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Abstract

Many of the sequenced bacterial and archaeal genomes encode regions of viral provenance. Yet, not all of these regions encode

bona fide viruses. Gene transfer agents (GTAs) are thought to be former viruses that are now maintained in genomes of some

bacteria and archaea and are hypothesized to enable exchange of DNA within bacterial populations. In Alphaproteobacteria, genes

homologous to the “head–tail” gene cluster that encodes structural components of the Rhodobacter capsulatus GTA (RcGTA) are

found in many taxa, even if they are only distantly related to Rhodobacter capsulatus. Yet, in most genomes available in GenBank

RcGTA-like genes have annotations of typical viral proteins, and therefore are not easily distinguished from their viral homologs

without additional analyses. Here, we report a “support vector machine” classifier that quickly and accurately distinguishes RcGTA-

like genes from their viral homologs by capturing the differences in the amino acid composition of the encoded proteins. Our open-

source classifier is implemented in Python and can be used to scan homologs of the RcGTA genes in newly sequenced genomes. The

classifier can also be trained to identify other types of GTAs, or even to detect other elements of viral ancestry. Using the classifier

trained on a manually curated set of homologous viruses and GTAs, we detected RcGTA-like “head–tail” gene clusters in 57.5% of

the 1,423 examined alphaproteobacterial genomes. We also demonstrated that more than half of the in silico prophage predictions

are instead likely tobeGTAs, suggesting that inmanyalphaproteobacterialgenomes theRcGTA-likeelements remainunrecognized.

Key words: virus exaptation, GTA, Rhodobacter capsulatus, support vector machine, binary classification, carbon

depletion.

Introduction

Viruses that infect bacteria (phages) are extremely abundant

in biosphere (Keen 2015). Some of the phages integrate their

genomes into bacterial chromosomes as part of their infection

cycle and survival strategy. Such integrated regions, known as

prophages, are very commonly observed in sequenced

bacterial genomes. For example, Touchon et al. (2016) report

that 46% of the examined bacterial genomes contain at least

one prophage. Yet, not all of the prophage-like regions rep-

resent bona fide viral genomes (Koonin and Krupovic 2018).

One such exception is a gene transfer agent, or GTA for short

(reviewed most recently by Lang et al. [2017] and Grull et al.
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[2018]). Many of genes that encode GTAs have significant

sequence similarity to phage genes, but the produced tailed

phage-like particles generally package pieces of the host ge-

nome unrelated to the “GTA genome” (Hynes et al. 2012;

Tomasch et al. 2018). Moreover, the particles are too small to

package complete GTA genome (Lang et al. 2017). Hence,

GTAs are different from lysogenic viruses, as they do not use

the produced phage-like particles for the purpose of their

propagation.

Currently, five genetically unrelated GTAs are known to

exist in bacteria and archaea (Lang et al. 2017). The best

studied GTA is produced by the alphaproteobacterium

Rhodobacter capsulatus and is referred hereafter as the

RcGTA. Since RcGTA’s discovery 45 years ago (Marrs 1974),

the genes for the related, or RcGTA-like, elements have been

found in many of the alphaproteobacterial genomes (Shakya

et al. 2017). For a number of Rhodobacterales isolates that

carry RcGTA-like genes, there is an experimental evidence of

GTA particle production (Fu et al. 2010; Nagao et al. 2015;

Tomasch et al. 2018). Seventeen of the genes of the RcGTA

“genome” are found clustered in one locus and encode pro-

teins that are involved in DNA packaging and head–tail mor-

phogenesis (fig. 1 and supplementary table S1,

Supplementary Material online). This locus is referred to as a

“head–tail cluster.” The remaining seven genes of the RcGTA

genome are distributed across four loci and are involved in

maturation, release, and regulation of RcGTA production

(Hynes et al. 2016). Because the head–tail cluster resembles

a typical phage genome with genes organized in modules

similar to those of a k phage genome (Lang et al. 2017),

and because many of its genes have homologs in bona fide

viruses and conserved phage gene families (Shakya et al.

2017), the cluster is usually designated as a prophage by

algorithms designed to detect prophage regions in a genome

(Shakya et al. 2017). The RcGTA’s classification as a prophage

raises a possibility that some of the “in silico”-predicted pro-

phages may instead represent genomic regions encoding

RcGTA-like elements.

Presently, to distinguish RcGTA-like genes from the truly

viral homologs, one needs to examine evolutionary histories

of the RcGTA-like and viral homologs and to compare gene

content of a putative RcGTA-like element to the RcGTA

“genome.” These analyses can be laborious and often require

subjective decision making in interpretations of phylogenetic

trees. An automated method that could quickly scan thou-

sands of genomes is needed. Notably, the RcGTA-like genes

and their viral homologs have different amino acid composi-

tion (fig. 1 and supplementary fig. S1, Supplementary

Material online). Due to the purifying selection acting on

the RcGTA-like genes at least in the Rhodobacterales order

(Lang et al. 2012) and of their overall significantly lower sub-

stitution rates when compared with viruses (Shakya et al.

2017), we hypothesize that the distinct amino acid composi-

tion of the RcGTA-like genes is preserved across large
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FIG. 1.—The “head–tail” cluster of the Rhodobacter capsulatus GTA “genome” and the amino acid composition of viral and alphaproteobacterial

homologs for some of its genes. Genes that are used in the machine-learning classification are highlighted in gray. For those genes, the heatmap below a

gene shows the relative abundance of each amino acid (rows) averaged across the RcGTA-like and viral homologs that were used in the classifier training

(columns). The amino acids are sorted by the absolute difference in the average relative abundance between RcGTA-like and viral homologs, which was

additionally averaged across 11 genes. The heatmaps of the amino acid composition in the individual homologs are shown in supplementary figure S1,

Supplementary Material online.
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evolutionary distances, and therefore the RcGTA-like genes

can be distinguished from their bona fide viral homologs by

their amino acid composition.

