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Abstract

The genotype-to-phenotype relationship in health and disease is complex and influenced by both 

an individual’s environment and their unique genome. Personal genetic variants can modulate gene 

function to generate a phenotype either through a single gene effect or through genetic interactions 

involving two or more genes. The relevance of genetic interactions to disease phenotypes has been 

particularly clear in cancer research, where an extreme genetic interaction, synthetic lethality, has 

been exploited as a therapeutic strategy. The obvious benefits of unmasking genetic background-

specific vulnerabilities, coupled with the power of systematic genome editing, have fueled efforts 

to translate genetic interaction mapping from model organisms to human cells. Here, we review 

recent developments in genetic interaction mapping, with a focus on CRISPR-based genome 

editing technologies and cancer.

INTRODUCTION

Our current knowledge of cancer cell function coupled with growing catalogues of genome 

sequence data for human tumours and cancer cells lines provides a rich foundation for 

precision oncology [e.g. The Cancer Genome Atlas (TCGA): https://cancergenome.nih.gov/; 

Catalogue of Somatic Mutations in Cancer (COSMIC) https://cancer.sanger.ac.uk/cosmic]. 

Genetically tailored therapeutics that take advantage of specific driver pathways can be 

designed to selectively kill cancer cells. For example, Trastuzumab, an antibody therapeutic 

that targets the HER2 receptor, is specific for HER2-positive breast cancers, while Imatinib, 

a tyrosine kinase inhibitor, targets the BCR-ABL fusion protein that drives most chronic 

myelogenous leukemias. Alternatively, therapies have been designed to exploit 

vulnerabilities generated by cancer cell-specific genetic variation. For example, BRCA1 and 

BRCA2-mutant breast and ovarian cancer cells are defective for DNA double strand break 

(DSB) repair, which renders the cancer cells hypersensitive to small molecules that inhibit 

the poly(ADP-ribose) polymerase 1 and 2 (PARP1/2) enzymes, which would otherwise 

initiate DSB repair through alternative mechanisms [1]. These examples illustrate the 

importance of understanding functional cancer genetics, yet current successes in the clinic 

that reflect decades of basic research have focused largely on a few key biological pathways. 

Clearly, there is much to be learned from unbiased systematic analyses of human gene 

function and genetic interactions (GIs), with a focus on unbiased identification of all 
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biological pathways relevant to cancer cell division and discovering genetic variation that 

might be exploited to develop targeted therapeutics. In this article, we provide an overview 

of recent developments in the field of GI mapping with a particular focus on cancer.

CONTEXT-DEPENDENT GENE ESSENTIALITY AND THE CANCER 

PHENOTYPE

Recent improvements in genome editing technologies, most notably CRISPR (clustered 

regularly interspaced short palindromic repeats)-based methods, have accelerated the 

development of resources for genome-scale perturbation of genes in mammalian genomes, 

opening the door to systematic functional genomics analysis. The first and most widely used 

CRISPR technology pairs the Cas9 endonuclease with a gRNA (guide RNA) to target it to a 

given genomic site, where Cas9 induces a DNA double-strand break. Repair by non-

homologous end-joining frequently results in insertions or deletions, leading to a functional 

knock-out of a gene of interest (Table 1). So far, efforts have largely focused on assessing 

the impact of individual gene perturbation on cell proliferation, a phenotypic read-out that 

reports on general cell physiology, is scalable and quantitative.

Libraries of both RNAi (RNA interference) knock-down reagents and gRNAs for genome-

scale CRISPR gene targeting have been applied to human cell lines to identify essential 

genes required for cell proliferation. These studies revealed a core set of essential genes 

required for viability in most cell lines, including highly conserved genes whose functions 

are maintained from yeast to humans, as well as genes that are required for viability only in 

a subset of cancer cell lines (reviewed in [2,3]). Mirroring the general findings from studies 

of gene deletion mutants in yeast, the core human cell essential gene set only includes a 

relatively small fraction (~10%) of the genes in the human genome, highlighting the 

extensive functional buffering inherent to eukaryotic genomes. Conversely, the variation 

inherent to specific cancer cell genomes results in context-specific essential genes whose 

mutation creates cell fitness defects only in a specific genetic background, presumably due 

to GIs. Importantly, genome-wide screens for GIs offer the potential to convert a given 

nonessential gene into a context-specific essential gene, and thereby define the genes and 

pathways that buffer the loss of function of any mutant query gene.

