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Goal congruency dominates reward value in
accounting for behavioral and neural correlates
of value-based decision-making
Romy Frömer 1*, Carolyn K. Dean Wolf1 & Amitai Shenhav1*

When choosing between options, whether menu items or career paths, we can evaluate how

rewarding each one will be, or how congruent it is with our current choice goal (e.g., to point

out the best option or the worst one.). Past decision-making research interpreted findings

through the former lens, but in these experiments the most rewarding option was always

most congruent with the task goal (choosing the best option). It is therefore unclear to what

extent expected reward vs. goal congruency can account for choice value findings.

To deconfound these two variables, we performed three behavioral studies and an fMRI study

in which the task goal varied between identifying the best vs. the worst option. Contrary to

prevailing accounts, we find that goal congruency dominates choice behavior and neural

activity. We separately identify dissociable signals of expected reward. Our findings call for a

reinterpretation of previous research on value-based choice.
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Reward is central to the behavior of humans and animals
alike1. We repeat rewarded behavior and strive to select
actions that maximize reward2,3. Reward therefore serves

dual roles, as an end unto itself and as a guide towards a parti-
cular goal. The significance of this distinction has often been
overlooked.

A large body of research has examined how we evaluate the
expected reward for an object or a course of action, including how
this reward value is shaped by feature integration4,5, context6,7,
and motivational state8. When people choose between multiple
options with varying reward, these studies have demonstrated
consistent behavioral and neural correlates of those reward
values. People make faster decisions when the option they choose
is much more rewarding than the option(s) they forego9,10, and
when the overall (i.e., average) reward associated with those
choice options is high11–14. These behavioral findings are paral-
leled by increasing relative and overall value related activity in
regions of a well-characterized value network15,16, that includes
regions of ventral striatum and ventromedial prefrontal cortex.
These behavioral and neural indices have thus been taken to
reflect variability in how rewarding one’s options are3. However,
this interpretation has overlooked a confound common to almost
all such experiments, between an option’s promise of reward and
its ability to support a person’s task goal.

Specifically, participants in studies of value-based decision-
making are typically instructed to choose the item they prefer
most9,17–21 or dislike least21–25. As a result, the option that is
most rewarding or least aversive also represents the option that is
most congruent with the participant’s choice goal. The relative
reward value of a choice set (how much more rewarding the
chosen option is than the alternatives) is therefore identical to the
relative goal value of those options (how much more goal-
congruent the chosen option is than the alternatives). Having
more rewarding options in one’s choice set (higher overall reward
value) also necessarily means having more options that are con-
gruent with one’s goal (higher overall goal value). It is thus
unclear whether behavioral findings previously attributed to
reward value, such as the choice speeding effect of having options
that are overall more rewarding, can instead be accounted for by
the goal congruency of these reward values. It is similarly
unknown to what extent putative neural correlates of relative and
overall reward value instead reflect relative and overall goal
congruency. The present studies aim to address these open
questions.

There are several a priori reasons to favor a strictly reward-
based interpretation of past research on choice value. First,
research on Pavlovian conditioning shows that animals have an
innate drive to approach rewards and avoid punishments, such
that they are faster to approach a reward than to avoid it26,27.
Second in an operant task (e.g., lever-pressing), the vigor (and
therefore speed) with which an animal responds scales with the
average rate of reward in their environment28–30. Third, there is
ample evidence that a network of brain regions – the value net-
work – processes both anticipated and experienced reward15,31.
For instance, it has been shown that activity in this network
correlates with the reward value assigned to individual items32–35

and sets of items10,16,21,36, and that reward-related activity asso-
ciated with those items can be used to predict one’s choice
between multiple such options31,37,38. As a result, value network
activity is generally assumed to encode a form of reward value,
one that is multifaceted (varying, e.g., with one’s motivational
state8 and context7,39–41) but should remain directionally con-
sistent across choice goals. That is, an item with high reward
value should be encoded similarly by this network whether an
individual is asked to indicate that they like that item or that they
do not dislike that item42,43. However, previous research on

choice-related behavior and neural activity have failed to dis-
sociate reward-centered accounts of these findings from accounts
that are centered on the congruency of those rewards with one’s
current goal.

Research on recognition memory provides an excellent exam-
ple of how goal congruency confounds can engender mis-
interpretations of a set of findings. Studies of frequency
discrimination required participants to indicate which of a pair of
items had been presented more frequently during an earlier study
phase44,45. Participants responded faster when both options were
high frequency items than when both were low frequency items,
suggesting that response speed was correlated with the overall
frequency of the choice set. However, this effect reversed when
participants were instructed to choose the less frequent item;
under these instructions, participants were instead faster to
respond when the overall frequency was low. Thus, by manip-
ulating choice instructions, this study dissociated item frequency
from goal congruency, and showed that behavior was driven by
the latter rather than the former.

