
Luo et al. BMC Bioinformatics (2019) 20:539
https://doi.org/10.1186/s12859-019-3114-9

METHODOLOGY ARTICLE Open Access

SLR: a scaffolding algorithm based on
long reads and contig classification
Junwei Luo1*, Mengna Lyu1, Ranran Chen1, Xiaohong Zhang1, Huimin Luo2 and Chaokun Yan2

Abstract

Background: Scaffolding is an important step in genome assembly that orders and orients the contigs produced by
assemblers. However, repetitive regions in contigs usually prevent scaffolding from producing accurate results. How
to solve the problem of repetitive regions has received a great deal of attention. In the past few years, long reads
sequenced by third-generation sequencing technologies (Pacific Biosciences and Oxford Nanopore) have been
demonstrated to be useful for sequencing repetitive regions in genomes. Although some stand-alone scaffolding
algorithms based on long reads have been presented, scaffolding still requires a new strategy to take full advantage of
the characteristics of long reads.

Results: Here, we present a new scaffolding algorithm based on long reads and contig classification (SLR). Through
the alignment information of long reads and contigs, SLR classifies the contigs into unique contigs and ambiguous
contigs for addressing the problem of repetitive regions. Next, SLR uses only unique contigs to produce draft
scaffolds. Then, SLR inserts the ambiguous contigs into the draft scaffolds and produces the final scaffolds. We
compare SLR to three popular scaffolding tools by using long read datasets sequenced with Pacific Biosciences and
Oxford Nanopore technologies. The experimental results show that SLR can produce better results in terms of
accuracy and completeness. The open-source code of SLR is available at https://github.com/luojunwei/SLR.

Conclusion: In this paper, we describes SLR, which is designed to scaffold contigs using long reads. We conclude
that SLR can improve the completeness of genome assembly.

Keywords: Scaffolding, Genome assembly, Sequence analysis, Pacific biosciences, Oxford Nanopore

Background
With the increasing availability of third-generation
sequencing technologies, which include Single-Molecule
Real-Time (SMRT) technology from Pacific Biosciences
and Nanopore-based technology from Oxford Nanopore,
many biological applications have been greatly improved.
Compared with second-generation sequencing technolo-
gies, third-generation sequencing technologies produce
longer reads with a higher sequencing error rate [1]. In
the field of de novo genome assembly, a large number
of assembly tools based on third-generation sequenc-
ing technologies have been presented to resolve the
most prominent problem: repetitive regions. However,
producing a complete and accurate assembly is still a

*Correspondence: luojunwei@hpu.edu.cn
1College of Computer Science and Technology, Henan Polytechnic University,
454000 Jiaozuo, China
Full list of author information is available at the end of the article

challenging task. Scaffolding is an important step in the
pipeline of genome assembly, and aims to orient and
order contigs [2, 3]. Scaffolding generates scaffolds con-
sisting of sequence fragments including oriented and
ordered contigs. The gap between two adjacent contigs
in a scaffold is filled with ’N’ characters. Scaffolding can
significantly increase the continuity of assembly results
and benefit downstream analyses such as those of gene
order, comparative or functional genomics and patterns of
recombination [4].
According to the kind of reads used for scaffolding,

existing scaffolding tools generally fall into the following
three categories:
(i) Using paired reads for scaffolding. The insert size

of paired reads can reach a few thousands bases, so this
technique can partially resolve the problem of repeti-
tive regions. Such scaffolding tools, such as OPERA [5],
SSPACE [6], BESST [7], ScaffMatch [8], SCARPA [9],

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3114-9&domain=pdf
mailto: luojunwei@hpu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Luo et al. BMC Bioinformatics (2019) 20:539 Page 2 of 11

ScaffoldScaffolder [10], and BOSS [11], usually use greedy
heuristic algorithms to generate scaffolds based on a scaf-
fold graph, in which a vertex denotes a contig and an edge
represents the existence of paired reads that can be sepa-
rately aligned to the two corresponding contigs. However,
because the length of reads from second-generation tech-
nologies is commonly only a few hundred bases, the reads
can usually be aligned with two or more positions in the
contigs. Moreover, the region between the paired reads is
unknown, and there are sequencing errors in the reads.
Some spurious edges are usually introduced into a scaffold
graph, which complicates the scaffolding task. Obtaining
more accurate and contiguous scaffolding results based on
paired reads is a difficult task.
(ii) Using long reads for scaffolding. This kind of scaf-

folding tool usually aligns the long reads against contigs
first and then finds contigs that can be aligned with the
same long read. Then, these tools use the local align-
ment result to infer the global order and orientation of
contigs. For instance, SSPACE-LongRead [12] first aligns
whole long reads with contigs using the alignment tool
BLASR [13]. Next, contig pairs and multi-contig linkage
information are obtained and used to order and orient the
contigs and generate scaffolds. LINKS [14] does not align
the whole long reads to the contigs; it first extracts the
k-mer pairs in an interval from long reads. Afterwards,
these k-mer pairs are aligned to the contigs, and the align-
ment results are used to link the contigs. Finally, LINKS
selects a neighbour of a contig as its correct neighbour
based on the number of links. SMSC [15] first aligns the
long reads to the contigs using either Nucmer [16] or
BLASR and then constructs a breakpoint graph in which
a vertex is a contig and an edge is added to indicate a
long read bridging two vertices. It transforms the scaf-
folding problem to a maximum alternating path coverage
problem in the breakpoint graph and resolves this prob-
lem using a 2-approximation algorithm. RAILS [17] scaf-
folds contigs with long reads using the scaffolding engine
originally developed for SSAKE [18] and LINKS. Based
on the sequencing coverage of each contig, npScarf [19]
classifies contigs into unique contigs and repetitive con-
tigs. npScarf first bridges the unique contigs and generates
scaffolds based on a greedy strategy and then fills the
gaps by repetitive contigs. However, most contig sets used
for scaffolding do not include information on sequencing
coverage, which limits the application of npScarf.
(iii) Using optical mapping data or Hi-C data for scaf-