MAPPING GENETIC INTERACTIONS IN CANCER

Generally, a genetic interaction occurs when the fitness phenotype observed for a given 

double mutant deviates from the phenotype expected based on the two single mutant 

phenotypes [4]. If the double mutant grows better than expected, the gene pair is said to 

exhibit a positive GI. If the observed double mutant fitness is less than expected, the two 

genes display a negative interaction, ranging from synthetic sickness to the most extreme 

case, synthetic lethality (SL) (Fig. 1A).

Efforts to broadly map GIs in human cells are particularly relevant to understanding cancer 

phenotypes for two reasons. First, GIs complicate our ability to predict phenotype from 

genotype, a major challenge that must be addressed to realize the promise of precision 

medicine for cancer. Second, GIs, and SL in particular, are important as a therapeutic 
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concept in cancer. The idea of discovering and exploiting specific genetic vulnerabilities to 

kill cancer cells while sparing normal tissue was proposed more than 20 years ago [5]. 

Synthetic lethal interactions in cancer cells can be considered a form of context-dependent 

gene essentiality [2], although it should be noted that the number of modifiers associated 

with the GI could be complex rather than a simple digenic effect. SL as a therapeutic model 

has obvious benefits of potentially reducing side effects of cancer treatments, as well as the 

possibility of indirectly targeting “undruggable” mutations. These ideas have motivated 

massive academic and corporate cancer SL screening approaches in a vast range of cell 

systems, yielding thousands of SL interactions [6].

While the promise is huge, only one SL interaction has been translated into the clinical 

setting to date: as noted above, breast and ovarian cancer cells carrying mutations in BRCA1 
or BRCA2 are highly sensitive to PARP inhibitors [1]. Even though many promising 

candidates have been identified in tumor cell models [1,7], most published SL interactions 

have not withstood pre-clinical evaluation. These failures may result from off-target effects, 

incomplete loss-of-function and poor reproducibility in RNAi screens [8,9], variable 

consistency of drug screens [10,11], incomplete penetrance [12], and context dependency 

[2]. These issues, coupled with the fact that GIs are rare, involving on the order of ~1% of 

tested gene pairs, suggest that efficient discovery of clinically actionable GIs will require a 

more global analysis of genetic networks that moves beyond individual genes and pathways.

MAPPING GENETIC INTERACTIONS IN MODEL SYSTEMS: A TEMPLATE 

FOR GENETIC NETWORK ANALYSIS

Model organisms continue to be experimental test-beds for development and implementation 

of systematic GI studies due to their small genomes, genetic tractability and amenability to 

high-throughput analyses. Systematic genetics in the budding yeast Saccharomyces 
cerevisiae enabled assembly of the first comprehensive pairwise GI map surveying nearly all 

essential and non-essential yeast genes [13]. Most query genes display a number of different 

negative and positive interactions, and the set of GIs associated with a query gene forms a GI 

profile. Genes within the same biological pathway or protein complex have highly similar GI 

profiles, indicating that these profiles provide a quantitative measure of gene function. 

Indeed, the global map of yeast GI profiles models a powerful approach for annotating gene 

function, assembling a hierarchical map in which genes are grouped according to functional 

modules corresponding to pathways and complexes, biological processes, and cellular 

compartments [13](Fig. 1B). The global yeast GI network can be expanded to include 

additional layers of complexity, such as genetic suppression [14], trigenic interactions [15], 

and condition-specific GIs [16] (Fig. 1C). Similar mapping efforts, albeit less 

comprehensive, have been undertaken in multicellular eukaryotic model organisms, 

including cells derived from the fruit fly Drosophila melanogaster, whole-organism screens 

in the nematode Caenorhabditis elegans and the zebrafish Danio rerio.

Coherent sets of negative GIs often occur between genes in two pathways or complexes, 

which is referred to as a between pathway module (BPM) or within an essential pathway and 

complex, which is referred to as a within pathway module (WPM) [4], and these network 
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structures of the yeast GI network motivated the development of a method to infer GIs from 

human GWAS studies in breast cancer [17]. Moreover, the existence of a synthetic lethal 

interaction in yeast increases the likelihood of finding an interaction between the human 

paralogues by 3- to 19-fold [18]. Recently, GIs identified in Drosophila cells have been used 

to guide hypotheses about Wnt signaling in human cancers [19], and a zebrafish GI system 

helped to establish a role for SPRED1 in mucosal melanoma [20]. These and other studies 

affirm the power of insights derived from experiments in model systems for guiding 

insightful human pre-clinical research.