Here, we employ a similar approach, asking participants to
either choose the best (most rewarding) or the worst (least
rewarding) item in a value-based choice set, to test whether task
goals modulate the relationship reward value has with behavior
and brain activity. Across four studies, we find that a participant’s
decision speed is not accounted for by the reward value of their
options but rather the goal congruency of those options,
including how congruent those options are overall (a feature of
the choice set that is irrelevant to goal achievement). We
demonstrate that these findings can be captured by modifying an
established computational model of choice dynamics to account
for an individual’s current choice goal. We further find that the
brain’s value network tracks the relative value of a chosen item
only in terms of its goal congruency, while at the same time
tracking both the overall goal congruency and overall reward
associated with the choice set. Within striatum, correlates of
(overall) reward value and (relative) goal congruency were spa-
tially dissociated. Our findings suggest that, in common choice
paradigms, reward’s relationship to behavior and neural activity is
less direct than previously thought, calling for a reinterpretation
of previous findings in research on value-based decision-making.

Results
Task overview. Participants in two studies (Ns= 30) made a
series of hypothetical choices between sets of four consumer
goods (Fig. 1a). Choice sets were tailored to each participant,
based on how rewarding they had rated each item individually
earlier in the session, and these sets varied in their overall reward
value (how rewarding the items are on average) and in the
similarity of option values to one another (Supplementary Fig. 4).
Participants in Study 2 performed this choice task while under-
going fMRI.

Goal congruency drives overall value effects on choice speed.
Previous studies have consistently shown that participants are
faster to select their most preferred item out of a set as the overall
reward value of their options increases11–14. These findings can
be explained by accounts that posit a direct relationship between
potential rewards and choice speed (e.g., Pavlovian accounts) or
they could be explained by the fact that reward value was always
congruent with one’s task goal in these studies (to choose the
most rewarding item). To test these competing accounts, we
explicitly varied this goal while participants made choices
between sets of options. For half of the trials, we instructed
participants to choose their most preferred from each choice set
(i.e., the item with the highest reward value; Choose Best task). In
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this task (the standard one used in research on value-based
choice), there is a positive relationship between reward value and
goal congruency (which we will also refer to as goal value) – the
more rewarding an item, the more congruent it is with the task
goal. For the other half of trials, we reversed this instruction,
asking participants to instead choose their least preferred from a
given set (i.e., the item with the lowest reward value; Choose
Worst task). Unlike the Choose Best task, for the Choose Worst
task there was a negative relationship between reward value and
goal congruency (i.e., the least rewarding items were now the
most congruent with the task goal).

If choices are sped up by the overall reward value of a choice
set (as inferred by previous research), this should be true
irrespective of whether participants were performing the Choose
Best or Choose Worst task (Fig. 1b, top). If these previous

findings instead reflect variability in choice speed with goal
congruency, then RTs should decrease with overall reward value
in the Choose Best condition but increase with overall reward
value in the Choose Worst condition (Fig. 1b, bottom).

Across both studies, we found strong evidence for a goal
congruency account of choice behavior. As an initial test, we ran
linear mixed effects models separately on Choose-Best and
Choose-Worst trials. Consistent with previous studies which
instructed participants to choose the best item in a set11–14, we
found that RTs decreased with overall reward value for our
Choose-Best task (Study 1: b=−0.33, p < 0.001, Study 2: b=
−0.39, p < 0.001). However, for the Choose-Worst task, we found
that this relationship flipped – RTs instead increased rather than
decreased with overall value (Study 1: b= 0.42, p < 0.001, Study 2:
b= 0.38, p < 0.001). Across all trials, RTs therefore demonstrated
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Fig. 1 Overall value effects on RT are driven by goal congruency rather than reward value. a After evaluating each item in isolation (left), participants saw
sets of four options and (in separate blocks) were instructed to choose either the best or the worst option (right). The same example is shown for both
blocks but each choice sets was only viewed once in a session. b Top: A reward-based account predicts that RTs should decrease with overall value of the
set, irrespective of the choice goal. Bottom: A goal congruency account predicts that RTs should decrease with overall value in Choose-Best blocks but
instead increase with overall value in Choose-Worst Blocks. c Both Study 1 (behavioral) and Study 2 (fMRI) find the task-specific RT reversal predicted by a
goal congruency account (see also Supplementary Study 1, Supplementary Discussion). Shaded error bars show 95% confidence intervals. d Our empirical
findings were captured by an LCA model that took goal values (rather than reward values) as inputs
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an interaction between choice goal and overall reward value, as
predicted by a goal congruency account (Fig. 1c; Table 1, top;
Study 1: b=−0.75, t=−12.66, p < 0.001, Study 2: b=−0.76,
t=−14.39, p < 0.001). Once accounting for this interaction, we
did not find residual main effects of overall value across the two
tasks (Study 1: t= 1.61, p= 0.108; Study 2: t=−0.24, p= 0.809),
nor did we find a main effect of choice goal (Study 1: t=−1.94,
p= 0.062; Study 2: t=−0.01, p= 0.736). In other words, RTs
varied with the overall reward value inversely and symmetrically
between the two tasks, but choices were not overall faster for one
task or another.

This pattern of findings is qualitatively consistent with the
prediction that overall reward value influences choice RT as a
function of its goal congruency rather than its association with
potential rewards. In order to test this interpretation directly, we
constructed an additional overall value variable that encoded the
overall goal congruency of one’s options (overall goal value).
Overall goal value increases with overall reward value in the
Choose-Best condition and decreases with overall reward value in
the Choose-Worst condition. We compared separate linear mixed
effects models predicting choice RT by overall reward value alone
(Model 1), overall reward value in interaction with task condition
(Model 2), or overall goal value alone (Model 3). We found
that Models 2 and 3 substantially outperformed Model 1
(Table 2). Accordingly, when including overall goal value and
overall reward value in the same regression, we find a significant
effect only for overall goal value (Study 1: b=−0.37, p < .001;
Study 2: b=−0.38, p < 0.001) and not for overall reward value
(Study 1: b= 0.05, p= 0.108; Study 2: b=−0.01, p= 0.809;
Table 1, bottom).