folding. Optical mapping data can serve as a unique
"fingerprint" or "barcode" for genome sequences. By com-
paring optical mapping data with a restriction enzyme
map of the contigs, the order and orientation of contigs
can be inferred. Supernova [20], Architect [21], ARCS [22]
and fragScaff [23] attempt to find pairs of contigs based
on linked reads. The problem with using optical mapping

data is that a barcode used to locate contigs may have
many different alignment positions, which usually causes
contradictions between contigs. Hi-C data are commonly
sequenced by paired-end sequencing. The paired reads
come from the interacting fragments between genomic
loci that are nearby in three-dimensional space but may
be separated by many nucleotides in the linear genome.
Scaffolding using Hi-C data is the most challenging
method, as the genomic distance between a given Hi-C-
based read pair is highly variable and may span a few
kilobases to megabases without any direct indication of
the true distance [1].
Although some scaffolding tools based on long reads

have made great progress, two primary issues still require
more attention. (i) Scaffold graph construction: In a scaf-
fold graph, each vertex refers to a contig, and an edge is
created between two vertices if the two contigs can be
aligned with the same long read. Due to the repetitive
regions in contigs and the high sequencing error rate of
long reads, the scaffold graph usually becomes very com-
plicated, which has negative effects on the later scaffolding
steps. Hence, simplifying the scaffold graph is a significant
goal for scaffolding. (ii) Edge weighting: In the scaffold
graph, most current methods prefer to weight each edge
by the number of long reads that can be aligned with two
vertices simultaneously. However, the length of the align-
ment between a long read and a contig can reflect the
confidence level of the alignment, which is usually ignored
by existing methods.
When a long read links the two flanking regions of a

repetitive region, the problem of the repetitive region can
be resolved because the order and orientation of the two
flanking regions can be obtained directly. Moreover, a
repetitive region can usually be aligned with more than
one long read, and their 5’-end (or 3’-end) neighbour
regions are not the same. After aligning the long reads
against the contigs, we can identify whether contigs are
repetitive based on their aligniment positions in the long
reads. When constructing a scaffold graph, it is difficult
to avoid spurious edges introduced by repetitive contigs
and sequencing errors. We can identify spurious edges by
detecting orientation and position contradictions in the
scaffold graph [10, 11]. Using only non-repetitive con-
tigs to construct a scaffold graph not only simplifies the
complexity of the scaffold graph but also improves the
accuracy of spurious edge detection.
In this paper, we present a scaffolding algorithm based

on long reads and contig classification (SLR), which uti-
lizes two new strategies to address the two issues above.
For issue (i), SLR classifies the contigs into unique contigs
and ambiguous contigs. SLR utilizes the unique contigs to
construct a scaffold graph, which can decrease the com-
plexity of the scaffold graph and simplify the following
scaffolding steps. For issue (ii), SLR uses the alignment

Luo et al. BMC Bioinformatics (2019) 20:539 Page 3 of 11

length to weight each edge in the scaffold graph. More-
over, SLR employs linear programming to detect and
remove the contradictions in the scaffold graph, which
guarantees that the scaffold graph includes only simple
paths.
Based on these two new strategies, SLR determines the

orientations and orders of the contigs. In experiments,
SLR is compared with three popular scaffolding tools by
scaffolding five long-read datasets with Pacific Biosciences
and Oxford Nanopore technologies. The experimental
results show that SLR produces better results in terms of
accuracy and completion for most datasets.

Results
To evaluate the performance of SLR, we compared SLR
with three popular scaffolding tools based on long reads,
namely, SSPACE-LongRead (SSPACE-LR), LINKS and
npScarf.

Datasets andmetrics
Contig and long-read datasets for Escherichia coli
(E. coli), Saccharomyces cerevisiae W303 (S. cerevisiae),
and Human chromosome X (Chr X) were utilized as
input for all tools. E. coli and S. cerevisiae include
two different long-read datasets sequenced with Pacific
Biosciences and Oxford Nanopore technologies and con-
sist of two different contig sets assembled by different
assemblers. The long reads for Chr X are from Pacific
Biosciences. The details of the long-read datasets are
shown in Table 1. The contig sets, which were evaluated by
QUAST [24], are shown in Table 2. Then, these contig sets
and long-read sets form nine datasets, shown in Table 3,
were used for scaffolding, and each dataset included one
contig set and one long-read set. We named the nine
datasets as E. coli_1_SMRT, E. coli_2_SMRT, S. cere-
visiae_1_SMRT, S. cerevisiae_2_SMRT, Chr X_1_SMRT,
E. coli_1_ONT, E. coli_2_ONT, S. cerevisiae_1_ONT, and
S. cerevisiae_2_ONT.
QUAST aligns the contigs (or scaffolds) to the reference

genome and obtains some metrics. NG50 is the length of
the longest contig (or scaffold) such that all the contigs
(or scaffolds) of that length or longer cover at least half
of the reference genome. N50 is the length of the longest
contig (or scaffold) such that all the contigs (or scaffolds)

of that length or longer cover at least half of the length
of all contigs (or scaffolds). Misassemblies (Errors) is
the number of positions (breakpoints) in the contigs
or scaffolds in which errors (Translocation, Inversion,
Relocation) occur. NGA50 is the NG50 of contigs or scaf-
folds after they have been broken at every breakpoint.
Genome Fraction is the percentage of aligned bases in
the reference genome. Usually, Misassemblies can repre-
sent the accuracy of the scaffolding result, and NGA50
and NA50 can reflect the completion and continuity of
the scaffolding result. In the experiments below, we used
QUAST to evaluate the scaffolding results for SSPACE-
LR, LINKS, npScarf and SLR.

