expression of oxidation/

reduction effectors, the aging lung demonstrates repression of substantial numbers of genes 

when qualitatively compared to heart, liver or skin (Fig. 4A). Similarly, expression of TGF-

beta 1 pathway associated genes are upregulated with age in lung when compared to heart, 

liver or skin (Fig. 4B). Thus, the coordinated changes in gene expression with age in lung 

are tissue-specific, and do not arise solely as a function of aging cells.

4. Discussion

Age currently represents the best predictor of fibrotic pulmonary disease risk [43–46]. The 

goal of the present study was to examine gene expression changes occurring in disease-free 

lung as a function of age in order to identify coordinately regulated gene clusters that might 

inform our understanding of the link between age and fibrotic pulmonary disease 

susceptibility. Following unbiased analyses, we identified changes in the transcriptome of 

aging healthy lung highlighting clusters of genes encompassing reduction/oxidation 

effectors and the TGF-beta 1 signaling axis that progressively shift with age.

Aging has also been strongly associated with changes in redox homeostasis. For example, 

mitochondrial dysfunction is an established feature of aging that remains incompletely 

understood, but is widely considered a major source of age-related oxidative stress [47,48]. 

We found that genes encoding components of mitochondrial complexes are downregulated 

with age in healthy lung (Fig. 3A, Tables S2–S3). Dysfunction of mitochondrial complexes 

I, III and IV are established mechanisms governing elevated ROS production in cells [49–

51]. An increase in oxidant production, combined with a reduced ability to quench oxidants, 
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results in increased oxidative stress linked to aging [10,11,14,17,18,32]. Here we document 

effectors of reduction/oxidation activity are significantly enriched among genes repressed 

with age in disease-free lung. These genes exhibit a significant negative correlation with age 

and are included in the GO term “Oxidoreductase activity” (GO:0016491) (Table 2 and Fig. 

3A). Of particular interest, numerous genes within this term are hydrogen peroxide 

metabolizing enzymes. For example, our analysis identified catalase (CAT), peroxiredoxins 

(PRDXs) and glutathione peroxidases as exhibiting significant negative correlation with age 

(Fig. 3A), all of which are key regulators of cellular hydrogen peroxide homeostasis [52]. 

PRDXs utilize the thioredoxin/thioredoxin reductase (TXN/TXNRD) pathway to maintain 

their active reduced state. Our data show that mRNA expression of PRDX1–5, as well as 

TXN2 and TXNRD2–3, all negatively correlate with age in lung (Fig. 3A). The catalytic 

cycles of CAT, PRDXs, and TXNs all require NADPH in order to remain active. NADPH is 

generated in the first step of the pentose phosphate pathway by glucose-6-phosphate 

dehydrogenase (G6PD), which also exhibits significant negative correlation with age.

In contrast to the decreases in expression of these aforementioned oxidant metabolizing 

enzymes, our analysis shows that expression of NOX4, an NADPH oxidase that directly 

produces hydrogen peroxide, positively correlates with age (Fig. 3C, Table S1). These 

findings are of particular interest given the strong established link between NOX4 activation 

and lung fibrosis. Active myofibroblasts express NOX4, and resultant hydrogen peroxide has 

been implicated in death of epithelial cells [26,27]. Rodents treated with NOX4 inhibitors, 

Cpd 88 [4-[(benzyloxy) methyl]-2-(2-chlorophenyl)-5-(pyrazin-2-ylmethyl)-1H-pyrazolo 

[4,3-c]pyridine-3,6(2H,5H)-dione] or GKT137831, were strongly protected from the 

development of bleomycin induced fibrosis [27,53]. Furthermore, GKT137831 reversed 

increases in age-associated persistent lung fibrosis [27]. It is important to acknowledge that 

the prior observations regarding NOX4 have been made predominantly in fibroblasts [26–

28]. The GTEx RNAseq data for human lung were generated using homogenized lung tissue 

and therefore we cannot conclude that the increased NOX4 we observe with age originates 

from fibroblasts specifically. Additional analysis, notably single cell transcriptomes in cells 

derived from the aging human lung will be required to formally link NOX4 levels to specific 

cell subsets. That said, increased NOX4 expression would be expected to result in increased 

hydrogen peroxide production, regardless of the cell-type expressing the protein. Therefore, 

the fact that we see increased NOX4 expression with age in lung suggests a potential source 

of oxidative stress with age, independent of the cell-type responsible.

