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Abstract

Motivation: Tumor purity (TP) is the proportion of cancer cells in a tumor sample. TP impacts on

the accurate assessment of molecular and genomics features as assayed with NGS approaches.

State-of-the-art tools mainly rely on somatic copy-number alterations (SCNA) to quantify TP and

therefore fail when a tumor genome is nearly euploid, i.e. ‘non-aberrant’ in terms of identifiable

SCNAs.

Results: We introduce a computational method, tumor purity estimation from single-nucleotide

variants (SNVs), which derives TP from the allelic fraction distribution of SNVs. On more than 7800

whole-exome sequencing data of TCGA tumor samples, it showed high concordance with a range

of TP tools (Spearman’s correlation between 0.68 and 0.82; >9 SNVs) and rescued TP estimates of

1, 194 samples (15%) pan-cancer.

Availability and implementation: TPES is available as an R package on CRAN and at https://bit

bucket.org/l0ka/tpes.git.

Contact: f.demichelis@unitn.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic and molecular analyses of tumor samples require the quan-

tification of tumor and admixed normal cells proportion [tumor

purity (TP) or cellularity] in order to assess the somatic lesion detec-

tion boundaries and to perform proper comparative analyses.

Several tools were developed to quantify TP from NGS data, includ-

ing ABSOLUTE (Carter et al., 2012), ASCAT (Van Loo et al.,

2010), Sequenza (Favero et al., 2015) and CLONET (Prandi et al.,

2014) based on somatic copy-number alterations (SCNAs);

ESTIMATE (Yoshihara et al., 2013) on transcriptomic data; LUMP

(Aran et al., 2015) and PAMES (Benelli et al., 2018) on methylation

data, and PurityEst (Su et al., 2012) on mutations. Large efforts, as

TCGA (Chalmers et al., 2017), favor the use of SCNAs-based tools

to estimate TP. These approaches fall short for samples with ‘quiet’

(‘non-aberrant’ in terms of identifiable SCNAs) genomes, a feature

of specific tumor subclasses or of entire tumor types, as thyroid

carcinoma (THCA) and kidney renal clear cell carcinoma (KIRC)

(Supplementary Fig. S1). Here we present the full implementation of

tumor purity estimation from SNVs (TPES), a novel computational

approach that allows for the estimation of DNA purity from the dis-

tribution of variant allelic fractions (VAFs) of somatic single-nucleo-

tide variants (SNVs) within copy-number neutral tumor segments.

Concordance analysis between state-of-the-art tools and TPES dem-

onstrated high concordance in terms of TP assessment, suggesting

that TPES is a reasonable alternative strategy to estimate TP in

copy-number neutral tumor genomes.

2 Materials and methods

The VAF distribution of a set of clonal monoallelic SNVs from pure

tumor samples NGS data should be centered in 0.5. Technical and

cancer specific factors may influence the observed VAF values

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4433

Bioinformatics, 35(21), 2019, 4433–4435

doi: 10.1093/bioinformatics/btz406

Advance Access Publication Date: 17 May 2019

Applications Note

https://bitbucket.org/l0ka/tpes.git
https://bitbucket.org/l0ka/tpes.git
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz406#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz406#supplementary-data
https://academic.oup.com/