This effect of overall value on choice RT is independent of the
effect of value difference, i.e., the absolute difference between the
goal value (highest item value for Choose-Best and lowest item
value for Choose-Worst) and the average value of the remaining

items. As in previous studies, we find that easier choices (those
with higher value differences) are faster (Table 1), an effect that
we control for in all of our analyses.

Across both studies, analyzing choices as a function of value
difference, overall value, task and their interactions, we find that
value difference also predicts the consistency (cf. accuracy) of
choices – as value difference increased, participants were more
likely to choose the item that achieved their current choice goal
(the highest-value item in Choose-Best, the lowest-value item in
Choose-Worst; Study 1: b= 3.76, z= 13.12, p < 0.001, Study 2:
b= 3.65, z= 13.40, p < 0.001). The influence of value difference
on choice accuracy did not differ between the two choice goals
(Study 1: b= 0.58, z= 1.01, p= 0.311, Study 2: b= 0.53, z= 0.98,
p= 0.326). Unlike value difference, the overall value of a set did
not significantly predict choice consistency for either task (Study
1: b= 0.33, z= 1.08, p= .280, Study 2: b= 0.49, z= 1.70, p=
0.090).
The behavioral findings we observe across Studies 1 and 2 raise

two potential concerns that we addressed in follow-up studies.
First, it could be the case that the novel findings we observed in
the Choose-Worst condition benefited from participants having
the (traditional) Choose-Best condition as a within-session
reference point. While the counter-balancing of these tasks
mitigates this possibility, to rule it out we performed a follow-up
study in which participants only performed the Choose-Worst
task (Supplementary Study 1), and replicated the overall value
findings we observed for this condition in Study 1 (Supplemen-
tary Discussion 1). Second, it is possible that the dominance of
the goal value over the reward value model observed in Studies
1–2 reflected the hypotheticality of the choices in these studies,
re-directing attention towards the goal and away from potential
rewards. While this would not straightforwardly account for
overall value effects observed in previous studies involving
hypothetical choice36, we sought to rule this possibility out as

Table 1 Comparison of overall reward vs overall goal value effects on log RT

Predictors Study 1 Study 2

Estimate CI t df p Estimate CI t df p

OVreward by Choice Goal
(Intercept) 1.42 1.36–1.49 41.93 31 <0.001 1.52 1.44–1.59 38.93 31 <0.001
Value Difference −0.49 −0.55–−0.43 −16.48 3430 <0.001 −0.43 −0.52–−0.34 −9.18 31 <0.001
Overall Value 0.05 −0.01–0.11 1.61 3448 0.108 −0.01 −0.06–0.05 −0.24 4222 0.809
Best - Worst Condition −0.07 −0.14–0.00 −1.90 31 0.066 −0.01 −0.09–0.06 −0.33 31 0.740
Overall Value: Best - Worst −0.75 −0.86–−0.63 −12.66 3296 <0.001 −0.76 −0.86–−0.65 −14.39 3914 <0.001

OVgoal+OVreward

(Intercept) 1.42 1.36–1.49 41.97 31 <0.001 1.52 1.44–1.59 38.93 31 <0.001
Value Difference −0.49 −0.55–−0.43 −16.48 3430 <0.001 −0.43 −0.52–−0.34 −9.18 31 <0.001
Overall Goal Value −0.37 −0.43–−0.32 −12.66 3296 <0.001 −0.38 −0.43–−0.33 −14.39 3914 <0.001
Overall Reward Value 0.05 −0.01–0.11 1.61 3448 0.108 −0.01 −0.06–0.05 −0.24 4222 0.809
Best - Worst Condition −0.08 −0.15–−0.01 −2.21 31 0.035 −0.03 −0.11–0.04 −0.85 31 0.402

Significant effects are highlighted in bold.

Table 2 Model comparison for OVreward and OVgoal effects on RT across studies

Model Study 1 Study 2

R2 AIC dAIC X2 p R2 AIC dAIC X2 p

Model 0 (baseline): VD+Cb-w 0.22 4112 0.19 4396
Model 1: baseline+OVreward 0.22 4112 0 2.72 0.099 0.19 4398 2 0.04 0.847
Model 2: baseline+ Cb-w: OVreward 0.26 3956 −156 157.68 <0.001 0.25 4197 −202 203.31 <.001
Model 3: baseline+OVgoal 0.26 3957 1 2.59 0.108 0.25 4195 −2 0.06 0.809

For each study, models are compared sequentially, and dAIC is the difference in AIC of each model to the previous model. VD Value Difference, OV overall value, significant effects are highlighted in bold
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well by performing a follow-up study in which choices were
incentivized rather than hypothetical, with participants receiving
one of the products from the study based on their indication that
it was the most or least preferred item in a set (Supplementary
Study 2; see Supplementary Methods). This study replicated the
findings observed across Studies 1–2 (Supplementary Discus-
sion 2); critically, RTs were still not influenced by overall reward
value (p= .838) and continued to be best accounted for by the
goal value models (dAICs=−18 to −16).