Collectively, these observations support the hypothesis that age-dependent dysregulation of 

genes associated with redox homeostasis may contribute to increases in oxidative stress and 

suggest altered H2O2 metabolism as culminating in enhanced oxidative stress with age.

TGF-beta 1 (TGFB1) is a potent pro-fibrotic growth factor whose increased expression is a 

hallmark of fibrotic diseases. Recent work has linked enhanced ROS levels to activation of 

the TGF-beta 1 pathway [54]. Our analyses identify enrichment of TGFB1 signaling 

pathway members among those exhibiting positive correlation with age in disease-free lung, 

suggesting a reciprocal connection between TGFB1 and reduction/oxidation effectors. This 

observation supports prior evidence linking enhanced TGFB1 signaling to the activation of 

NOX424,55 and increased oxidative stress [54]. The release and activation of latent TGFB1 is 
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mediated by several different molecules including proteases, thrombospondin-1, reactive 

oxygen species, and the integrins (ITG), ITGB6 and ITGB8 [56]. It is plausible that a 

progressive imbalance in age-dependent ROS mitigation, marked by dysregulation of redox 

effectors, could drive TGF-beta 1 pathway activation, while TGFB1 in turn promotes 

expression of NOX424,54,55, pointing to a feedforward loop whereby NOX4-derived 

hydrogen peroxide and TGFB1 amplify one another. Supporting this idea, elevated ROS 

have been proposed to modulate TGF-beta 1 expression in epithelial cells, and 

concomitantly participate in the activation of latent TGF-beta 1 in the ECM, thus 

incrementing TGF-beta 1 bioavailability [57]. Additionally, activation of latent TGF-beta 1 

is enhanced by latent transforming growth factor beta binding proteins (LTBPs) [58], three 

of four of which (LTBP1, 2 & 4) exhibit positive correlation with age in lung (Fig. 3C). 

Therefore, a chronic ROS imbalance in aging lung is consistent with TGFB1 activation. 

Although the lungs evaluated herein were disease-free, the age-dependent gene expression 

patterns suggest a shift toward a pro-fibrotic pulmonary microenvironment, potentially 

explaining age-related fibrosis susceptibility [59].

While the GTEx RNAseq dataset represents a unique and robust resource to investigate gene 

expression in disease-free human tissue, there are notable limitations that deserve 

acknowledgment. First, samples assessed were collected post-mortem. While reasonable 

steps were taken to limit time between death and sampling, variation does exist sample to 

sample, and it is possible that such variation could impact sample quality. Second, older 

individuals are overrepresented in the dataset, which may impact our analysis by artificially 

weighting the correlations. Third, although we do filter out those samples described as 

suffering from chronic interstitial lung disease at time of death, the completeness of the 

medical information across samples varies, and therefore we cannot definitively rule out 

some included samples suffered a related undiagnosed condition. Fourth, it is possible that 

manner of death could impact sample quality and/or expression profiles, and we did not 

control for this variable given incomplete data in the available records. Despite these 

limitations, given the impracticality of performing lung biopsies on healthy individuals, the 

GTEx data represent a highly valuable resource for describing alterations in human tissue 

transcriptional networks with age.

Overall, our transcriptome analysis of disease-free lung suggests that age-associated fibrotic 

pulmonary disease susceptibility may be linked to chronic, progressive disruption of redox 

homeostasis and enhanced TGFB1 signaling. We propose that over a lifetime, modest yet 

progressive shifts in the expression of genes impacting functionally linked networks increase 

susceptibility to fibrotic pulmonary disease in response to repeated injuries or insults. While 

not everyone develops fibrotic pulmonary disease, the strong association between lung 

fibrosis and age illustrates that susceptibility dramatically increases as a function of age. The 

analyses of healthy lung tissues in the present study offer a theoretical mechanism 

explaining how this association may arise. Mitochondrial dysfunction and/or increases in 