(Supplementary Fig. S2), as due to the reference mapping bias

(Degner et al., 2009) (Supplementary Material) and to tumor-specif-

ic features. For instance, a SNV within a copy-number three segment

may present with three VAF values, namely 1=3, 2=3 or 1. In addition,

in case of subclonal events, the VAF is further altered. Overall,

we reasoned that clonal monoallelic SNVs within diploid segments

are suited for TP estimation, named p-SNV. Given a set

of p-SNVs, TP could in principle be computed as

observed VAFðpSNVÞ=expected VAF [Equation (1)], where

observed VAF is computed from the tumor NGS data, while

expected VAF is the value expected from a pure tumor sample

accounting for the reference mapping bias. Amenable p-SNVs need

to be selected with a conservative procedure for the TP estimates to

be reliable and the minimum number of SNVs required to determine

a purity value should be defined. To minimize the number of false

positive p-SNVs for each sample, the TPES pipeline (Supplementary

Fig. S3) introduces two main filtering steps to the whole set of

observed SNVs (Supplementary Material). In the first filtering step,

TPES (i) selects SNVs in copy-number neutral segments, by applying

a conservative filter on the log2R value of each genomic segment

(log2 of the tumor and matched normal coverage ratio), i.e. [�0.1,

0.1] (Mermel et al., 2011), (ii) accounts for aneuploidy genomes by

adjusting the log2R distribution by ploidy (TPES input parameter as

continuous real value) and (iii) selects putative heterozygous SNVs

by retaining those with a number of reads mapping the alternative

base and AF above and below defined thresholds, respectively

(defaults set to 5 and to 0.55). Furthermore, to avoid gender stratifi-

cations, chromosomes X and Y are excluded from the analysis. This

first step nominates a set of heterozygous copy-number neutral

SNVs, cnn-SNVs, such that cnn-SNVs � SNVs. In the second filter-

ing step, TPES removes putative subclonal mutations from the set

cnn-SNVs. Observed VAF distribution of cnn-SNVs is smoothed by

kernel density estimation (KDE) using a range of bandwidth values.

For each bandwidth, the first derivative of the KDE allows for the

detection of the local maxima (peaks) of the underlying distribution.

The peak with the highest VAF value is the candidate observed VAF

for Equation (1). As expected, this procedure applied to the TCGA

datasets resulted in a wide range of per sample p-SNVs across tumor

types (Supplementary Fig. S4); with uterine carcinosarcoma (UCS),

testicular germ cell tumors (TGCT), acute myeloid leukemia

(LAML) in the lower tail. To systematically evaluate the minimum

number of p-SNVs to reliably estimate TP, we compared TPES with

SCNAs-based methods. Figure 1A shows that >9 p-SNVs provide

great correlation with CLONET estimates; similar trends are

observed with ABSOLUTE and ASCAT (Supplementary Fig. S5).

3 Results

The concordance of TP calls between TPES estimates and seven

tools based on a range of genomic, molecular or morphological fea-

tures is in line with what observed among all tools on the same in-

put. Supplementary Figure S6 includes head-to-head comparisons

(data in Supplementary Tables). The results indicate that the con-

cordance between ABSOLUTE and TPES (Spearman’s correlation:

0.725, P-value < 0.001) is higher than between ABSOLUTE and

ASCAT (0.688, P-value < 0.001), two SCNA-based tools. As TPES

is meant to extend the ability of SCNA-based tools in case of quiet

genomes, we also estimated the number of private calls (provided by

only one tool) in head-to-head comparisons. On a set of 7809

TCGA samples and 30 tumor types, CLONET and TPES returned

high concordant calls (Spearman’s correlation: 0.737, P-value <

0.001) across 3067 cases (Fig. 1B), with average TP of 66% (IQR:

0.30, SD: 0.19) and of 69% (IQR: 0.27, SD: 0.19), respectively.

CLONET did not return TP calls for 2719 samples (35%); of those,

TPES recovered 1194 samples (44%). Conversely, CLONET pro-

vided TP calls for 2023 (26%) samples for which TPES did not re-

turn a value, either due to lack of CN neutral segments and/or to

insufficient number of p-SNVs. Percentages of private and shared

TP calls varied across tumor types (Supplementary Fig. S7). Data

show that TPES private estimates are enriched in samples with low

genomic burden and that CLONET is more proficient with high

genomic burden cases (Supplementary Fig. S8), overall suggesting

that TPES is complementary to SCNA-based tools (Supplementary

Figs S9 and S10). The ability to compare TPES to ABSOLUTE was

impaired by lack of published fail rate reports (Supplementary

Material and Supplementary Fig. S11). TPES is available as R pack-

age on CRAN. It is fast and low demanding in terms of computa-

tional resources (Supplementary Fig. S12) and is therefore suitable

for the rapidly emerging big data analysis requirements from deep

coverage sequencing data.
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Fig. 1. Performance on 7809 TCGA WES samples across 30 tumor types.

(A) Correlation between TPES and CLONET estimates as a function of the
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selected and Spearman’s correlation against CLONET estimates is computed;

the procedure is repeated 60 times. For each value of min_SNVs, error bars

represent the 1st to the 3rd quartile of the computed R2, while the dot repre-

sents the median value. All P-values are significant (alpha¼0.01). (B) TP call

rates of study dataset samples compared to CLONET calls. Applied filters for

purity assessment are >9 p-SNVs for TPES and >2 putative mono-allelic dele-

tion segments for CLONET
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