THE CRISPR REVOLUTION IN MAMMALIAN CANCER GENETIC 

INTERACTION MAPPING

Since the first reports describing use of the bacterial CRISPR-Cas phage defence system for 

ectopic genome editing, the number of applications and expansions of the CRISPR ‘tool kit’ 

has exploded [21], revolutionizing the field of functional genomics and GI mapping (see 

Table 1). In addition to CRISPR-Cas9-mediated loss-of-function genome editing, systems 

for introducing point mutations and other targeted modifications, as well as for activating 

and repressing transcription, have been developed and used to interrogate GIs. Recent 

“classical” or loss-of-function CRISPR screens have identified new SL cancer targets (Fig. 

1D) including: [1] sets of acute myeloid leukaemia-specific essential genes [22]; [2] ENL as 

a specific vulnerability in MLL-AF4-positive acute leukaemia [23]; and [3] interactions 

between RNF43 and FZD5 in pancreatic cancer [24]. In addition, a SL interaction of BAF-

complex-mutant synovial sarcomas and malignant rhabdoid tumours with a non-canonical 

SWI/SNF complex has been described [25], and RB1-null small cell lung cancer cells are 

hyper-dependent on aurora kinase [26,27] (see Box 1 for pharmacogenetic interactions). 

These genetic insights add novel clinically testable hypotheses to the catalogue of cancer SL 

interactions.

In order to interrogate reciprocal GIs between multiple genes (Fig. 1D), several 

combinatorial CRISPR-based screening platforms have been developed. For example, dual 

gRNA systems designed to enable simultaneous knock-out of two genes in the same cell 

have been used to: [1] interrogate all pairwise interactions of 73 cancer genes in multiple 

human cancer cell lines to reveal a druggable SL interaction network [28]; [2] survey 

barcoded dual gRNA combinations targeting 50 genes for their ability to inhibit proliferation 

of an ovarian cancer cell line [29] and; [3] measure pairwise interactions between ~21,000 

druggable genes to generate a large matrix of ~500,000 measurements, identifying potential 

synergistic drug combinations [30]. Although dual gRNA screens are useful, concerns with 

respect to introduction of multiple DNA double-strand breaks in conventional Cas screening, 

as well as relatively poor screening efficiency, have prompted the development of 

combinatorial screening systems using CRISPR interference (CRISPRi), where 

endonuclease-deficient Cas9 is used to target transcriptional repressors to gene promoters to 

simultaneously repress multiple target genes [31]. In one study, CRISPRi was combined 

with CRISPR activation (CRISPRa), where transcriptional activators are used instead of 

repressors, by using two different Cas9 proteins from orthologous species to investigate 

directional GIs in a chronic myeloid leukaemia cell line [32]. A similar system of orthogonal 
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CRISPR enzymes for activation and repression was used to perform GI screens between 

apoptosis genes, MAP kinases and AKT genes in multiple cancer cell lines, identifying a 

novel SL between BCL2L1 and MCL [33].

CRISPR tools have also been combined with single-cell technology for increased resolution 

and sensitivity of screens and an expanded repertoire of screenable phenotypes, such as cell 

lineage tracking using unique molecular identifiers (e.g. [34]). One recent study also used 

combinatorial CRISPR perturbations in single cells with transcriptomics as a readout [35], 

providing a useful avenue for larger scale interrogation of GIs in individual cancer cells. 

Similarly, CRISPR applications have greatly facilitated cancer mouse model generation, and 

have allowed direct in vivo screening for inhibitors of tumour growth, metastasis or 

interaction with the immune system and microenvironment, as reviewed elsewhere (e.g. 

[36]). These applications illustrate the power and versatility of CRISPR technology, but have 

not yet reached the capacity for unbiased, large-scale investigations of GIs.