Support vector machine (SVM) is a machine-learning al-

gorithm that can quickly and accurately separate data into

two classes from the differences in specific features within

each class (Cortes and Vapnik 1995). The SVM-based clas-

sifications have been successfully used to delineate protein

families (e.g., DNA binding proteins [Bhardwaj et al. 2005],

G-protein coupled receptors [Karchin et al. 2002], and her-

bicide resistance proteins [Meher et al. 2019]), to distin-

guish plastid and eukaryotic host genes (Kaundal et al.

2013), and to predict influenza host from DNA and amino

acid oligomers found in the sequences of the flu virus (Xu

et al. 2017). During the training step, the SVM constructs a

hyperplane that best separates the two classes. During the

classification step, data points that fall on one side of the

hyperplane are assigned to one class, whereas those on the

other side are assigned to the other class. In our case, the

two classes of elements in need of separation are phages

and GTAs, whereas their distinguishing features are several

metrics that capture the amino acid composition of the

encoding genes.

In this study, we developed, implemented, and cross-

validated an SVM classifier that distinguishes RcGTA-like

head–tail cluster genes from their phage homologs with

high accuracy. We then applied the classifier to 1,423 alphap-

roteobacterial genomes to examine prevalence of putative

RcGTA-like elements in this diverse taxonomic group and to

assess how many of the RcGTA-like elements are mistaken for

prophages in the in silico predictions.

Materials and Methods

The SVM Classifier and Its Implementation

Let us denote as u a homolog of an RcGTA-like gene g that

needs to be assigned to a class y, “GTA” ðy ¼ � 1Þ or

“virus” ðy ¼ 1Þ. The assignment is carried out using a

weighted soft-margin SVM classifier, which is trained on a

data set of m sequences Tg ¼ fTg
1 ; . . . ; T

g
mg that are homol-

ogous to u (see “SVM Training Data” section). The basis of

the classification is the n-dimensional vector of features x as-

sociated with sequences u and T
g
i (see “Generation of

Sequence Features” section). Each sequence Tg
i is known to

belong to a class yi.

Using the training data set Tg, we identify hyperplane that

separates two classes as an optimal solution to the objective

function:

min
1

2
j wj jj2 þ C

Xm
i¼1

ni

 !
(1)

subject to:

8i : yi wxi þ bð Þ � 1� ni;

where ni � 0; i ¼ 1; . . . ;m;
(2)

where w and b define the hyperplane f xð Þ ¼ wxi þ b that

divides the two classes, ni is the slack variable that allows

some training data points not to meet the separation require-

ment, and C is a regularization parameter, which is repre-

sented as an m � m diagonal matrix. The C matrix

determines how lenient the soft-margin SVM is in allowing

for genes to be misclassified: Larger values “harden” the mar-

gin, whereas smaller values “soften” the margin by allow-

ing more classification errors. The product Cn represents

the cost of misclassification. The most suitable values for

the C matrix were determined empirically during cross-

validation, as described in “Model Training, Cross-

Validation, and Assessment” section.

To solve equation (1), we represented this minimization

problem in the Lagrangian dual form LðaÞ:

max
ai

L að Þ ¼
Xm
i¼1

ai �
1

2

Xm
i¼1

Xm
i¼j

aiajyiyjKðxixjÞ (3)

subject to:

8i :
Xm
i¼1

aiyi ¼ 0 and 0 � ai � C ; i ¼ 1; . . . ;m;

where K represents a kernel function. The minimization prob-

lem was solved using the convex optimization (CVXOPT) qua-

dratic programming solver (Andersen et al. 2012). The

pseudocode of the algorithm for the weighted soft-margin

SVM classifier training and prediction is shown in figure 2.

SVM Training Data

To train the classifier, sets of “true viruses” (class y ¼ 1) and

“true GTAs” (class y ¼ � 1) were constructed separately for

each RcGTA-like gene g. To identify the representatives of

“true viruses,” amino acid sequences of 17 genes from the

RcGTA head–tail cluster were used as queries in BlastP (E-

value <0.001; query and subject overlap by at least 60% of

their length) and PSI-BLAST searches (E-value < 0.001; query

and subject overlap by at least 40% of their length; maximum

of six iterations) of the viral RefSeq database release 90 (last

accessed in November 2018; accession numbers of the viral

entries are provided in supplementary table S2,

Supplementary Material online). BlastP and PSI-BLAST execut-

ables were from the BLAST v. 2.6.0þ package (Altschul et al.

1997). The obtained homologs are listed in supplementary

table S3, Supplementary Material online. Due to few or no

viral homologs for some of the queries, the final training sets

Tg were limited to 11 out of 17 RcGTA-like head–tail cluster

genes (g2, g3, g4, g5, g6, g8, g9, g12, g13, g14, and g15;
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see supplementary table S1, Supplementary Material online,

for functional annotations of these genes).

As the representatives of the “true GTAs,” we used the

RcGTA-like regions that were designated as such via phyloge-

netic and genome neighborhood analyses by Shakya et al.

(2017). To make sure that our “true GTAs” do not contain

any other regions, we created a database of the 235 complete

alphaproteobacterial genomes that were available in the

RefSeq database prior to January 2014 (supplementary table

S4, Supplementary Material online). To identify the represen-

tatives of “true GTAs” in this database, amino acid sequences

of 17 genes from the RcGTA head–tail cluster (Lang et al.

2017) were used as queries in BlastP (E-value < 0.001; query

and subject overlap by at least 60% of their length) and PSI-

BLAST searches (E-value < 0.001; query and subject overlap

by at least 40% of their length; maximum of six iterations) of

the database. For each genome, the retrieved homologs were

designated as an RcGTA-like head–tail cluster if at least 9 of

the homologs had no more than 5,000 base pairs between

any two adjacent genes. The maximum distance cutoff was

based on the observed distances between the neighboring

RcGTA head–tail cluster genes. This assignment was deter-

mined by clustering of the obtained homologs with the

DBSCAN algorithm (Ester et al. 1996) using an in-house

Python script (available in a GitHub repository; see

“Software Implementation” section). The resulting set of 88

“true GTAs” is provided in supplementary table S5,

Supplementary Material online, and was verified to represent

a subset of RcGTA-like elements that were identified by

Shakya et al. (2017).