Evaluations on nine datasets
The long-read sets about first five datasets are obtained
by SMRT technology. And, the long-read sets about last
four datasets are obtained by Nanopore technology. All
the scaffolding tools were run on these nine datasets, and
detailed evaluation results from QUAST are shown in
Additional file 1: Tables S1 and S2. Because NGA50 and
Misassemblies are two important metrics for evaluating
scaffolding tools, we show NGA50 vs Misassemblies in
Fig. 1. The best scaffolding result can found in the top-left
corner of each figure. Except in Fig. 1(b) and Fig. 1(i), SLR
is in the top-left corner throughout Fig. 1, which indicates
that SLR has lower Misassemblies and a higher NGA50.
Although npScarf performs better in Fig. 1(b) and Fig. 1(i),
the performance of SLR is close to it.

Running time and peak memory
Due to the high error rate in long reads, aligning long
reads with contigs usually takes a long time. LINKS selects
k-mer pairs from the long reads to link the contigs, which
avoids long read alignment. However, LINKS requires
more memory to store the k-mer pairs. As shown in
Table 4, we find that LINKS consumes less time and more
memory. SLR and npScarf have similar time consump-
tion, because both use BWA-MEM [25] to align long
reads against contigs. In all experiments, npScarf allo-
cates a large memory despite the size of the dataset. When
extracting alignment information from the BAM file, SLR
keeps the alignment of one long read in memory and pro-
duces a local scaffold that is saved on the hard disk. After

Table 1 Details of long-read datasets

E. coli S. cerevisiae Chr X

Genome size(Mbp) 4.6 12.1 155.2

Sequencing technology SMRT Nanopore SMRT Nanopore SMRT

Read N50(bp) 5,189 8,484 6,794 8,608 11,030

Number of reads 81,737 20,750 594,243 410,344 1,135,220

Name E. coli_SMRT E. coli_ONT S. cerevisiae_SMRT S. cerevisiae_ONT Chr X_SMRT

Luo et al. BMC Bioinformatics (2019) 20:539 Page 4 of 11

Table 2 Details of contig sets

Contig set Count Errors Genome Mismatches Indels Largest NA50 NGA50

Fraction(%) alignment

E. coli_1 182 2 99.363 1.32 0.37 315,628 106,208 106,208

E. coli_2 167 7 99.351 2.28 0.11 360,084 164,044 164,044

S. cerevisiae_1 3179 35 96.688 79.03 8.42 233,103 47,994 52,239

S. cerevisiae_2 6953 53 96.687 85.54 8.76 250,180 49,258 54,160

Chr X_1 8623 41 97.037 2.40 1.28 793,618 76,506 71,372

The contig set about E. coli_1 and S. cerevisiae_1 are provided by [29], the contig set about E. coli_2 and S. cerevisiae_2 are provided by [30], and the contig set about Chr X_1
are provided by [31]

processing one long read, SLR processes the next long
read, which can reduce the memory requirement. Com-
pared with other tools, SSPACE-LR and SLR require less
memory for scaffolding.

Effectiveness of contig classification
To verify the effectiveness of the contig classification
method presented in this paper, we removed the step of
contig classification from SLR and this new algorithm was
named SLR1. Then, we benchmarked SLR with SLR1 on
all datasets. The scaffolding results for SLR and SLR1 are
shown in Table 3. We can see that SLR performs better
than SLR1 in terms of Misassemblies and NGA50. There-
fore, we can prove that our proposed contig classification
method is effective.
Next, we combined the contig classification method

with other scaffolding tools. SLR classified each contig
set into a unique contig set and an ambiguous contig
set. We first ran SSPACE-LR and LINKS on the unique
contig set, generating some scaffolds. Then, we inserted
the ambiguous contigs into the scaffolds. For this pur-
pose, we should determine the order and orientation
of the unique contigs in these scaffolds. BWA-MEM is
used to align the unique contigs against these scaffolds.

Only if a unique contig is completely aligned in a scaf-
fold, the corresponding alignment is retained. Then, we
can obtain the order and orientation of the unique con-
tigs in these scaffolds. The final scaffolding results is
shown in Fig. 2. SSPACE-LR-CC represents the method
based on SSPACE-LR combined with contig classifica-
tion. LINKS-CC represents the method based on LINKS
combined with contig classification. According to Fig. 2,
we find that SSPACE-LR-CC and LINKS-CC outper-
formed SSPACE-LR and LINKS in NGA50. This fur-
ther confirms the effectiveness of the method of contig
classification.
Compared with SLR, SSPACE-LR-CC outperformed

SLR in NGA50 for E. coli_2_SMRT and Chr X_1_SMRT.
For the remaining seven datasets, SLR performed better
than SSPACE-LR-CC in NGA50. SLR performed better
than LINKS-CC in NGA50 for all datasets. Meanwhile,
SLR outperformed SSPACE-LR-CC and LINKS-CC in
Misassemblies for all datasets.
The detailed evaluation results are provided in Addi-

tional file 1. Note that, because npScarf makes sequence
consensus between contigs and long reads, it is difficult to
identify the order of the unique contigs in the scaffolds.
We did not use npScarf in the this experiment.