Goal value LCA explains behavioral effects of overall value.
Previous research has shown that the dynamics of value-based
decision-making can be captured by models of accumulating
evidence to bound9,10,46,47. This work has demonstrated that a
subset of such models can capture the speeding effects of both
overall reward value and value difference on choice RTs. For
instance, these effects emerge naturally from a model in which
option values accumulate additively and compete with one
another (the leaky competing accumulator [LCA] model48).
However, previous implementations of this and related models of
value-based decision-making have assumed that activity in the
model is driven by the reward value of one’s options, and
therefore predict that overall value will only ever result in
speeding of choice RTs. Accordingly, when we simulate such a
model we find that it replicates behavior on our Choose-Best task
(consistent with past work) but not our Choose-Worst task
(Supplementary Fig. 1).

To account for our findings, we developed a modified LCA
model. Rather than accumulating evidence of potential rewards,
this model accumulates evidence in favor of one’s task goal (i.e.,
goal value). According to this model, higher reward associated
with a given option would constitute strong evidence in favor of
one’s goal during the Choose-Best task but weak evidence in favor
of one’s goal in the Choose-Worst task. Choice behavior
simulated by this model qualitatively replicates all of our key
findings across Studies 1 and 2: (1) the effect of overall reward
value on choice RTs reverses between Choose-Best trials
(speeding) and Choose-Worst trials (slowing) (Fig. 1d); (2)
overall goal value has a consistent speeding effect, and is sufficient
to account for RTs across both tasks (Supplementary Fig. 2); (3)

value difference has a consistent speeding effect across the two
tasks (Supplementary Fig. 3); and (4) overall choice RTs are
similar across the two tasks (Supplementary Fig. 3).

Value network differentially tracks reward & goal congruency.
Previous work has identified a network of brain regions – pri-
marily comprising ventromedial prefrontal cortex (vmPFC) and
ventral striatum – that tracks both the overall reward value
of a choice set and the relative reward value of the chosen item
(the signed difference between the reward associated with the
chosen vs. unchosen items)15,31,35,36. However, because these
findings are based entirely on tasks that require participants to
choose the best option, it is unclear whether neural activity is
determined by the reward value of those items (as implied by past
studies) or by the goal congruency of those reward values. To
disentangle these two possibilities, we had participants in Study 2
perform our Choose-Best and Choose-Worst tasks while under-
going fMRI. The fact that reward and goal congruency were
orthogonalized by design (Supplementary Fig. 4) allowed us to
compare the degree to which activity in a previously defined
valuation network15 was associated with overall and relative
(chosen minus unchosen reward value vs. chosen minus uncho-
sen goal value) reward values and goal values.

To test the hypotheses that the value network tracks reward
value (GLM-1) or goal congruency (GLM-2), we performed
separate regressions correlating single-trial BOLD activity in this
network with either relative and overall reward value (GLM-1) or
relative and overall goal value variables (GLM-2). We found that
the goal value model (GLM-2) provided a significantly better fit to
neural activity (X2= 5.67, p < 2e-16; Table 3), with significant
effects of both overall (b= 0.16, t= 2.45, p= .014) and relative
goal value (b= 0.23, t= 3.50, p < .001). Both goal value variables
continue to be significant when including reward-related
variables in the same model (GLM-3; Table 4; Fig. 2). Interest-
ingly, in addition to tracking overall and relative goal value, the
value network also tracked overall reward value (b= 0.21, t=
3.17, p= .001; Table 4). In other words, this network tracked
overall and relative value of a choice set in terms of their goal
congruence, while also tracking the overall reward associated with
those options (irrespective of the choice goal). None of our GLMs

Table 3 Model comparison for reward and goal value – related BOLD activity in the valuation network ROI

Model R2 AIC BIC dAIC Chi2 p

Cb-w+ RT (baseline) 0.062 11976 12040
GLM-1: baseline+ RVreward+OVreward 0.066 11969 12045 −7 11 0.004
GLM-2: baseline+ RVgoal+OVgoal 0.065 11963 12040 −6 5.68 <0.001
baseline+ RVgoal+OVgoal+OVreward 0.069 11955 12038 −8 10.2 0.001
GLM-3: baseline+ RVgoal+OVgoal+ RVreward+OVreward 0.069 11957 12046 2 0.2 0.657

RV Relative Value, OV=Overall Value, significant effects are highlighted in bold

Table 4 Fixed effects summary GLM-3: Reward and goal values

Predictors Estimates CI t df p

(Intercept) 0.00 −0.08–0.08 0.01 31.00 0.992
Best - Worst Condition −0.01 −0.10–0.09 −0.13 42.00 0.896
Overall Reward Value 0.21 0.08–0.34 3.15 3844.00 0.002
Relative Reward Value −0.03 −0.16–0.10 −0.44 4225.00 0.657
Overall Goal Value 0.16 0.03–0.29 2.44 1632.00 0.015
Relative Goal Value 0.22 0.09–0.36 3.37 4173.00 0.001
RT 0.02 −0.08–0.12 0.37 32.00 0.715

Significant effects are highlighted in bold
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revealed a significant correlation between BOLD activity and
relative reward value (i.e., chosen vs. unchosen reward).