Because GTA functionality has been extensively studied

only in R. capsulatus SB1003 (Lang et al. 2017) and horizontal

gene transfer likely occurred multiple times between the pu-

tative GTAs and bacterial viruses (Hynes et al. 2016; Zhan

et al. 2016), the bacterial homologs that were both too diver-

gent from other bacterial RcGTA-like homologs and more

closely related to the viral homologs were eliminated from

the training sets to reduce possible noise in classification. To

do so, for each of the 11 trainings sets Tg, all detected viral

and bacterial homologs were aligned using MUSCLE v3.8.31

(Edgar 2004) and then pairwise phylogenetic distances were

estimated under PROTGAMMAJTT substitution model using

RAxML version 8.2.11 (Stamatakis 2014). For each bacterial

homolog in a set Tg, the pairwise phylogenetic distances be-

tween it and all other bacterial homologs were averaged. This

average distance was defined as an outlier distance (o) if it

satisfied the inequality:

o > Q3 þ 1:5 � Q3 � Q1ð Þ; (4)

where Q1 and Q3 are the first and third quartiles, respectively,

of the distribution of the average distances for all bacterial

homologs in the training set Tg. If an outlier distance was

greater than the shortest distance from it to a viral homolog

in the set Tg, the bacterial homolog was removed from the

data set. The alignments, list of removed sequences, and the

associated calculations are available in the FigShare repository.

Additionally, for each gene g, the sequences that had the

same RefSeq ID (and therefore 100% amino acid identity)

were removed from the training data sets. The final number

of sequences in each training data set is listed in table 1.

Assignment of Weights to the Training Set Sequences

Highly similar training sequences can have an increased influ-

ence on the position of the hyperplane, as misclassification of

two or more similar sequences can be considered less optimal

than misclassification of only one sequence. This could be a

problem for our classifier, because there is generally a highly

unequal representation of taxonomic groups in the RefSeq

database. To correct for this taxonomic bias, a weighting

scheme was introduced into the soft-margin of the SVM clas-

sifier during training. To do so, sequences in each training set

FIG. 2.—The pseudocode of the SVM classifier algorithm that distin-

guishes RcGTA-like genes from the “true” viruses. The algorithm is imple-

mented in the GTA-Hunter software package (see “Software

Implementation” section).
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Tg ¼ fT1; . . . ; Tmg were aligned in MUSCLE v3.8.31 (Edgar

2004) (the alignments are available in the FigShare repository).

For each pair of sequences in a training set Tg, phylogenetic

distances were calculated in RAxML version 8.2.11

(Stamatakis 2014) under the best substitution model

(PROTGAMMAAUTO; the selected substitution matrices are

listed in supplementary table S6, Supplementary Material on-

line). The farthest-neighbor hierarchical clustering method

was used to group sequences with distances below a speci-

fied threshold t. Weight di of each sequence in a group was

defined as a reciprocal of the number of genes in the group.

These weights are used to adjust the cost of misclassification

by multiplying Cii for each sequence Ti by di . The most suit-

able value of t was determined empirically during cross-

validation, as described in “Model Training, Cross-

Validation, and Assessment” section.

Generation of Sequence Features

To use amino acid sequences in the SVM classifier, each se-

quence was transformed to an n-dimensional vector of com-

positional features. Three metrics that capture different aspects

of sequence composition were implemented: Frequencies of

“words” of size k (k-mers), pseudo-amino acid composition

(PseAAC), and physicochemical properties of amino acids.

In the first feature type, amino acid sequence of a gene is

broken into a set of overlapping subsequences of size k, and

frequencies of these n unique k-mers form a feature vector x.

Values of k equal to 1–6 were evaluated for prediction accu-

racy (see “Model Training, Cross-Validation, and Assessment”

section).

The second feature type, PseAAC, has n¼ (20þ k) dimen-

sions and takes into account frequencies of 20 amino acids, as

well as correlations of hydrophobicity, hydrophilicity, and side-

chain mass of amino acids that are k positions apart in the

sequence of the gene (after Chou [2001]), More precisely,

PseAAC feature set x of a sequence of length L consisting

of amino acids R1R2. . .RL is defined as follows:

xi ¼

riX20

i¼1

ri þ x
Xk

k¼1

sk

; if 1 � i � 20;

xsj�20X20

i¼1

ri þ x
Xk

k¼1

sk

; if 21 � j � 20þ k
;

8>>>>>>>>><
>>>>>>>>>:

(5)

where ri is the frequency of the ith amino acid (out of 20

possible), x is a weight constant for the order effect that was

set to 0.05, and sk (k¼ 1, . . ., k) are sequence order-

correlation factors. These factors are defined as

sk ¼
1

L� k

XL�k

i¼1

Ji;iþk; (6)

where

Ji;j ¼
1

3

n
H1 Rj

� �
� H1 Rið Þ

� �2 þ H2 Rj

� �
� H2 Rið Þ

� �2
þ M Rj

� �
� M Rið Þ

� �2o
(7)

and H1ðRiÞ, H2ðRiÞ, and MðRiÞ denote the hydrophobicity,

hydrophilicity, and side-chain mass of amino acid Ri , re-

spectively. The H1ðRiÞ, H2ðRiÞ, and MðRiÞ scores were sub-

jected to a conversion as described in the following

equation:

H1 ið Þ ¼
H0

1 ið Þ �
X20

i¼1

H0
1 ið Þ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i¼1

H0
1 ið Þ �

X20

i¼1

H0
1 ið Þ
20

" #2

20

vuuuut

H2 ið Þ ¼
H0

2 ið Þ �
X20

i¼1

H0
2 ið Þ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i¼1

H0
2 ið Þ �

X20

i¼1

H0
2 ið Þ
20

" #2

20

vuuuut

M ið Þ ¼
M0 ið Þ �

X20

i¼1

M0 ið Þ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i¼1

M0 ið Þ �
X20

i¼1

M0 ið Þ
20

" #2

20

vuuuut

;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(8)

where H0
1 ið Þ is the original hydrophobicity value of the ith

amino acid, H0
2 ið Þ is hydrophilicity value, and M0 ið Þ is the

Table 1

Number of the RcGTA Homologs in the “True GTA” and “True Virus”

Training Data Sets

Gene “True GTAs” “True Viruses”

g2 69 1,646

g3 65 769

g4 62 465

g5 67 627

g6 61 19

g8 62 96

g9 66 61

g12 63 12

g13 73 57

g14 67 124

g15 67 155
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mass of its side chain. Values of k equal to 3 and 6 were

evaluated for prediction accuracy (see “Model Training,

Cross-Validation, and Assessment” section).

The third feature type relies on classification of amino acids

into 19 overlapping classes of physicochemical properties

(supplementary table S7, Supplementary Material online; after

Kaundal et al. [2013]). For a given sequence, each of its

encoded amino acids was counted toward one of the 19

classes, and the overall scores for each class were normalized

by the length of the sequence to form n¼ 19-dimensional

feature vector x.

Model Training, Cross Validation, and Assessment

For each GTA gene, parameter, and feature type, the accu-

racy of the classifier was evaluated using a 5-fold cross-

validation scheme, in which a data set was randomly divided

into five different subsamples. Four parts were combined to

form the training set, whereas the fifth part was used as the

validation set and its SVM-assigned classifications compared

with the known classes. This step was repeated five times, so

that every set was tested as a known class at least once.

For each class y (“GTA” and “Virus”), the results were

evaluated by their accuracy scores, defined as the number

of correctly classified homologs divided by the total number

of homologs that were tested. The cross-validation procedure

was repeated ten times to reduce the partitioning bias, and

the generated results were averaged, resulting in an Average

Accuracy Score (AAS) for each gene and each class. To ensure

that “GTA” and “Virus” classes had equal impact on the

accuracy assessment, each class was assigned a weight of

0.5. The final, Weighted Accuracy Score (WAS) was calcu-

lated as

WASg ¼ 100 � ðAAS
g
GTA � 0:5þ AAS

g
Virus � 0:5Þ: (9)

The most suitable “softness” of the SVM margin was deter-

mined by trying all possible combinations of several raw diag-

onal values of the matrix C (0.01, 0.1, 1, 100, 10,000) and the

threshold t (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1). The set of

parameters and features that resulted in the highest WAS was

defined as the optimal set for a gene g. If multiple parameter

and feature sets resulted in the equally highest WAS, we ap-

plied the following parameter selection criteria, in the priority

order listed, until only one parameter set was left: First, we

selected parameter set(s) with k-mer size that on average

performed better than other k-mer sizes; second, we avoided

parameter set(s) that included PseAAC and physicochemical

composition features; third, we selected parameter set(s) with

the value of C that gives the highest average accuracy across

the remaining parameter sets; and finally, we opted for the

parameter set with the value of t that also gives the highest

WAS across the remaining parameter sets. Additionally, we

evaluated classifier accuracy using the Matthews correlation

coefficient (MCC) (Matthews 1975).

Selection of Alphaproteobacterial Genomes for Testing the
Presence of RcGTA-Like Genes

From the alphaproteobacterial genomes deposited to the

RefSeq database between January 2014 and January 2019,

we selected 636 complete and 789 high-quality draft

genomes, with the latter defined as genome assemblies

with N50 length >400 kb. The taxonomy of each genome

was assigned using the GTDB-Tk toolkit (Parks et al. 2018).

The GTDB assignment is based on the combination of

Average Nucleotide Identity (ANI) (Jain et al. 2018) and phy-

logenetic placement on the reference tree (as implemented in

the pplacer program [Matsen et al. 2010]). Three of the 1,425

genomes could not be reliably placed into a known alphap-

roteobacterial order, and hence were left unclassified. Two of

the 1,425 genomes were removed from further analyses due

to their classification outside the Alphaproteobacteria class,

resulting in 635 complete and 788 high-quality genomes in

our data set (supplementary table S8, Supplementary Material

online).

Detection of RcGTA-Like Genes and Head–Tail Clusters in
Alphaproteobacteria

The compiled training data sets of the RcGTA-like genes (see

the “SVM Training Data”) were used as queries in BlastP (E-

value < 0.001; query and subject overlap by at least 60% of

their length) searches of amino acid sequences of all anno-

tated genes from the 1,423 alphaproteobacterial genomes.

Acquired homologs of unknown affiliation (sequences u)

were then assigned to either “GTA” or “Virus” category by

running the SVM classifier with the identified optimal param-

eters for each gene g (table 2).

The proximity of the individually predicted RcGTA-like

genes in each genome was evaluated by running the

DBSCAN algorithm (Ester et al. 1996) implemented in an in-

house Python script (available in a GitHub repository; see

“Software Implementation” section). The retrieved homologs

were designated as an RcGTA-like head–tail cluster only if at

least 6 of the RcGTA-like genes had no more than 8,000 base

pairs between any two adjacent genes. The maximum dis-

tance cutoff was increased from the 5,000 base pairs used

for the clustering of homologs in the training data sets (see

“SVM Training Data” section) because the SVM classifier eval-

uates only 11 of the 17 RcGTA-like head–tail cluster homologs

and therefore the distances between some of the identified

RcGTA-like genes can be larger.

To reduce the bias arising from the overrepresentation of

particular taxa in the estimation of the RcGTA-like cluster

abundance in Alphaproteobacteria, the 1,423 genomes

were grouped into Operational Taxonomic Units (OTUs) by

computing pairwise ANI using the FastANI v1.1 program

Kogay et al. GBE
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(Jain et al. 2018) and defining boundaries between OTUs at

the 95% threshold. Because not all OTUs consist uniformly of

genomes that were either all with or all without the RcGTA-

like clusters, each RcGTA-like cluster in an OTU was assigned a

weight of “1/(number of genomes in an OTU).” The abun-

dance of the RcGTA-like clusters in different alphaproteobac-

terial orders was corrected by summing up the weighted

numbers of RcGTA-like clusters.