Table 3 Datasets used for scaffolding and evaluations for SLR and SLR1

Dataset Genome Contig set Long read set Misassemblies NGA50

SLR SLR1 SLR SLR1

E. coli_1_SMRT E. coli E. coli_1 E. coli_SMRT 4 12 723,879 295,999

E. coli_2_SMRT E. coli E. coli_2 E. coli_SMRT 10 11 565,864 197,175

S. cerevisiae_1_SMRT S. cerevisiae S. cerevisiae_1 S. cerevisiae_SMRT 52 57 374,744 232,712

S. cerevisiae_2_SMRT S. cerevisiae S. cerevisiae_2 S. cerevisiae_SMRT 71 67 270,402 201,922

Chr X_1_SMRT Chr X Chr X_1 Chr X_SMRT 83 82 2,390,483 2,165,615

E. coli_1_ONT E. coli E. coli_1 E. coli_ONT 4 8 2,927,247 674,408

E. coli_2_ONT E. coli E. coli_2 E. coli_ONT 9 14 733,062 361,345

S. cerevisiae_1_ONT S. cerevisiae S. cerevisiae_1 S. cerevisiae_ONT 46 66 374,835 244,417

S. cerevisiae_2_ONT S. cerevisiae S. cerevisiae_2 S. cerevisiae_ONT 68 85 270,362 201,066

Each dataset includes one contig set and one long-read set, and corresponds to one genome.

Luo et al. BMC Bioinformatics (2019) 20:539 Page 5 of 11

Fig. 1 Nine figures plotting NGA50 vs Misassemblies. The results of
SLR usually can be found in the top-left corner, which can illustrate
the advantage of SLR

Evaluation using a repeat-aware evaluation framework
We also used a repeat-aware evaluation framework [26] to
evaluate the performance of SSPACE-LR, LINKS, npScarf
and SLR. For each original contig set, by aligning con-
tigs with the reference genome, this framework splits
contigs in misassembly events, and extracts repetitive
sub-contig from original contigs. Then, it outputs a new
contig set. The framework records the number of cor-
rect links, which is the number of correct contig joins.
After a scaffolding tool runs on this new contig set and
a long-read set, the framework computes the number
of correctly predicted links. Therefore, we can com-
pute precision, recall and F1-score for the scaffolding
results. For the contig set about Chr X, the framework
ran for more than one week and gave no new contig
set. Hence, we processed only the remaining original
contig sets. So, there are eight new datasets used for
this experiment, which are named E. coli_1_SMRT_R,
E. coli_2_SMRT_R, S. cerevisiae_1_SMRT_R, S. cere-
visiae_2_SMRT_R, E. coli_1_ONT_R, E. coli_2_ONT_R,
S. cerevisiae_1_ONT_R, and S. cerevisiae_2_ONT_R. The
detailed evaluation results provided by the framework are
shown in Additional file 1: Tables S9 and S10.
In addition, for these new datasets, we also evaluated the

scaffolding results by QUAST, which are shown in Fig. 3.
According to Fig. 3, SLR achieved the best NGA50 values

for all the datasets. This experiment shows that SLR can
identify repetitive contigs and overcome the problem of
repeating regions.

Discussion
npScarf utilizes sequencing coverage to classify contigs.
However, most contigs used for scaffolding do not include
information about sequencing coverage, which limits the
application of npScarf. SLR can classify contigs without
any additional information about the contig set. SSPACE-
LR uses a greedy heuristic strategy to determine the
neighbour of a contig based on the number of long reads
that can be aligned. LINKS uses a strategy similar to that
of SSPACE-LR to determine the neighbours by counting
the number of k-mer pairs between two contigs. These
two tools have difficulty identifying the correct neigh-
bours when encountering complex repetitive regions.

Conclusion
With the development of third-generation high-
throughput sequencing technologies, scaffoldingmethods
based on long reads have undergone substantial improve-
ment. A scaffold graph is the basis for inferring the orders
and orientations of contigs. However, the problems
introduced by repetitive regions and sequencing errors
pose challenges in the process of constructing scaffold
graphs. In this paper, we presented a novel scaffolder,
SLR, for determining the orientations and orders of
contigs based on long reads and contig classification.
SLR employs a new contig classification procedure to
overcome the problems associated with repetitive regions
in scaffolding. SLR first produces local scaffolds based on
the alignment between long reads and contigs. A local
scaffold corresponds to a long read and the contigs that
can be aligned with it. SLR classifies contigs into unique
and ambiguous contigs based on local scaffolds. A scaf-
fold graph including only unique contigs is constructed;
this process can simplify the scaffold graph and improve
the accuracy of detecting and removing contradictions.

Table 4 Running time and peak memory

Dataset Running time Peak memory (G)

SSPACE-LR LINKS npScarf SLR SSPACE-LR LINKS npScarf SLR

E. coli_1_SMRT 41m42s 1m42s 26m34s 26m58s 1.00 6.23 10.28 1.04

E. coli_2_SMRT 42m12s 1m42s 26m46s 28m17s 1.00 6.22 10.28 1.17

S. cerevisiae_1_SMRT 880m22s 38m26s 929m36s 907m23s 3.96 93.27 10.28 1.86

S. cerevisiae_2_SMRT 1162m28s 40m35s 1012m27s 957m59s 3.96 93.3 10.28 3.60

Chr X_1_SMRT 8413m53s 41m2s 6617m53s 7782m13s 12.56 114.2 12.82 3.98

E. coli_1_ONT 46m25s 2m22s 28m6s 26m57s 1.02 8.60 10.28 1.05

E. coli_2_ONT 47m57s 2m25s 28m17s 28m42s 1.01 8.60 10.28 1.11

S. cerevisiae_1_ONT 676m26s 41m20s 962m51s 1001m25s 3.43 117.97 10.28 1.84

S. cerevisiae_2_ONT 830m48s 40m54s 1046m16s 1051m53s 3.52 117.99 10.28 3.47

Luo et al. BMC Bioinformatics (2019) 20:539 Page 6 of 11

Fig. 2 Contig classification combines with SSPACE-LR and LINKS

Experiments were conducted that included long reads
obtained with SMRT-based and Nanopore-based tech-
nologies. The experimental results illustrated that SLR is
superior in terms of continuity and accuracy. For larger
genomes, such as the complete human genome, however,
SLR is difficult to scale due to its long run time.