This general pattern held across the two constituent regions of
the valuation network (ventral striatum and vmPFC, Supple-
mentary Fig. 5, Supplementary Table 3), as well as posterior
cingulate cortex (PCC, Supplementary Fig. 6, Supplementary
Table 4), a region that often coactivates with the valuation
network. The only discernible difference between these regions
was that vStr and PCC appeared to be more weakly associated
with overall goal value than vmPFC was.

Reward vs. goal congruency spatially dissociated in striatum.
Since we failed to observe relative reward value signals in our a
priori ROI, we performed a follow-up whole-brain analysis
(mirroring GLM-3) to test whether a subset of this network, or
regions outside of it, track this variable. We did not find such
correlates, even at a liberal threshold (voxelwise uncorrected p <
0.01, k ≥ 10 voxels). However, our whole-brain analysis did reveal
an unexpected functional dissociation within the striatum, with
more dorsal regions primarily tracking overall reward value and
more ventral regions primarily tracking relative goal value
(Fig. 3a). To test this dorsal-ventral dissociation directly, we
defined ROIs for three sub-regions along a dorsal-ventral axis
previously shown to seed distinct resting-state networks Fig. 3b49.
We found a significant interaction between value variables and
striatal sub-regions (F(4, 25560)= 2.81, p= 0.024), such that
sensitivity to overall reward value was greatest in the dorsalmost
sub-region (dorsal caudate; b=−0.21, t=−2.10, p= 0.036)
whereas sensitivity to relative goal value was greatest in the
ventralmost sub-region (inferior ventral striatum; b= 0.24, t=
2.19, p= 0.029, Fig. 3c, Supplementary Table 5).

Unlike in striatum, an additional exploratory test of analogous
differences across subregions in vmPFC (rostral ACC vs. medial
orbitofrontal cortex36) did not reveal significant interactions of
any of our variables with subregion (Supplementary Table 6),
though trends were observed differentiating rACC’s tracking of
overall reward value and from mOFC’s tracking of overall and
relative goal value (Supplementary Table 7).

Common correlates of overall reward value and set appraisal.
We have previously shown that the overall reward value of an
option set predicts how attractive a participant will appraise that
set to be (set liking), and that these liking ratings correlate with
value network activity14,36. Set liking correlated with activity in
these regions irrespective of whether participants were instructed
to appraise the set on a given trial, suggesting that these appraisals
are triggered relatively automatically32,36,50. Unlike previous
work, our current studies were able to distinguish whether set
liking was driven by overall reward value or overall goal value,
and to compare the neural correlates of set liking with the neural
correlates of both types of overall and relative value. Across both
studies, we found that set liking correlated with overall reward
value (Study 1: b= 6.35, z= 25.44, p < 0.001, Study 2: b= 4.87,
z= 20.74, p < .001) and not overall goal value (Study 1: b=
−0.07, z=−0.53, p= 0.599, Study 2: b= 0.09, z= 0.68, p=
0.497). Consistent with previous findings, in Study 2 we found
that activity in the value network was correlated with set liking
(b= 0.16, t= 2.22, p= 0.027). While set liking correlates did not
differ significantly across regions of striatum (F(2, 12295)= 0.72,
p= 0.485), it is notable that the qualitative pattern of responses
(numerically higher in the more dorsal regions) most closely
matched the pattern we observed for overall reward value (Sup-
plementary Fig. 7). Together these findings provide tentative but
convergent evidence that overall reward value signals may be
related to a process of automatic appraisal.

Discussion
In spite of the heterogeneity of approaches in research on value-
based decision-making, a consistent set of findings has emerged
with respect to the behavioral and neural correlates of choice
values. However, up to this point it has been unknown whether
these correlates reflect the reward value of those options (i.e., how
much reward one can expect for obtaining a given option) or
their goal congruency (i.e., to what degree does a given option
support one’s current choice goal). To disentangle these accounts
of behavioral and neural data, we had participants make value-
based choices under two different choice goals, either to choose
the most rewarding or least rewarding option. We found that
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choice RTs and neural activity in value-related regions were
accounted for by overall and relative goal value (increasing with
the congruency of option values with the current choice goal). We
additionally identified neural (but not behavioral) signatures of
overall reward value. Together, these results provide a cognitive,
rather than reward-centered explanation of hallmark findings in
value-based decision-making, and call for a significant reinter-
pretation of past research.

Previous studies on value-based decision-making have con-
sistently found that participants make faster decisions as the
overall reward value of their options increases11–14,51. It has been
natural to assume that these speeding effects are related to the
rewarding properties of these choice options, particularly given
that approach is known to be facilitated by reward and impeded
by punishment26,27 and response vigor is known to increase in
high reward rate environments28–30. However, these studies
confounded reward value and goal congruency, concealing an
alternative, cognitive explanation of these findings, that speeding
effects of overall value reflect increased activation of responses
specific to one’s goal10,45,48,52. Our findings support the latter
account, demonstrating that a choice set’s overall reward value
speeds choices only when the participant’s goal is to choose the
most rewarding item, and that it has the opposite effect when the
goal is to choose the least rewarding item.