Software Implementation

The above-described SVM classifier, generation of sequence

features, and preparation and weighting of training data are

implemented in a Python program called “GTA-Hunter.” The

source code of the program is available via GitHub at https://

github.com/ecg-lab/GTA-Hunter-v1. The repository also con-

tains training data for the detection of the RcGTA-like head–

tail cluster genes, examples of how to run the program, and

the script for clustering of the detected RcGTA-like genes

using the DBSCAN algorithm.

Assessment of Prevalence of the RcGTA-Like Clusters
among Putative Prophages

Putative prophages in the 1,423 alphaproteobacterial

genomes were predicted using the PHASTER web server

(Arndt et al. [2016]; accessed in January 2019). The

PHASTER program was chosen due to its solid performance

in benchmarking studies (de Sousa et al. 2018) and its useful

scoring system that ranks predictions based on a prophage

region completeness (Song et al. 2019). To restrict our evalu-

ation to likely functional prophages, only predicted prophages

with the PHASTER score >90 (i.e., classified as “intact” pro-

phages) were retained for further analyses. The proportion of

these predicted intact prophages classified by the GTA-Hunter

as “GTA”s was calculated by comparing the overlap between

the genomic locations of the predicted intact prophages and

the putative RcGTA-like regions.

Construction of the Alphaproteobacterial Reference
Phylogeny

From the set of 120 phylogenetically informative proteins

(Parks et al. 2017), 83 protein families that are present in a

single copy in>95% of 1,423 alphaproteobacterial genomes

were extracted using hmmsearch (E-value < 10�7) via mod-

ified AMPHORA2 scripts (Wu and Scott 2012) (supplementary

table S9, Supplementary Material online). For each protein

family, homologs from Escherichia coli str. K12 substr.

DH10B and Pseudomonas aeruginosa PAO1 genomes (also

retrieved using hmmsearch, as described above) were added

to be used as an outgroup in the reconstructed phylogeny.

The amino acid sequences of each protein family were aligned

using MUSCLE v3.8.31 (Edgar 2004). Individual alignments

were concatenated, keeping each alignment as a separate

partition in further phylogenetic analyses (Chernomor et al.

2016). The most suitable substitution model for each partition

was selected using ProteinModelSelection.pl script down-

loaded from https://github.com/stamatak/standard-RAxML/

tree/master/usefulScripts; last accessed April 2019. Gamma

distribution with four categories was used to account for

rate heterogeneity among sites (Yang 1994). The maximum

likelihood phylogenetic tree was reconstructed with IQ-TREE v

1.6.7 (Nguyen et al. 2015). One thousand ultrafast bootstrap

replicates were used to get support values for each branch

(Minh et al. 2013; Hoang et al. 2018). The concatenated se-

quence alignment in PHYLIP format and the reconstructed

phylogenetic tree in Newick format are available in the

FigShare repository.

Table 2

The Combinations of Features and Parameters That Showed the Highest Weighted Accuracy Score (WAS) in Cross-Validation

Gene Weighted Accuracy

Score, WAS (%)

Matthews Correlation

Coefficient, MCC

k-mer (Size) PseAAC

(Value of k)

Grouping Based on

Physicochemical Properties

of Amino Acids

C t

g2 100 1 2 —a — 10,000 0.02

g3 100 1 3 — — 10,000 0.02

g4 100 1 3 3 — 10,000 0.02

g5 100 1 3 — — 100 0.02

g6 95.9 0.88 4 — þ 0.1 0.02

g8 99.4 0.98 2 3 — 0.1 0.03

g9 100 1 2 — — 100 0.1

g12 95.6 0.90 5 — — 10,000 0.05

g13 99.1 0.98 2 — — 100 0

g14 99.6 0.99 6 6 — 0.01 0.03

g15 99.7 0.99 2 — — 10,000 0.02

NOTE.—The listed parameter sets were used in predictions of the RcGTA-like genes in 1,423 alphaproteobacterial genomes. See Materials and Methods for the procedure on
selecting one parameter set in the cases where multiple parameter sets had the identical highest WAS.

aThroughout the table, “—” denotes that the feature type was not used.

Many Alphaproteobacterial Prophages May Instead Be GTAs GBE

Genome Biol. Evol. 11(10):2941–2953 doi:10.1093/gbe/evz206 Advance Access publication September 27, 2019 2947

Deleted Text: Since
Deleted Text: [
Deleted Text: OTU
Deleted Text: ]
Deleted Text: .
Deleted Text:  
Deleted Text: .
https://github.com/ecg-lab/GTA-Hunter-v1
https://github.com/ecg-lab/GTA-Hunter-v1
Deleted Text: t-
Deleted Text: p
Deleted Text: c
Deleted Text: p
Deleted Text: p
Deleted Text:  
Deleted Text: ,
Deleted Text: a
Deleted Text: r
Deleted Text: p
Deleted Text:  
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz206#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz206#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz206#supplementary-data
https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts
https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts
Deleted Text: 4 
Deleted Text: 4
Deleted Text: Hoang et<?A3B2 show $146#?>al. 2017; 


Examination of Conditions Associated with the Decreased
Fitness of the Knock-Out Mutants of the RcGTA-Like
Head–Tail Cluster Genes

From the three genomes that are known to contain RcGTA-

like clusters (Caulobacter crescentus NA100, Dinoroseobacter

shibae DFL-12, and Phaeobacter inhibens BS107), fitness

experiments data associated with the knock-out mutants of

the RcGTA-like head–tail cluster genes were retrieved from

the Fitness Browser (Price et al. [2018]; accessed in May 2019

via http://fit.genomics.lbl.gov/cgi-bin/myFrontPage.cgi). Price

et al. (2018) defined gene fitness as the log 2 change in abun-

dance of knock-out mutants in that gene during the experi-

ment. For our analyses, the significantly decreased fitness of

each mutant was defined as a deviation from the fitness of 0

with a t � scorej j � 4. The conditions associated with the

significantly decreased fitness were compared across the

RcGTA-like head–tail cluster genes in all three genomes.