Method
A contig set C and a long read set LR are used as input
data. The algorithm is composed of four steps: (i) produc-
ing local scaffolds; (ii) classifying contigs; (iii) constructing
a scaffold graph; and (iv) generating scaffolds. In the first
step, the alignment tool BWA-MEM is used to align LR
against C. For each long read and set of contigs that can
be aligned with it, SLR determines the orders and orien-
tations of the contigs and forms a local scaffold. In the
second step, SLR classifies the contigs into unique con-
tigs and ambiguous contigs based on their positions in the
local scaffolds. In the third step, SLR constructs a scaf-
fold graph based on unique contigs and then detects and
removes the contradictions in the scaffold graph. In the
fourth step, SLR extracts the simple paths from the scaf-
fold graph to yield a draft scaffold set. Next, SLR inserts
the ambiguous contigs into the draft scaffolds. The details
of each step are described below. Note that the long reads
whose lengths are longer than Lr and the contigs whose
lengthes are longer than Lc are used by SLR. Lr and Lc are
two parameters that can be defined by users. In addition,
if a contig is completely contained in other contigs, SLR
will ignore it in the following scaffolding steps.

Producing local scaffolds
SLR utilizes BWA-MEM to align LR against C, and the
SAM file is converted to a BAM file by Bamtools [27].
Due to the high sequencing error rate in long reads, the
alignment positions are usually different from the real
positions.With the followingmethod, SLR first revises the
alignment positions and obtains reliable alignments.
For an alignment between the j-th long read lrj and the

i-th contig ci, we assume that the region [srij, erij] in lrj
is aligned with the region [scij, ecij] in ci. If srij < scij, sr′ij
= 0 and sc′ij = scij - srij, else sc′ij = 0 and sr′ij = srij - scij. If
LEN(lrj)−erij > LEN(ci)−ecij, er′ij = erij+LEN(ci)−ecij
and ec′ij = LEN(ci)−1, else ec′ij = ecij +LEN(lrj)− erij and
er′ij = LEN(lrj) − 1. LEN(lrj) and LEN(ci) are the lengths
of lrj and ci respectively. [sr′ij, er′ij] and [sc′ij, ec′ij] are the real
alignment regions. An example of the revision is shown in
Fig. 4. After revision, the alignment will be reliable if the

following hold: i) The mapping quality is higher than sm (a
threshold with a default 20); ii) both the values erij − srij
and ecij−scij are greater than lm (a threshold with a default
100); iii) for each of srij, erij, scij and ecij, the difference
between its original position and its revised position is
smaller than α (a threshold with a default 150). SLR retains
only reliable alignments.
A local scaffold is composed of ordered and oriented

contigs that can be aligned with the same long read.
The i-th local scaffold lsi is represented by the vertex
sequence si1, si2, ...sim, where m is the number of contigs
in the i-th local scaffold. sij is represented by a four-tuple
(scij, scoij, scgij, sclij). scij refers to the j-th contig in lsi. scoij
denotes the alignment orientation between the contig and
the long read. scoij = 1 represents forward alignment.
scoij = 0 represents reverse alignment. scgij denotes the
gap distance between scij and sci(j+1). In particular, the gap
distance of the last vertex is zero. sclij is the alignment
length between scij and the long read. Note that if there
are two or more contigs aligned with the same end of the
long read, SLR keeps only the contig that has the greast
alignment length. An example is shown in Fig. 5.
The contig scij is in the middle position of lsi if 1 < j <

m. scij and sci(j+1) are adjacent in lsi. If scoij = 1, sci(j−1)
(j > 1) is the 5’-end neighbour contig of scij, and sci(j+1)
(j < m) is the 3’-end neighbour contig of scij. If scoij = 0,
sci(j−1) (j > 1) is the 3’-end neighbour contig of scij, and
sci(j+1) (j < m) is the 5’-end neighbour contig of scij.
In this step, SLR finally obtains a local scaffold set LS.

Due to the high sequencing error rate, a contig may not be
aligned with the long read that connects its left and right
neighbour contigs. To resolve this problem, SLR deletes
some local scaffolds. For example, the local scaffold ls1 is
(A,C), and the local scaffold ls2 is (B,C). If the sum of
LEN(B) and the gap distance between B and C in ls2 is
smaller than the gap distance between A and C in ls1 and
there exists a local scaffold (A,B,C), SLR removes ls1.

Classifying contigs
Repetitive regions are the critical problem in the process
of scaffolding. When constructing a scaffold graph, the
5’-end (or 3’-end) of a repetitive contig can usually be
linked with two or more other contigs, which complicates
the scaffold graph. Because repetitive contigs commonly
emerge in many different local scaffolds, they have two or
more distinct 5’-end (or 3’-end) neighbour contigs. When
a contig is not in the middle position of any local scaf-
fold, no long read can span the contig to link its two
neighbour contigs, and this contig is usually a long unique
contig. Although the contig has multiple 5’-end or 3’-end
neighbour contigs, SLR uses contradiction removal step
to identify its correct neighbour contigs. Hence, SLR can
identify whether a contig is unique based on its positions
in the local scaffolds.