NOX4 result in chronic elevated ROS [24,47,48,55], which in turn drives TGFB1 expression 

and downstream signaling. Enhanced TGFB1 activity induces changes to the ECM, and also 

promotes additional mitochondrial dysfunction and ROS production [54], thus creating a 

feedforward amplification loop that over time enhances susceptibility to fibrosis. As 

described in Fig. 4, the transcriptional changes we report exhibit tissue specificity, indicating 
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the observed expression changes are not simply a function of aging cells. Comparing 

transcriptional profiles between tissues with differing age-associated disease susceptibilities 

may allow for the identification of features critical to disease initiation. We propose that the 

constellation of specific transcriptional changes illuminated herein has the potential to serve 

as a biomarker for fibrotic pulmonary disease susceptibility, and may ultimately help explain 

the mechanisms linking age with the increased incidence of fibrotic lung disease. That said, 

additional studies incorporating patients with fibrotic lung disease, analyses of sex-

dependent differences, along with experimental studies to determine the nature of 

associations between oxidation/reduction and the TGFB1 signaling axis will be required to 

solidify these claims.
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Fig. 1. Workflow used to analyze age-dependent gene expression data from disease-free human 
lung.
Exclusion criteria, along with donor age/sex distributions, are shown in Table 1. Spearman 

correlations between donor age and the 56,202 transcripts analyzed are included in Table S1. 

Representative genes exhibiting the significant age-dependent expression required for 

inclusion in downstream analyses are included in panel 3 (red dots indicate female donors; 

black dots indicate male donors).
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Fig. 2. Functional Network Analysis performed on transcriptome data from disease-free human 
lung reveals biologic processes whose effector genes exhibit age-dependent expression.
A. Of the 8,231 genes found to demonstrate significant expression correlation with age, 

2,073 met criteria for inter-connectedness. These genes self-assembled into the aging lung 
functional network (ALFN), which is further divided into 4 major subnetworks: Redox/

Mitochondria (green circle), Cell Cycle (orange circle), Metabolism (yellow circle), 

TGFB1/ECM (black circle). Characterization of the major subnetworks was based upon 

manual review of associated GO analysis (Table S2). B. Network overlaid with Spearman 

Rho values (blue dots indicate genes exhibiting significant negative correlation with age; red 

dots indicate significant positive correlation with age). Redox/Mitochondria, Cell Cycle, and 

Metabolism subnetworks are enriched with genes negatively correlated with age in disease-

free lung (blue dots), while the TGFB1/ECM subnetwork is enriched with genes positively 

correlated with age (red dots).
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Fig. 3. Member genes from GO terms significantly enriched for age-dependent expression in 
disease-free human lung.
A. 297 genes from GO:0016491 (Oxidoreductase Activity; 297/749, Bonferroni corrected p-

value = 7.84e-22) exhibit significant negative correlation with age in disease-free lung. 

Genes are listed in alphabetical order. Inclusion indicates Spearman correlation with age 

reaches p-value < 0.05. Intensity of box color corresponds to Spearman Rho values whose 

distributions are reported as histograms below each heatmap. B. Member genes from GO:

0016491 that overlap with the ALFN analysis and overlaid on the network map (blue dots). 

Colored circles correspond to the 4 major subnetworks defined in Fig. 2. C. 91 genes from 

GO:0071559 (Response to TGFB1; 91/234, Bonferroni corrected p-value = 5.70e-11) 

exhibit significant positive correlation with age in disease-free lung. D. Member genes from 

GO:0071559 that overlap with the ALFN analysis and overlaid on the network map (red 

dots). Colored circles correspond to the 4 major subnetworks defined in Fig. 2.
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Fig. 4. Age-dependent gene expression displays tissue specificity.
A. 297 gene subset from the GO term 0016491 (Reduction Oxidation Activity) exhibiting 

significant negative correlation with age in lung compared to heart, liver, and skin. B. 91 

gene subset from the GO term 0071559 (Response to TGFB Activity) exhibiting significant 

positive correlation with age in lung compared to heart, liver, and skin. Box color 

corresponds to Spearman Rho value; blue indicates negative correlation (decrease with age); 

red indicates positive correlation (increase with age). Associated p-values are denoted by 

stars (* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001).
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