Results

GTA-Hunter Is an Effective Way to Distinguish RcGTA-Like
Genes from Their Viral Homologs

The performance of the developed SVM classifier depends on

values of parameters that determine type and composition of

sequence features, specify acceptable levels of misclassifica-

tion, and account for biases in taxonomic representation of

the sequences in the training sets. To find the most effective

set of parameters, for each of the 11 RcGTA-like head–tail

genes with the sufficient number of homologs available

(fig. 1; also, see Materials and Methods for details), we eval-

uated the performance of 1,435 different combinations of

the parameters using a cross-validation technique (supple-

mentary table S10, Supplementary Material online).

Generally, the classifiers that only use k-mers as the feature

have higher median WAS values than the classifiers that solely

rely either on physicochemical properties of amino acids or on

PseAAC (supplementary fig. S2 and table S10, Supplementary

Material online), indicating that the conservation of specific

amino acids blocks is important in delineation of RcGTA-like

genes from their viral counterparts. However, the WAS values

are lower for the large k-mer sizes (supplementary fig. S2,

Supplementary Material online), likely due to the feature vec-

tors becoming too sparse. Consequently, parameter combi-

nations with values of k above 6 were not tested. The WAS

values are also lower for k¼ 1, likely due to the low informa-

tiveness of the feature. The lowest observed WAS values in-

volve usage of physicochemical properties of proteins as a

feature (supplementary fig. S2 and table S10,

Supplementary Material online), suggesting the conservation

of physicochemical properties of amino acids among proteins

of similar function in viruses and RcGTA-like regions despite

their differences in the amino acid composition. The more

sophisticated recoding of physicochemical properties of

amino acids as the PseAAC feature performs better, but for

all genes its performance is worse than the best-performing k-

mer (supplementary fig. S2 and table S10, Supplementary

Material online).

For several genes, the highest value of WAS was obtained

with multiple combinations of features and parameter values

(supplementary table S10, Supplementary Material online).

Based on the above-described observations of the perfor-

mance of individual features, we preferred parameter sets

that did not include PseAAC and physicochemical composi-

tion features, and selected k-mer size that on average per-

formed better than other k-mer sizes (see Materials and

Methods for the full description of the parameter selection

procedure).

For individual genes, the WAS of the selected parameter

set ranges from 95.6% to 100% (table 2), with 5 out of 11

genes reaching the WAS of 100%. The two genes with the

highest WAS below 99% (g6 and g12) have the smallest

number of viral homologs available for training (table 2).

Additionally, several viral homologs in the training data sets

for g6 and g12 genes have smaller phylogenetic distances to

“true GTA” homologs than to other “true virus” homologs

(supplementary table S11, Supplementary Material online). As

a result, the SVM classifier erroneously categorizes some of

the RcGTA-like g6 and g12 genes as “viral,” resulting in the

reduced classifier efficacy (supplementary table S10,

Supplementary Material online).

Assessment of accuracy using the MCC generally agrees

with the results based on WAS (table 2 and supplementary

table S10, Supplementary Material online). For 10 out of 11

genes, the set of parameters with the highest WAS also has

the highest MCC. For gene g6, there are sets of parameters

with higher MCC than the MCC for set of parameters with

the highest WAS, but the differences among the MCC values

are small (supplementary table S10, Supplementary Material

online). Therefore, the combinations of features and param-

eters chosen using the WAS scheme (table 2) were selected to

classify homologs of the RcGTA genes in the 1,423 alphap-

roteobacterial genomes (supplementary table S8,

Supplementary Material online).

GTA-Hunter Predicts Abundance of RcGTA-Like Head–Tail
Clusters in Alphaproteobacteria

The 1,423 examined alphaproteobacterial genomes contain

7,717 homologs of the 11 RcGTA genes. The GTA-Hunter

classified 6,045 of these homologs as “GTA” genes (supple-

mentary table S12, Supplementary Material online). However,

many genomes are known to contain regions of decaying

viruses that may be too divergent to be recognizably “viral”

and there is at least one known case of horizontal gene trans-

fer of several GTA genes into a viral genome (Zhan et al.

2016), raising a possibility that some of the predicted

“GTA” genes may not be part of “true GTA” genomic

Kogay et al. GBE
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regions. To minimize such false positives, we imposed an extra

requirement of multiple predicted RcGTA-like genes to be in

proximity on a chromosome. Specifically, we called a genomic

region the putative RcGTA-like cluster only if it consisted of at

least six genes classified as “GTA.” We found that the RcGTA-

like clusters defined that way are present in one (and only

one) copy in 818 of the 1,423 (�57.5%) examined alphap-

roteobacterial genomes (supplementary table S13,

Supplementary Material online, and table 3). Uneven taxo-

nomic representation of Alphaproteobacteria among the an-

alyzed genomes may inflate this estimation of the abundance

of the GTA-harboring genomes within the class. To correct for

this potential bias, 1,423 genomes were grouped into 797

OTUs based on the ANI of their genomes (supplementary ta-

ble S14, Supplementary Material online). Although indeed

some taxonomic groups are overrepresented in the set of

1,423 genomes, in 450 of the 797 OTUs (56.4%) all OTU

members contain the putative RcGTA-like clusters (supple-

mentary table S14, Supplementary Material online).

RcGTA-Like Clusters Are Widely Distributed within a Large
Subclade of Alphaproteobacteria

The 818 genomes with the RcGTA-like gene clusters detected

in this study are not evenly distributed across the class (table 3)

but are found only in a clade that includes seven orders (clade

4 in fig. 3). Overall, 66% of the examined OTUs within the

clade 4 are predicted to have an RcGTA-like cluster (table 3).