Luo et al. BMC Bioinformatics (2019) 20:539 Page 7 of 11

Fig. 3 NGA50 for datasets produced by repeat-aware evaluation framework

Fig. 4 An example of alignment position revision. For an alignment given by the alignment tool, the region [sr11, er11] (region3) in the long read lr1
is aligned with the region [sc11, ec11] (region1) in the contig c1. Because sr11 < sc11 and LEN(lr1) − er11 > LEN(c1) − ec11, it means the region [0,
sr11] (region4) in lr1 is not aligned with c1, and the region [ec11, LEN(c1) − 1] (region2) is not aligned with lr1. However, when lr1 is truely aligned with
c1 and the alignment is reliable, region4 should be aligned with the region [sc11 − sr11, sc11] in c1, and region2 should be aligned with the region
[er11, er11 + LEN(c1) − ec11]. Because of the high sequencing error rate in long reads, the alignment tool usually does not provide accurate
alignment start and end positions. Then, SLR sets sc′11 = sc11 − sr11, sr′11 = 0, ec′11 = LEN(c1) − 1 and er′11 = er11 + LEN(c1) − ec11. When the
alignment is reliable, the region [sc′11, ec′11] in c1 is aligned with the region [sr′11, er′11] in lr1

Luo et al. BMC Bioinformatics (2019) 20:539 Page 8 of 11

Fig. 5 There are six contigs (c1, c2, c3, c4, c5, andc6) that can be aligned with the long read lr1. Because c1 and c2 are simultaneously aligned with the
left end of lr1, SLR retains only contig c1 which has the greatest alignment length, and deletes the alignment information between c2 and lr1.
Because c5 and c6 have been simultaneously aligned with the right end of lr1, we keep only c5, and delete the alignment information between c6
and lr1. Finally, SLR determines the orders and orientations of c1, c3, c4 and c5, which form a local scaffold

To reduce the negative effects of short repetitive con-
tigs, SLR considers a contig whose length is shorter than
Lca (a threshold that can be set by users) to be an ambigu-
ous contig. These short contigs are temporally ignored in
the local scaffolds. Next, the contigs longer than Lca are
classified using the following method.
SLR identifies a contig as ambiguous if the following

hold: i) The contig is in the middle position of one or more
local scaffolds and ii) the number of 5’-end (or 3’-end)
neighbour contigs of the contig is greater than one.
After all ambiguous contigs have been identified, the

remaining contigs are considered unique contigs. In this
way, the contigs are classified into unique contigs and
ambiguous contigs by SLR. An example of such contig
classification is shown in Fig. 6.

Constructing a scaffold graph
A scaffold graph G is represented by a vertex set V and
an edge set E. A vertex vi corresponds to a contig ci. An
edge eij is denoted by a five-tuple (vi, vj, oij, gij,wij). Two
vertices vi and vj are connected by eij. gij is the gap distance
between vi and vj. oij is the relative orientation of vi and
vj. There are four types of relative orientation between vi
and vj: (i) the 3’-end of vi is connected to the 5’-end of vj;
(ii) the 5’-end of vi is connected to the 3’-end of vj; (iii)
the 5’-end of vi is connected to the 5’-end of vj, and (iv)
the 3’-end of vi is connected to the 3’-end of vj. For types
(i) and (ii), vi and vj are on the same strand. For the other
two types, vi and vj are on the opposite strands. wij is the
weight of the edge, which reflects its confidence.

Neglecting the ambiguous contigs and constructing
scaffold graph G with only unique contigs will signifi-
cantly simplify G and reduce the difficulties in inferring
the orders and orientations of the unique contigs. There-
fore, all unique contigs make up the vertex set V. Below,
we describe how to create the edge set E. The superior-
ity of constructing a scaffold graph using unique contigs is
illustrated in Fig. 6.

Adding edges to the scaffold graph
First, SLR ignores the ambiguous contigs in all local scaf-
folds; therefore, some non-adjacent unique contigs may
become adjacent in one local scaffold. Assume that the
i-th local scaffold lsi (si1, si2, ...sim) in LS includes two adja-
cent unique contigs scip and scis. If one or more ambigu-
ous contigs exist between scip and scis, the gap distance
between scip and scis is re-calculated by formula (1); other-
wise, it is equal to scgip. Here, GD(scip, scis, lri) represents
the gap distance between scip and scis in lsi. Moreover, SLR
can obtain a weight value, which is the minimum value of
sclip and sclis. The weight value can be used to evaluate
the confidence level of the relation between scip and scis.
As the weight value becomes larger, the order of the two
unique contigs becomes more reliable.

GD(scip, scis, lri) =
s−1∑

j=p
scgij +

s−1∑

j=p+1
LEN(scij) (1)

We assume that scip is represented by ca and that scis
is represented by cb. For ca and cb, SLR selects all local

Luo et al. BMC Bioinformatics (2019) 20:539 Page 9 of 11

Fig. 6 (a) There are six long reads: lr1, lr2, lr3, lr4, lr5, and lr6. The contigs c1 and c2 are aligned with lr1. c3, c4 and c5 are aligned with lr2. c6, c4 and c7
are aligned with lr3. c7, c8 and c9 are aligned with lr4. c10, c11 and c12 are aligned with lr5. c9, c11, c13 and c2 are aligned with lr6. We assume that all
these alignments are forward, and all contigs are longer than Lca . (b) Based on the alignment result described in (a), SLR obtains six local scaffolds:
ls1, ls2, ls3, ls4, ls5, and ls6. (c) The scaffold graph G1 is built using all contigs. We find that G1 is complicated. (d) Based on the contig classification
method described in Section 2.2, the contigs can be divided into two categories. Because c4 is located in the middle position of ls2 and ls3 and has
two distinct 3’-end neighbours and two distinct 5’-end neighbour contigs, it is identified as an ambiguous contig. c11 is also an ambiguous contig.
The remaining contigs are identified as unique contigs. The scaffold graph G2 is built based on unique contigs and is thus less complicated than G1

scaffolds in which ca and cb are adjacent. Next, SLR deter-
mines the relative orientation of the gap distance between
and weight of ca and cb based on these local scaffolds.
For two unique contigs, the relative order and orientation
should be unique. If different values of oab are obtained
from the local scaffolds, SLR keeps only the local scaf-
fold set LSab for which the value of oab is the same, and
the number of elements in LSab is the largest. The gap
distance between ca and cb is calculated according to for-
mula (2). In addition, we can obtain a weight value for
each local scaffold in LSab. The final weight of ca and cb
(denoted wab) can be obtained by seeking the maximum
weight value obtained by the local scaffolds in LSab. Then,
SLR adds an edge eab to G.

gab =

n∑
i=1

GD(ca, cb, lsi)

n
(2)

in which n is the number of elements in LSab, and lsi ∈
LSab.
After processing all pairs of unique contigs in LS, a

draft scaffold graph G can be constructed by SLR for the
subsequent steps.