TOWARDS COMPREHENSIVE GENETIC INTERACTION MAPPING IN 

HUMAN CELLS

The efficiency and ease of CRISPR technologies have catalyzed major efforts to 

systematically interrogate genetic dependencies in large panels of cancer cell lines like the 

Broad Institute’s “Cancer Dependency Map Project” (depmap.orgs) that currently contains 

screens in nearly 500 cancer cell lines. The lessons learned from RNAi applications with 

respect to quality of reagents, replication of screens, accuracy and robustness of measured 

phenotypes, as well as data analysis have been invaluable for the rapid development of 

CRISPR technologies and have led to increased awareness of potential pitfalls that are 

specific to CRISPR. For instance, multiple groups have reported that targeting amplified 

genomic regions results in gene-independent reduction of proliferation and viability, 

suggesting that an increased number of DNA double strand breaks generated by Cas9 causes 

toxicity [37–39]. However, bioinformatic algorithms can efficiently correct for these and 

other off-target effects [39,40], enabling integrated analysis of large collections of genome-

scale CRISPR loss-of-function screening data. Not only are these datasets a valuable 

resource for hypothesis-driven data mining, especially with respect to uncovering novel SL 

interactions, but they also provide the basis for the first attempts towards generating 

comprehensive co-essentiality networks in human cells. Recent studies have integrated and 

re-analyzed multiple such datasets to derive cancer GI maps based on CRISPR screen and 

mutation data [41]. Similar to the analysis of GI profiles from the global yeast GI network, 

these efforts facilitated the annotation of protein complexes [42] and inspired the proposal 

that a hierarchical GI network for human cells can be extracted from cancer co-essentiality 

data [43,44] (Fig. 1D).

While CRISPR has virtually replaced RNAi in functional genomics applications, RNAi 

technology itself has seen recent technical improvements and computational off-target 

correction methods for large datasets [45–47]. This has catalyzed further projects to map 

cancer dependency maps using RNAi within the frameworks of “Project Achilles” and 

“Project DRIVE” [45,46], whose data are being integrated into the DepMap Project. These 
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initiatives map genetic perturbations that cause a vulnerability in the form of a fitness defect 

in certain cancer cell lines, but do not directly measure GIs between defined pairs of genes. 

Nevertheless, systematic pairwise GI mapping in human cells with defined genetic 

backgrounds has been reported for a small set of cell lines [48,49] and pairwise GI mapping 

in hundreds to thousands of defined “single mutant” model cell lines is within reach (Fig. 

1D). Recently, a first blueprint of a human GI landscape was produced based on experiments 

in two cancer cell lines [50]. The authors used CRISPRi to perturb over 200,000 gene pairs 

and used the resulting GI maps to annotate uncharacterized genes by functional clustering, 

an approach that mirrors GI mapping in yeast (see above). The project also identified novel 

cancer-relevant negative GIs, demonstrating that large-scale analysis in human cells is 

feasible and likely to provide rich functional information, facilitating annotation of the 

normal human and cancer cell genomes (Fig. 1D). Ultimately, the comparison of multiple 

CRISPR and RNAi datasets, coupled with experimental and clinical validation of the 

screening results, will provide the community with a clear view of the robustness of different 

technologies for a chosen biological question or clinical application.

CONCLUSIONS AND OUTLOOK

CRISPR technologies have not only revolutionized the study of individual genes, but also 

large-scale investigations of gene essentiality and GIs, resulting in an ever-expanding 

toolbox of experimental and computational methods to find genetic vulnerabilities in cancer 

cells. Despite enormous technical progress, major challenges remain: the complexity and 

size of the human genome hampers the generation of global GI maps, benchmarks for robust 

and clinically relevant GIs remain to be developed, and the context-dependency of GIs in 

patients, tissues and cell lines represents an important hurdle for cogent mapping of genetic 

networks.

However, technology development will continue to drive innovations for human GI 

mapping, as has been the case for mapping of genetic networks in model systems. For 

example, the integration of other phenotypic readouts beyond cell proliferation holds great 

promise. Direct readouts include assays of protein-protein interactions or protein levels and 

modifications [51,52]. Quantitative data-based experimental pipelines that combine 

automated image analysis and systematic genetic perturbation have been productively used 

to explore bioprocess-specific GIs in yeast and fly [53,54] and comparable methods that 

involve optical barcoding and in situ sequencing have been recently developed for 

mammalian cells, enabling phenotypic profiling at single-cell resolution [55,56]. Single-cell 

technology will mature and allow more complex phenotyping, for instance by barcoding on 

the protein level and mass cytometry analyses [57]. A logical expansion of “deep-

mutational-scanning”-like technologies, where individual genes are mutagenized to 

saturation, to the interrogation of allele-specific GIs should prove highly informative. 