RcGTA-like clusters are most abundant in clade 6 (fig. 3), a

group that consists of the orders Rhodobacterales and

Caulobacterales (table 3).

Although the two unclassified orders that contain RcGTA-

like clusters are represented by only two genomes (clades 2

and 3 in fig. 3), their position on the phylogenetic tree of

Alphaproteobacteria suggests that the RcGTA-like element

may have originated earlier than was proposed by Shakya

et al. (2017) (clade 5 in fig. 3). Given that RcGTA-like head–

tail cluster genes are readily detectable in viral genomes, it is

unlikely that the RcGTA-like clusters remained completely

undetectable in the examined genomes outside the clade 4

due to the sequence divergence. Therefore, an RcGTA-like

element was unlikely to be present in the last common an-

cestor of all Alphaproteobacteria (clade 7 in fig. 3), which was

suggested when only a limited number of genomic data were

available (Lang and Beatty 2007).

Most of the Detected RcGTA-Like Clusters Can Be
Mistaken for Prophages

Among the 818 detected RcGTA-like clusters, the functional

annotations of the 11 examined genes were similar to the

prophages and none of them refer to a “gene transfer agent”

(data not shown). Because at least 11 of the 17 RcGTA head–

tail cluster genes have detectable sequence similarity to viral

genes (supplementary table S3, Supplementary Material on-

line), it is likely that, if not recognized as GTAs, many of the

Table 3

Distribution of Prophages and RcGTA-Like Elements across Different Orders within Class Alphaproteobacteria

Order Number of

Genomes

Number of

Prophages

Number of

RcGTA-Like Clusters

Number of

OTUs

Corrected

Abundance of

RcGTA-Like Clustersa

Percentage of OTUs

That Have

RcGTA-Like Clusters

Acetobacterales 62 34 0 34 0 0

Azospirillales 13 10 0 12 0 0

Caedibacterales 1 0 0 1 0 0

Caulobacterales 50 30 39 45 35 78

Elsterales 1 0 0 1 0 0

Kiloniellales 5 1 0 3 0 0

Oceanibaculales 2 1 0 2 0 0

Paracaedibacterales 1 2 0 1 0 0

Parvibaculales 5 5 2 5 2 40

Pelagibacterales 5 0 0 5 0 0

Rhizobiales 730 763 435 300 155 52

Rhodobacterales 241 318 208 174 150 86

Rhodospirillales 24 10 0 15 0 0

Rickettsiales 70 18 0 24 0 0

Sneathiellales 2 1 0 2 0 0

Sphingomonadales 207 115 132 169 110 65

Thalassobaculales 1 0 0 1 0 0

Unclassified order 1 1 0 0 1 0 0

Unclassified order 2 1 2 1 1 1 100

Unclassified order 3 1 2 1 1 1 100

aSee “Detection of RcGTA-Like Genes and Head–Tail Clusters in Alphaproteobacteria” section for explanation about the correction.
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putative RcGTA-like clusters will be designated as

“prophages” in genome-wide searches of prophage-like

regions. To evaluate this hypothesis, we predicted prophages

in the set of 1,423 alphaproteobacterial genomes, and limited

our analyses to the predicted prophage regions that are more

likely to be functional integrated viruses (“intact” prophages;

see Materials and Methods for the criteria). Indeed, of the

1,235 “intact” prophage regions predicted in the clade 4

genomes, 664 (54%) coincide with the RcGTA-like clusters

(fig. 4). Conversely, 664 out of 818 of the predicted RcGTA-

like clusters (81%) are classified as intact prophages. Of the

351 RcGTA-like clusters that contain all 11 examined genes,

323 (92%) are classified as intact prophages.

Interestingly, within 818 genomes that contain RcGTA-like

clusters, the average number of predicted intact prophages is

1.23 per genome (fig. 5), which is significantly higher than

0.51 prophages per genome in genomes not predicted to

contain RcGTA-like clusters (P value < 0.22 � 10�17;

Mann–Whitney U test). If the 664 RcGTA-like regions classi-

fied as intact prophages are removed from the genomes that

contain them, the average number of predicted “intact”

prophages per genome drops to 0.42 (fig. 5) and the differ-

ence becomes insignificant (P value ¼ 0.1492; Mann–

Whitney U test). This analysis suggests that an elevated num-

ber of the observed predicted prophage-like regions in some

FIG. 3.—Distribution of the detected RcGTA-like clusters across the class Alphaproteobacteria. The presence of RcGTA-like clusters is mapped to a

reference phylogenetic tree that was reconstructed from a concatenated alignment of 83 marker genes (See Materials and Methods and supplementary

table S9, Supplementary Material online). The branches of the reference tree are collapsed at the taxonomic rank of “order,” and the number of OTUs within

the collapsed clade is shown in parentheses next to the order name. Orange and brown bars depict the proportion of OTUs with and without the predicted

RcGTA-like clusters, respectively. The orders that contain at least one OTU with an RcGTA-like cluster are colored in green. Nodes 1–3 mark the last common

ancestors of the unclassified orders. Node 4 marks the lineage where, based on this study, the RcGTA-like element should have already been present. Nodes

5 and 7 mark the lineages that were previously inferred to represent last common ancestor of the RcGTA-like element by Shakya et al. (2017) and Lang and

Beatty (2007), respectively. Node 6 marks the clade where RcGTA-like elements are the most abundant. The tree is rooted using homologs from Escherichia

coli str. K12 substr. DH10B and Pseudomonas aeruginosa PAO1 genomes. Branches with ultrafast bootstrap values >¼95% are marked with black circles.

The scale bar shows the number of substitutions per site. The full reference tree is provided in the FigShare repository.