Removing contradictions
Due to sequencing errors in long reads and complex
repetitive regions, the scaffold graph G may still contain

some spurious edges. Detecting and removing the spuri-
ous edges in G can be viewed as detecting and removing
the orientation and position contradictions [10, 11]. BOSS
utilizes an iterative strategy to detect and remove contra-
dictions. BOSS first constructs a sub-graph that includes
only edges with a high weight. Next, it iteratively adds the
remaining edges to the sub-graph from high to lowweight.
Each iteration includes a sub-graph, and BOSS builds two
linear programming models [28] to solve orientation and
position contradictions in the sub-graph. SLR utilizes a
revised method based on BOSS to remove contradictions.
The difference in SLR compared to BOSS is that SLR adds
all edges to the sub-graph in the first iteration. Hence,
SLR completes contradiction removal within one itera-
tion, while BOSS requires several iterations. The methods
of building the linear programming model of BOSS and
SLR are the same, as described below.
First, SLR detects and deletes orientation contradic-

tions. For the edge eij ∈ G, if oi �= oj, SLR constructs
constraint Eq. (3). If oi = oj, SLR constructs constraint
Eq. (4).

ηij <= oi + oj <= 2 − ηij (3)

ηij − 1 <= oi − oj <= 1 − ηij (4)
in which ηij ∈ {0, 1} is a variable that represents
whether eij is spurious. 0i ∈ {0, 1} is also a variable that

Luo et al. BMC Bioinformatics (2019) 20:539 Page 10 of 11

denotes the orientation of vi. The objective function is
MAX(

∑
(wij ∗ ηij)).

Second, SLR detects and deletes position contradic-
tions. For the edge eij ∈ G, SLR constructs constraint
Eq. (5).

L(φij −1) <= pj −pi− len(ci)− gdij <= L(1−φij) (5)

in which pi is a variable that represents the assigned posi-
tion of vi. φij is a slack variable in the range [0, 1] that
reflects the consistency between gij and |pj − pi|. The
objective function is MAX(

∑
(wij ∗ φij)). For an edge, if

the gap distance computed by the assigned position is far
from the original one, the edge is deemed spurious one,
and then SLR deletes it from G.
After eliminating the orientation and position contra-

dictions, if there are two or more edges linking the same
end of a vertex, SLR keeps only the edge with the highest
weight and removes the others. Consequently, the scaffold
graph G contains only simple paths.

Generating scaffolds
Each simple path in G refers to a scaffold, and SLR selects
all simple paths and constructs a draft scaffold set. For
any two adjacent vertices in the draft scaffold, SLR scans
the local scaffold set LS again and finds local scaffolds
that contain them. If ambiguous contigs exist between
these vertices in a local scaffold, these ordered and ori-
ented ambiguous contigs correspond to a path. If there
are two or more different paths, SLR selects the one with
the greatest number of local scaffolds that support it and
then inserts it between the two vertices. Note that an
ambiguous contig may occur two or more times in the
scaffolds.
Next, SLR selects local scaffolds that contain the first

contig of a scaffold. SLR constructs a scaffold graph based
on these local scaffolds. If a simple path starts from the
first contig in the scaffold graph, it is merged with the head
of the scaffold. In the same way, SLR extends the tail of
the scaffold. Once the first t contigs of a scaffold are the
same as the last t contigs of another scaffold (t is a thresh-
old set by users), SLR will merge them together to form a
new scaffold. In the same way, SLR will reverse a scaffold
and detect whether it can be merged with other scaffolds.
Finally, SLR outputs the scaffolds as the final result.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3114-9.

Additional file 1: It includes seven sections: (i) Datasets; (ii) Command
lines; (iii) Scaffolding results about nine datasets; (iv) Different values of Lca
for scaffolding; (v) Scaffolding results about SLR1 and SLR2; (vi) SSPACE-LR
and LINKS combined with contig classification method; (vii) Scaffolding
results based on repeat-aware evaluation framework.

Abbreviations
Chr X : Human chromosome X ; E. coli: Escherichia coli; S. cerevisiae: Saccharomyces
cerevisiaeW303; SLR: Scaffolding algorithm based on Long Reads and contig
classification; SMRT: Single-Molecule Real-Time; SSPACE-LR: SSPACE-LongRead

Acknowledgements
The authors would like to thank professor Zhiheng Wang, anonymous
reviewers, and editors for their helpful comments and suggestions.

Authors’ contributions
JW participated in the design of the study and the analysis of the experimental
results. MN, XH, and RR performed the implementation. HM and CK wrote the
manuscript. All authors have read and approved the final manuscript for
publication.

Funding
This work was supported in part by the National Natural Science Foundation
of China under Grant No.61602156, No.61972134, No.61802113, No.61772557,
and No.61433012, Henan Provincial Department of Science and Technology
Research Project under Grant No.192102210118, Doctor Foundation of Henan
Polytechnic University under Grant No.B2018-36, Henan Science and
Technology Innovation Outstanding Youth Program under Grant
No.184100510009, Henan University Scientific and Technological Innovation
Team Support Program under Grant No.19IRTSTHN012. The funding bodies
did not play any role in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data andmaterials
All datasets used in this paper and command lines for all scaffolding tools are
provided in Additional file 1.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1College of Computer Science and Technology, Henan Polytechnic University,
454000 Jiaozuo, China. 2School of Computer and Information Engineering,
Henan University, 475001 Kaifeng, China.