Finally, the growing CRISPR toolbox will be exploited for engineering more precise genetic 

lesions for use in GI analyses by base editing or by using engineered or orthologous Cas 

enzymes with altered or expanded target site preferences [21]. These technologies will allow 

for conditional GI screens, similar to model systems [16], time resolved or gene dosage 

screens [54,58], and multiplexing for interrogation of higher-order GIs [59]. Importantly, 
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most of the described applications are in principle also applicable to in vivo or 3D-culture 

systems such as organoids, albeit at smaller scale.

The application of diverse methods for genetic network analysis in cancer will require 

advanced strategies for data integration, which ultimately will result in improved coverage of 

gene (protein) interactions, as suggested by maps generated by combining genetic with 

protein-protein interaction and phosphoproteomics data [60,61]. The ever-growing 

repository of cancer genomics and GWAS data has sparked the development of approaches 

for data compilation and data mining or candidate prioritization [62], which will soon be 

enabled by powerful deep learning technologies to model cellular networks [63]. A global 

understanding of human genetic networks in healthy and diseased cells and tissues demands 

a systematic community effort, and will lead to new mechanistic insight into cancer, 

generate informed, clinically testable hypotheses and, ultimately better therapies.
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Box 1: Pharmacogenetic interactions

In addition to mapping gene-gene interactions, CRISPR genome editing has been used to 

dissect gene-drug or pharmacogenetic interactions. Pharmacogenetic interactions can 

mimic genetic interactions, but genetic interactions and networks can also be used as a 

template for interpreting drug-gene interactions, facilitating target identification 

(diagrammed below). Challenges include altered phenotypes relative to genetic 

perturbation due to drug off-target effects and inherent differences between 

pharmacologic inhibition and genetic ablation of a gene/protein of interest. Nonetheless, 

the identification or confirmation of a genetic interaction using a drug facilitates 

validation of a pharmacological target for pre-clinical investigations. If the drug 

displaying the desirable interaction is already in clinical development or approved, the 

subsequent development process will be accelerated considerably. Recently published 

pharmacogenetic screens include classic synthetic lethality screens [27] but also efforts 

using dual-gRNA systems to investigate potential drug synergies or resistance 

mechanisms [30,32]. On a larger scale, pharmacogenetic screens in hundreds of cancer 

cell lines are being performed within the framework of ongoing consortium projects 

listed below. These initiatives aim to produce a comprehensive view of pharmacogenetic 

interactions in cancer and may be expanded to organoid or in vivo systems.

Pharmacogenomic Screening Consortia:

• Genomics of Drug Sensitivity in Cancer (GDSC) –www.cancerrxgene.org

• The Connectivity Map (CMAP) –www.broadinstitute.org/connectivity-map-

cmap

• The Genentech Cell Line Screening Initiative (gCSI) – [11]

• The Cancer Therapeutics Response Portal (CTRP) – 

portals.broadinstitute.org/ctrp

• The Cancer Cell Line Encyclopedia (CCLE) - portals.broadinstitute.org/ccle

• The Cancer-Drug eXplorer (cDx) - cancerdrugexplorer.org
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Figure 1: Genetic interaction mapping.
(A) Schematic illustration of genetic interactions as measured by single mutant and double 

mutant fitness. Negative genetic interactions result in lower double mutant fitness than 

expected (synthetic sick, synthetic lethal), positive genetic interactions in greater fitness than 

expected (masking or suppressive). (B) Global pairwise genetic interaction network in yeast 

reveals functional clustering of genes with similar genetic interaction profiles and allows 

annotation of uncharacterized genes. (C) Expansion of the yeast functional genomics 

landscape by conditional and trigenic interactions. (D) CRISPR-mediated genetic interaction 

screens in mammalian cells. Top, gRNA representation in a cell line harbouring a cancer 

mutation is compared to a wild type cell line to identify synthetic lethal or suppressive 

interactions. Second, a limited number of defined mutants are generated in an isogenic cell 

line background and subjected to genome-scale CRISPR screening. Clustering by genetic 

interaction profile similarity reveals functional information. Third, instead of isogenic 

mutants, patient-derived cancer cell lines are used. In addition to CRISPR screening, 

genomic profiling is required to infer the “single mutant state” in those cell lines. Bottom, 
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Direct assessment of pairwise genetic interactions between a limited set of genes by 

simultaneous delivery of two gRNAs into the same cell.
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Table 1:
Technologies for genetic interaction mapping in mammalian cells.