Predicted RcGTA-like 

clusters

Predicted intact

prophages

154664571

FIG. 4.—An overlap between prophage and GTA predictions. The

“predicted RcGTA-like clusters” set refers to the GTA-Hunter predictions,

whereas the “predicted intact prophages” set denotes predictions made

by the PHASTER program (Arndt et al. 2016) on the subset of the genomes

that are found within clade 4 (fig. 3).
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alphaproteobacterial genomes may be due to the presence of

unrecognized RcGTA-like elements.

Discussion

Our study demonstrates that RcGTA-like and bona fide viral

homologs can be clearly separated from each other using a

machine-learning approach. The highest accuracy of the clas-

sifier is achieved when it primarily relies on short amino acid k-

mers present in the examined genes. This suggests that the

distinct primary amino acid composition of the RcGTA-like

and truly viral proteins is what allows the separation of the

two classes of elements (fig. 1). However, the cause of the

amino acid preferences of the RcGTA-like genes, and espe-

cially enrichment of the encoded proteins in alanine and gly-

cine amino acids (fig. 1), remains unknown. Given the

structure of the genetic code, the skewed amino acid com-

position may be the driving force behind the earlier described

significantly higher %GþC of the genomic region encoding

the RcGTA-like head–tail cluster than the average %GþC in

the host genome (Shakya et al. 2017). Regardless of the cause

of the skewed amino acid composition, the successful identi-

fication of the putative RcGTA-like elements in alphaproteo-

bacterial taxa only distantly related to R. capsulatus (clade 4 in

fig. 3) suggests that the selection to maintain these elements

likely extends beyond the Rhodobacterales order.

Nevertheless, whether these putative elements indeed encode

GTAs, as we currently understand them, remains to be exper-

imentally validated.

The benefits associated with the GTA production that

would underlie the selection to maintain them remain

unknown. In a recently published high-throughput screen

for phenotypes associated with specific genes (Price et al.

2018), knockout of the RcGTA-like genes in the three

genomes that encode the RcGTA-like elements resulted in

decreased fitness of the mutants (in comparison to the wild

type) under some of the tested conditions (supplementary

table S15, Supplementary Material online). Interestingly, the

conditions associated with the most statistically significant

decreases in fitness correspond to the growth on nonglucose

sugars, such as D-raffinose, b-lactose, D-xylose, and m-inositol.

Overall, carbon source utilization is the most common condi-

tion that elicits statistically significant fitness decreases in the

mutants. The RcGTA production was also experimentally

demonstrated to be stimulated by carbon depletion

(Westbye et al. 2017). Further experimental work is needed

to identify the link between the RcGTA-like genes expression

and carbon utilization. Conversely, absence of the RcGTA-like

elements in some of the clade 4 genomes (fig. 3) indicates

that in some ecological settings RcGTA-like elements are ei-

ther deleterious or “useless” and thus their genes were either

purged from the host genomes (if RcGTA-like element evolu-

tion is dominated by vertical inheritance) or not acquired (if

horizontal gene transfer plays a role in the RcGTA-like element

dissemination).

Previous analyses inferred that RcGTA-like elements had

evolved primarily vertically, with few horizontal gene

exchanges between closely related taxa (Lang and Beatty

2007; Hynes et al. 2016; Shakya et al. 2017). Under this hy-

pothesis, the distribution of the RcGTA-like head–tail clusters

in alphaproteobacterial genomes suggests that RcGTA-like

element originated prior to the last common ancestor of the
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FIG. 5.—The number of predicted “intact” prophages in alphaproteobacterial genomes. The 1,423 genomes were divided into two groups: those

without GTA-Hunter-predicted RcGTA-like clusters (in brown) and those with these RcGTA-like clusters (in dark orange). For the latter group, the number of

prophages was recalculated after the RcGTA-like clusters that were designated as prophages were removed (in light orange). The distribution of the number

of predicted intact prophages within each data set is shown as a violin plot with the black point denoting the average value. The data sets with significantly

different average values are denoted by asterisks (P<0.001; Mann–Whitney U test).
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taxa in clade 4 (fig. 3). This places the origin of the RcGTA-like

element to even earlier timepoint than the one proposed in

Shakya et al. (2017). However, it should be noted that our

inference is sensitive to the correctness of the inferred rela-

tionships of taxa within the alphaproteobacterial class, which

remain to be disputed due to compositional biases and un-

equal rates of evolution of some alphaproteobacterial lineages

(Munoz-Gomez et al. 2019). The most recent phylogenetic

inference that takes into account these heterogeneities

(Munoz-Gomez et al. 2019) is different from the reference

phylogeny shown in figure 3. Relevant to the evolution of

RcGTA-like elements, on the phylogeny in Munoz-Gomez

et al. (2019) the order Pelagibacterales is located within the

clade 4 instead of being one of the early-branching alphap-

roteobacterial orders (fig. 3). No RcGTA-like clusters were

detected in Pelagibacterales, although in our analyses the or-

der is represented by only five genomes. Better sampling of

genomes within this order would be needed either to show a

loss of the RcGTA-like element in this order or to reassess the

hypothesis about origin and transmission of the RcGTA-like

elements within Alphaproteobacteria.

Genes in the detected RcGTA-like head–tail clusters remain

mainly unannotated as “gene transfer agents” in GenBank

records, and therefore they can be easily confused with pro-

phages. For example, recently described “conserved

prophage” in Sphingomonadales (Viswanathan et al. 2017)

is predicted to be an RcGTA-like element by GTA-Hunter.

Incorporation of a GTA-Hunter-like machine-learning classifi-

cation into an automated genome annotation pipeline will

help improve quality of the gene annotations in GenBank

records and facilitate discovery of GTA-like elements in other

taxa. Moreover, application of the presented GTA-Hunter

program is not limited to the detection of the RcGTA-like

elements. With appropriate training data sets, the program

can be applied to the detection of GTAs that do not share

evolutionary history with the RcGTA (Lang et al. 2017) and of

other elements that are homologous to viruses or viral sub-

structures, such as type VI secretion system (Leiman et al.

2009) and encapsulins (Giessen and Silver 2017).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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