Our neural findings serve to similarly qualify reward-based
accounts of neural data. Previous neuroimaging research has
linked activity in a common set of brain regions to the relative
and overall reward value of a choice set. On their face, those
findings could be interpreted as reflecting a directionally con-
sistent coding of potential rewards31,37,42, such that (a) one’s
preference for a given item could be read out from activity in
these regions and (b) the preferences coded in these regions could
feed directly into a choice between the choice options (reflected in
relative value signals). On such an account, relative value signals
should always reflect whether the chosen option is generally more
or less preferred than the unchosen option(s), and overall value
should always reflect how much those options are generally
preferred. This form of directionally consistent coding scheme is

intuitive and can be seen as evolutionarily adaptive because it
enables an organism to rapidly determine which options are most
approach-worthy. Critically, this value code is also sufficient to
perform our tasks – providing participants just as much infor-
mation about the least preferred items as it does the most pre-
ferred – obviating the need for any additional, recoded value
signals53. We found neural signals that are inconsistent with this
coding scheme, but instead tracked options’ goal congruency.
These overall and relative goal congruency signals would not be
predicted by a reward coding account but, together with our
behavioral and modeling results, are consistent with an alternate
account whereby activity in these valuation networks reflects the
accumulation of goal-relevant information leading up to a
choice10,13, including information about potential rewards and
their relationship to one’s current task goal54.

In addition to these neural signatures of goal congruency, we
also observed neural signals that tracked the overall value of a
choice set in a goal-independent (i.e., directionally consistent)
manner. That is, the value network also tracks how much reward
can be expected from the choice set, across both Choose-Best and
Choose-Worst tasks. Notably, unlike our goal-dependent signals,
these goal-independent overall value signals were not accom-
panied by goal-independent relative value signals (i.e., chosen
minus unchosen reward), as would be expected if this circuit was
comparing items according to their reward value. It may therefore
be parsimonious to interpret these overall reward signals as
reflecting an appraisal process that occurs in parallel with the
choice process14,36, cf. 55, or preceding it56; rather than reflecting
a component of the decision-making process36. With that said,
we emphasize that these inferences pertain specifically to BOLD
signals within vmPFC and ventral striatum, and that it is entirely
possible that other coding schemes would be found at the single-
unit level within these or other regions.

There is another potential explanation for the overall reward
value and relative goal value signals we found juxtaposed in the
value network, which focuses on the affective qualities these
variables share36. Specifically, we and others have shown that
overall reward value predicts how positively a person will feel
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about a set of items14,36 and that the value network tracks such
affective appraisals whether or not they are task-relevant32,36.
Similarly, relative goal value is a proxy for confidence in one’s
decision, as well as for the ease or fluency of a task. Both of these
engender positive affect57–60 and both have been linked with
activity in the value network36,61–65. This shared association with
affect offers a salient (but non mutually exclusive) alternative to
accounts of value network findings that focus on decision-making
and other cognitive processes. However, further research on this
circuit is necessary to tease apart affective and cognitive con-
tributions to neural activity.

Within striatum, we found a surprising anatomical dissocia-
tion, whereby dorsomedial vs. ventral regions were differentially
associated with overall reward value and relative goal value. This
dissociation was most strongly driven by an effect of overall
reward value within dorsal caudate that was absent for relative
goal value (whereas both variables were associated, to different
degrees, with activity in ventral striatum). While not predicted,
we speculate that this pattern may reflect the differential rela-
tionship of the two variables with affective and motivational
states. Specifically, overall reward value is not only associated with
affective appraisal (as noted above), but can also serve to motivate
approach behavior. Accordingly, previous findings have linked
dorsomedial striatum with action valuation66–68 and motiva-
tion69–71. It is also noteworthy that in spite of their relatively close
spatial proximity, these ROIs fall within separate networks with
distinct patterns of resting-state functional connectivity – the
ventralmost region is associated with the limbic network and the
dorsalmost region is associated with the frontoparietal control
network49,72,73. Therefore, an alternative account of this dorsal
caudate finding is that overall reward value, being a task-
irrelevant variable (cf. distractor), may elicit frontoparietal
activity because of the increase in control demands. This inter-
pretation is consistent with a similar dissociation recently
observed by Fischer and colleagues74. They had participants
perform a learning task and found that ventral striatum tracked
short-term rewards whereas dorsal striatum generally tracked
long term rewards, which had to be inferred from the task
environment74. However, they found that dorsal striatum also
tracked short-term rewards and the extent to which it did so
predicted better learning of long-term rewards, which these
authors interpreted as reflecting increased control that was trig-
gered by this region’s encoding of salient information (short-term
reward) that was irrelevant to the task of inferring long-term
reward. In spite of this converging evidence, we emphasize that
the interpretations of our striatal findings are post hoc and
therefore should be taken with caution. Nevertheless, they suggest
avenues for further inquiry that could shed light on this intri-
guing finding.

Our findings have important implications for future research
on value-based decision-making within healthy and clinical
populations. We show that traditional approaches to studying
such decisions conflate two types of variables: those that are
specific to rewards per se and those that are related to how
consistent rewards are with choice goals. We prescribe a method
for pulling these two types of signals apart, and show that doing
so reveals distinct behavioral and neural patterns. This method
could, for instance, be employed to identify mechanisms that are
shared (e.g., goal-related) and distinct (e.g., outcome-related)
when choosing among appetitive options vs. aversive options25,75.