Overview of current and emerging technologies with potential to aid in genetic interaction mapping in 

mammalian cells. Corresponding references can be found in main text.

Technology Description Application Type Variations

References 
(mentioned 

in main 
text)

CRISPR 
mutagenesis 
(CRISPRm) or 
cutting 
(CRISPRc)

genome editing through 
Cas enzyme-induced 
double-strand breaks and 
endogenous repair; 
targeting by gRNA

pooled and arrayed loss-
of-function experiments; 
genome-scale screens; 
single-well mechanistic 
experiments

genomic (coding 
sequence)

compatible with multi-
targeting approaches; 
homologous-
recombination-
mediated knock-in; 
various natural and 
engineered Cas 
enzymes with different 
properties

CRISPR 
interference 
(CRISPRi)

transcriptional repression 
by Cas fusion proteins for 
targeting and repression

pooled and arrayed loss-
of-function experiments; 
genome-scale screens; 
single-well mechanistic 
experiments

transcriptional 
(promoter region)

compatible with multi-
targeting approaches

CRISPR 
activation 
(CRISPRa)

transcriptional activation 
by Cas fusion proteins for 
targeting and repression

pooled and arrayed gain-
of-function experiments; 
genome-scale screens; 
single-well mechanistic 
experiments

transcriptional
(promoter region)

compatible with multi-
targeting approaches

CRISPR base 
editing

mutagenesis of individual 
bases through 
modification (e.g. 
deamination) by Cas 
fusion proteins

arrayed and single-well 
experiments; forward-
genetic screens

genomic
(coding 
sequence)

multiple Cas and 
deaminase versions for 
editing different bases; 
CRISPR-STOP for 
engineering stop 
codons

epigenetic 
editing

alteration of chromatin 
states by Cas fusion 
proteins with chromatin 
modifying enzymes

arrayed (possibly also 
pooled) experiments; 
single-well mechanistic 
experiments

epigenomic, 
transcriptional

multiple modifiers and 
combinations possible

combinatorial 
CRISPR

induction of multiple 
perturbations in the same 
cell by multiple gRNAs

pooled and arrayed 
genetic interaction 
experiments; genome-
scale screens; single-well 
mechanistic experiments

genomic or 
transcriptional

combinations of 
CRISPR, CRISPRi and 
CRISPRa; orthologous 
promoters or Cas 
enzymes

Perturb-Seq, 
CROP-Seq

CRISPR-mediated 
induction of perturbation 
coupled to single-cell 
RNA sequencing

pooled loss- or gain-of-
function experiments

genomic (single 
cell)

different 
methodologies; 
compatible with 
different CRISPR 
systems

mutational 
scanning

high-density CRISPR-
based mutagenesis

pooled loss- or gain-of-
function experiments for 
single genes

genomic (coding 
sequence)

different mutagenesis 
methods possible

unique 
molecular 
identifiers

single-cell barcoding 
(combined with CRISPR-
mediated perturbations)

pooled and arrayed loss- 
or gain-of-function 
experiments; genome-
scale screens; single-well 
mechanistic experiments; 
lineage tracking

genomic (single 
cell)

compatible with various 
CRISPR systems

optical barcoding
imaging-based readouts 
coupled to barcoding and 
in situ sequencing

pooled and arrayed 
phenotypic experiments; 
genome-scale screens; 
single-well mechanistic 
experiments

genomic (single 
cell)

multiple phenotypes 
and various technical 
options conceivable
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Technology Description Application Type Variations

References 
(mentioned 

in main 
text)

protein 
barcoding (e.g. 
CITE-seq)

integration of protein-tags 
as barcodes, measured by 
antibody-mediated 
CyTOF technology

pooled and arrayed 
phenotypic experiments; 
genome-scale screens; 
single-well mechanistic 
experiments

genomic/
proteomic (single 
cell)

multiple phenotypes 
possible
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