Received: 19 December 2018 Accepted: 23 September 2019

References
1. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter:

bioinformatics of long-range sequencing and mapping. Nature Rev
Genet. 2018;19(6):329.

2. Junwei L, Jianxin W, Zhen Z, Fang-Xiang W, Min L, Yi P. Epga: de novo
assembly using the distributions of reads and insert size. Bioinformatics.
2015;31(6):825–33.

3. Luo J, Wang J, Li W, Zhang Z, Wu FX, Li M, Pan Y. Epga2:
memory-efficient de novo assembler. Bioinformatics. 2015;31(24):
3988–90.

4. Hunt M, Newbold C, Berriman M, Otto TD. A comprehensive evaluation
of assembly scaffolding tools. Genome Biol,15,3(2014-03-03). 2014;15(3):
42.

5. Gao S, Sung WK, Nagarajan N. Opera: Reconstructing optimal genomic
scaffolds with high-throughput paired-end sequences. J Comput Biol.
2011;18(11):1681–91.

6. Marten B, Christiaan V H, Hans J J, Derek B, Walter P. Scaffolding
pre-assembled contigs using sspace. Bioinformatics. 2011;27(4):578–9.

7. Sahlin K, Vezzi F, Nystedt B, Lundeberg J, Arvestad L. Besst - efficient
scaffolding of large fragmented assemblies. Bmc Bioinformatics.
2014;15(1):281.

8. Mandric I, Zelikovsky A. Scaffmatch: Scaffolding algorithm based on
maximum weight matching. Bioinformatics. 2015;31(16):2632–8.

https://doi.org/10.1186/s12859-019-3114-9

Luo et al. BMC Bioinformatics (2019) 20:539 Page 11 of 11

9. Nilgun D, Michael B. Scarpa: scaffolding reads with practical algorithms.
Bioinformatics. 2013;29(4):428–34.

10. Bodily PM, Fujimoto MS, Snell Q, Dan V, Clement MJ. Scaffoldscaffolder:
solving contig orientation via bidirected to directed graph reduction.
Bioinformatics. 2016;32(1):17.

11. Luo J, Wang J, Zhang Z, Li M, Wu FX. Boss: a novel scaffolding algorithm
based on an optimized scaffold graph. Bioinformatics. 2016;33(2):169.

12. Boetzer M, Pirovano W. Sspace-longread: scaffolding bacterial draft
genomes using long read sequence information. Bmc Bioinformatics.
2014;15(1):211–1.

13. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (blasr): application and
theory. Bmc Bioinformatics. 2012;13(1):238.

14. Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM,
Birol I. Links: Scalable, alignment-free scaffolding of draft genomes with
long reads. GigaScience,4,1(2015-08-04). 2015;4(1):1–11.

15. Zhu S, Chen DZ, Emrich SJ. Single molecule sequencing-guided
scaffolding and correction of draft assemblies. BMC genomics.
2017;18(10):879.

16. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. Versatile and open software for comparing large genomes.
Genome Biol. 2004;5(2):12.

17. Warren RL. Rails and cobbler: Scaffolding and automated finishing of draft
genomes using long dna sequences. J Open Source Softw. 2016;1(7):116.

18. René L W, Granger G S, Steven J M J, Robert A H. Assembling millions of
short dna sequences using ssake. Bioinformatics. 2007;23(4):500–1.

19. Cao MD, Nguyen SH, Ganesamoorthy D, Elliott AG, Cooper MA, Coin
LJM. Scaffolding and completing genome assemblies in real-time with
nanopore sequencing. Nature Commun. 2017;8:14515.

20. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct
determination of diploid genome sequences. Genome Res. 2017;27(5):
757–67.

21. Kuleshov V, Snyder MP, Batzoglou S. Genome assembly from synthetic
long read clouds. Bioinformatics. 2016;32(12):216–24.

22. Yeo S, Coombe L, Chu J, Warren RL, Birol I. Arcs: Scaffolding genome
drafts with linked reads. Bioinformatics. 2018;34(5):725–31.

23. Andrew A, Kitzman JO, Burton JN, Riza D, Akash K, Lena C, Mostafa R,
Sasan A, Kevin LG, Steemers FJ. In vitro, long-range sequence
information for de novo genome assembly via transposase contiguity.
Genome Res. 2014;24(12):2041–9.

24. Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–5.

25. Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. 2013. arXiv preprint arXiv:1303.3997.

26. Mandric I, Knyazev S, Zelikovsky A. Repeat aware evaluation of
scaffolding tools. Bioinformatics. 2017;34(15):2530-7.

27. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT.
Bamtools: a c++ api and toolkit for analyzing and managing bam files.
Bioinformatics. 2011;27(12):1691–2.

28. Berkelaar M, Eikland K, Notebaert P. lp_solve 5.5, open source
(mixed-integer) linear programming system. Software. May 1 2004.

29. Lee H, Gurtowski J, Yoo S, Marcus S, Mccombie WR, Schatz M. Error
correction and assembly complexity of single molecule sequencing
reads. Biorxiv. 2014:006395.

30. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC,
Mccombie WR. Oxford nanopore sequencing, hybrid error correction,
and de novo assembly of a eukaryotic genome. Genome Res. 2015;25(11):
1750.

31. Xu G-C, Xu T-J, Zhu R, Zhang Y, Li S-Q, Wang H-W, Li J-T. Lr_gapcloser:
a tiling path-based gap closer that uses long reads to complete genome
assembly. GigaScience. 2019;8(1):giy157.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Results
	Datasets and metrics
	Evaluations on nine datasets
	Running time and peak memory
	Effectiveness of contig classification
	Evaluation using a repeat-aware evaluation framework

	Discussion
	Conclusion
	Method
	Producing local scaffolds
	Classifying contigs
	Constructing a scaffold graph
	Adding edges to the scaffold graph
	Removing contradictions

	Generating scaffolds

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-019-3114-9.
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