In addition to informing basic research into distinct processes
supporting value based choice (reward processing vs. goal-driven
behavior), our work carries important implications for research
on clinical populations that exhibit aberrant reward
processing70,71,76–78 or impairments in translating rewards into
goal-driven behavior79. For instance, to the extent these

individuals exhibit impulsive behaviors linked to reward rather
than goal values, we provide an approach for uniquely identifying
this variable of interest and honing in on the relevant deficits. By
decoupling these two processes, future research can identify the
best approaches for treating the relevant deficits, or at least rule
out the worst ones.

Method
Participants. Participants were recruited from Brown University and the general
community. For Study 1, 37 participants were recruited. Of these, seven were
excluded, one due to previous participation in a similar experiment, three due to
incomplete sessions, and three due to insufficient variance in product evaluation,
precluding the generation of sufficient choice sets. Thus, 30 participants (76.7%
female, Mage= 20.3, SDage= 2.1) were included in our analyses. For Study 2, 31
participants were recruited and one was excluded due to an incomplete session.
Thus, 30 participants (56.67% female, Mage= 21.87, SDage= 4.40) were included in
our analyses. Participants in all studies gave informed consent in accordance with
the policies of the Brown University Institutional Review Board.

Procedure. The experiment was computerized using Matlab’s Psychophysics
Toolbox80,81. Participants first evaluated a series of products according to how
much they would like to have each one. Items were presented individually, and
participants used a mouse to indicate their evaluation of that item along a visual
analog scale, anchored at 0 (“not at all”) and 10 (“a great deal”). Participants were
encouraged to use the entire range of the scale and reserve 0 and 10 for extreme
values. Based on these subjective evaluations choice sets were created, such that half
of the choices primarily varied in relative value (RV; e.g., best vs. average of the
remaining items), while the other half primarily varied in overall set value (OV;
average value of items in a set). Additional details regarding distribution of items
and process of choice set construction can be found in82. Participants then viewed
sets of four products and were instructed either to choose the item they most
preferred Choose-Best condition; cf14,36,82. or to choose the item they least pre-
ferred (Choose-Worst condition). The different choice goals (Choose-Best vs.
Choose-Worst) were performed in separate blocks, and the order of the two blocks
was counterbalanced across participants. Stimuli remained on the screen until a
choice was made. In Study 1, participants performed a total of 120 choices, 60 for
each condition. They indicated their choice with a mouse click. There were no
response deadline in the initial rating or choice. The general procedure in Study 2
was identical to that in Study 1 except that (1) choices were performed in the
scanner; (2) they completed 144 choices (72 for each choice goal); (3) the interval
between choices was varied across trials (2–7s, uniformly distributed); and (4)
choices were made with a button press rather than with a mouse. Participants
responded with the index and middle fingers of their left hand and right hand,
using an MR-safe response keypad. Response keys were mapped to locations on the
screen (upper left, lower left, upper right and lower right). Participants practiced
the response mappings prior to the choice phase by pressing the button corre-
sponding to a given cued location until they gave the correct response on 15
consecutive trials.

fMRI data acquisition and analysis. Imaging Parameters: Scans were acquired on
a Siemens 3T PRISMA scanner with a 64-channel phase-arrayed head coil, using
the following gradient-echo planar imaging (EPI) sequence parameters: repetition
time (TR)= 2500 ms; echo time (TE)= 30 ms; flip angle (FA)= 90°; 3 mm voxels;
no gap between slices; field of view (FOV): 192 × 192; interleaved acquisition;
39 slices. To reduce signal dropout in regions of interest, we used a rotated slice
prescription (30° relative to AC/PC). The slice prescription encompassed all ventral
cortical structures but in a few participants omitted regions of dorsal posterior
parietal cortex. Structural data were collected with T1-weighted multi-echo mag-
netization prepared rapid acquisition gradient echo image (MEMPRAGE)
sequences using the following parameters: TR= 2530 ms; TE= 1.69 ms; FA= 7°;
1.0 mm isotropic voxels; FOV= 256 × 256. Head motion was restricted with a
pillow and padding. Stimuli were generated using Matlab’s Psychophysics Toolbox
(Matlab 2013a) presented on a 24″ BOLDscreen flat-panel display device (Cam-
bridge Research Systems) and were viewed through a mirror mounted on the
head coil.

fMRI Analysis: fMRI data were processed using SPM12 (Wellcome Department
of Imaging Neuroscience, Institute of Neurology, London, UK). Raw volumes were
realigned within participants, resampled to 2 mm isotropic voxels, non-linearly
transformed to align with a canonical T2 template and spatially smoothed with a 6
mm full-width at half-max (FWHM) Gaussian kernel.

Trial-wise ROI analyses: Preprocessed data were submitted to linear mixed-
effects analyses using a two-step procedure. In the first step, we computed first-
level general linear models (GLM) in SPM to generate BOLD signal change
estimates for each trial and participant. GLMs modeled stick functions at the onset
of each trial. Trials were concatenated across the two task blocks and additional
regressors were included to model within-block means and linear trends. GLMs
were estimated using a reweighted least squares approach RobustWLS Toolbox;83

to minimize the influence of outlier time-points (e.g., due to motion). The obtained
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estimates were transformed with the hyperbolic arcsine function (to achieve
normality), and then analyzed using LMMs using lme484 in R85.

Of primary interest in the present study is activation in the valuation network,
which was obtained using the conjunction mask from Bartra, et al.15. These results
were followed up with separate masks for the vmPFC and vStr clusters within this
ROI. PCC activity was extracted from an ROI identified in a previous study14.

To test for gradients within vStr, we constructed spheres (r= 4 mm) around
seeds in three regions along the caudate’s dorsal-ventral axis most strongly
associated with the frontoparietal control network (left hemi coordinates: −12, 10,
8), the default mode network (−8, 10, 1), and the limbic network, respectively
(−10, 11, −9)49. For the gradient analysis of these spheres, the data were best fit
modeling linear as well as quadratic effects for region. ROIs for rACC and mOFC
to test for differences within vmPFC were selected anatomically, analogous to a
previous study36.

Whole-brain analyses: We complemented the ROI analyses with whole-brain
GLMs. For these analyses, we computed first-level GLMs, modeling stick function
at stimulus onsets, and parametric regressors for (1) choice goal, (2) reward-related
OV, (3) goal-related OV, (4) reward-related chosen vs. unchosen value and (5)
goal-related chosen vs. unchosen value. Regressors were de-orthogonalized to let
them compete for variance. As above, trials were concatenated across the two task
blocks, additional regressors were included to model within-block means and linear
trends, and GLMs were estimated using RobustWLS. Second level random effects
analyses on first-level estimates were performed using SPM with voxel-wise
thresholds of p < 0.001 and cluster-corrected thresholds of p < 0.05. Results were
visualized using XJview (http://www.alivelearn.net/xjview).

Analysis: Scripts for all analyses are available under https://github.com/
froemero/goal-congruency-dominates-reward. Data were analyzed using lme4
package84 for R version 3.4.385. RTs were analyzed with linear mixed effects models
(LMMs) and choices were analyzed with generalized linear mixed effects models
(GLMMs) with a binomial link function. When degrees of freedom are provided,
these are Kenward Roger approximated and underlie corresponding p-values (both
implemented in the sjplotpackage for R). Else, we used the lmerTest package to
obtain p-values based on Satterthwaite approximation of degrees of freedom.
Choice consistency was determined based on whether participants chose the item
with the highest value in Choose-Best, and conversely the lowest value in Choose-
Worst. Analyses of choice consistency tested the probability of choosing the option
that best satisfies the current choice goal (lowest-valued item for Choose-Best,
highest-valued item for Choose-Worst); these analyses exclude trials for which
multiple options equally satisfy these instructions (i.e., when multiple options share
the lowest or highest value). Response times were log-transformed to reduce skew.
Value difference and overall value were mean-centered and rescaled to a range
from zero to one prior to analysis. Choice condition (Choose-Best vs. Choose-
Worst) was included as a factor to test for main effects of choice goal and
interactions between goal and choice values. We used a sliding difference contrast
that estimates the difference in means between subsequent factor levels with the
intercept (baseline value) being estimated as the mean across both conditions.
Random effects were specified as supported by the data, according to singular value
decomposition86,87.

Computational model: To directly compare reward-based and goal-based
accounts of our findings, we simulated data using two versions of a leaky
competing accumulator model LCA;48. In an LCA model, evidence for each
potential response (in our case, each of four choice options) accumulates noisily
over time based on its respective input (IOption). As the evidence for each response
accumulates, it competes with the evidence accumulated for each of the other
responses, according to a mutual inhibition term (w). Over time, accumulated
evidence decays according to a leak (or forgetting) term (k). A decision is made
once activation of one of the options reaches a decision boundary (z), and the time
at which this threshold is crossed is recorded as the decision time. This decision
time is combined with a fixed non-decision time (reflecting stimulus processing
and response execution; t0) to generate the response time for a given model
simulation. Unlike the standard drift diffusion model, the LCA has additive
properties that produce RTs that vary with both the relative and overall value of its
inputs48.

We compared two versions of the LCA model to see which could better account
for our findings. One version used reward values as inputs as in previous studies88;
while a second, modified form of this model used goal values as inputs. In the
Choose Best condition, goal values are identical to reward values. For the Choose
Worst condition goal values were computed by recoding reward values, such that
lower reward values had higher goal value and vice versa. Both models otherwise
used identical parameters, which we determined by performing gradient descent
(using fmincon) to maximize the likelihood of Study 1 data (choices and RTs) given
model predictions, collapsing across participants. We generated trial-wise
predictions by simulating the LCA’s accumulation-to-bound process 1000 times for
each unique choice set in the experiment. The best-fit model parameters were as
follows: z= 2.243, s(noise coefficient)= 0.587, k= 0.153, w= 0.671, t0= 0.849 s
(log likelihood=−12883.128). The goal value model simulations reported in the
main text use these parameter values but all of the relevant qualitative predictions
of these models are robust to variation in these parameters. We did not perform
additional model fits or simulations for an analogous reward value-based LCA
model because it is necessarily unable to incorporate information about the
different choice goals and will hence inevitably always choose the best option

regardless of the task. Model simulation and parameter estimation were performed
using custom Matlab (2017b) scripts.

Visualization: Figures displaying projected values and confidence intervals of
response times were generated using effects and ggplot2 packages based on the
relevant LMMs. For viewing purposes, centered and scaled predictor variables are
rescaled to their original values prior to plotting.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study are available from the
corresponding author on reasonable request.

Code availability
Scripts for all analyses are available under https://github.com/froemero/goal-congruency-
dominates-reward.
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