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Reduced levels of dopamine in Parkinson’s disease contribute to changes in learning, resulting from the loss of midbrain neurons

that transmit a dopaminergic teaching signal to the striatum. Dopamine medication used by patients with Parkinson’s disease has

previously been linked to behavioural changes during learning as well as to adjustments in value-based decision-making after

learning. To date, however, little is known about the specific relationship between dopaminergic medication-driven differences

during learning and subsequent changes in approach/avoidance tendencies in individual patients. Twenty-four Parkinson’s disease

patients ON and OFF dopaminergic medication and 24 healthy controls subjects underwent functional MRI while performing a

probabilistic reinforcement learning experiment. During learning, dopaminergic medication reduced an overemphasis on negative

outcomes. Medication reduced negative (but not positive) outcome learning rates, while concurrent striatal blood oxygen level-

dependent responses showed reduced prediction error sensitivity. Medication-induced shifts in negative learning rates were pre-

dictive of changes in approach/avoidance choice patterns after learning, and these changes were accompanied by systematic striatal

blood oxygen level-dependent response alterations. These findings elucidate the role of dopamine-driven learning differences in

Parkinson’s disease, and show how these changes during learning impact subsequent value-based decision-making.
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Introduction
Learning from trial and error is a core adaptive mechan-

ism in behaviour (Packard et al., 1989; Glimcher, 2002).

This learning process is driven by reward prediction

errors (RPEs) that signal the difference between expected

and actual outcomes (Houk, 1995; Montague et al.,

1996; Schultz et al., 1997). Substantia nigra and ventral

tegmental area (VTA) midbrain neurons use bursts and

dips in dopaminergic signalling to relay positive and

negative RPEs to prefrontal cortex (Deniau et al., 1980;

Swanson, 1982) and the striatum, activating the so-called
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Go and NoGo pathways (Beckstead et al., 1979;

Surmeier et al., 2007).

Parkinson’s disease is caused by a substantial loss of

dopaminergic neurons in the substantia nigra (Edwards

et al., 2008), leading to the depletion of dopamine in the

striatum (Koller and Melamed, 2007). Dopaminergic medi-

cation has been shown to alter how Parkinson’s disease

patients learn from feedback (Cools et al., 2001; Bódi

et al., 2009) and how they use past learning to make

value-based choices in novel situations (Frank et al.,

2004; Frank, 2007; Shiner et al., 2012). A common finding

is that, when required to make value-based decisions after

learning, patients ON compared to OFF medication are

better at choosing the option associated with the highest

value (approach), whereas when OFF medication, they are

better at avoiding the option with the lowest value (avoid-

ance) (Frank et al., 2004; Frank, 2007). However, it is

currently unknown how dopamine-induced changes

during the learning process relate to these subsequent dopa-

mine-induced changes in approach/avoidance choice

behaviour.

An influential framework of dopamine function in the

basal ganglia proposes that the dynamic range of phasic

dopamine modulation in the striatum, in combination

with tonic baseline dopamine levels, gives rise to the medi-

cation differences observed in Parkinson’s disease (Frank,

2005). This theory suggests that lower baseline dopamine

levels in unmedicated Parkinson’s disease are favourable for

the upregulation of the NoGo pathway, leading to an em-

phasis on learning from negative outcomes. In contrast,

higher tonic dopamine levels in medicated Parkinson’s dis-

ease lead to continued suppression of the NoGo pathway,

resulting in (erroneous) response perseveration even after

negative feedback. Extremes in these medication-induced

changes in brain signalling are thought to manifest behav-

iourally in dopamine dysregulation syndrome, in which pa-

tients exhibit compulsive tendencies, such as pathological

gambling or shopping (Voon et al., 2010). In support of the

theory on Go/NoGo signalling, impairments in learning

performance associated with higher dopamine levels have

been found mainly in negative-outcome contexts; during

probabilistic selection (Frank et al., 2004), reversal learning

(Cools et al., 2006), and probabilistic classification (Bódi

et al., 2009).

In addition to these behavioural adaptations, increased

striatal activations have been reported in medicated

Parkinson’s disease patients during the processing of nega-

tive RPEs (Voon et al., 2010). Similarly, a recent study on

rats performing a reversal learning task revealed a distinct

impairment in the processing of negative RPE with

increased dopamine level (Verharen et al., 2018).

However, little is known about how these medication-

related changes in striatal responsivity to RPE relate to (i)

later behavioural choice patterns; and (ii) changes in brain

activity during subsequent value-based choices.

We examined the role of dopaminergic medication in

choice behaviour and associated brain mechanisms.

Twenty-four Parkinson’s disease patients ON and OFF

medication and a reference group of 24 age-matched con-

trol subjects performed a two-stage probabilistic selection

task (Frank et al., 2004) (Fig. 1A) while undergoing func-

tional MRI. The experiment’s first stage was a learning

phase, during which participants gradually learned to

make better choices for three fixed pairs of stimulus op-

tions, based on reward feedback. In the second, transfer

stage, participants used their learning phase experience to

guide choices when presented with novel combinations of

options, without receiving any further feedback (Fig. 1A).

Value-based decisions during the transfer phase were exam-

ined using an approach/avoidance framework (Fig. 1B). To

better describe the underlying processes that contribute to

learning, behavioural responses were fit using a hierarchical

Bayesian reinforcement learning model (Jahfari et al., 2018;

Van Slooten et al., 2018), adapted to estimate both within-

patient effects of medication and across-subject effects of

disease (Sharp et al., 2016). This quantification of behav-

iour then informed our model-based functional MRI ana-

lysis, in which we examined medication-related changes in

blood oxygen level-dependent (BOLD) brain signals in re-

sponse to RPEs during learning, as well as medication-

related changes in approach/avoidance behaviour and

brain responses during subsequent value-based choices.

Materials and methods

Participants

Twenty-four patients with Parkinson’s disease (seven females,
mean age = 63 � 8.2 years old) were recruited via the VU
medical center, Zaans medical center, and OLVG hospital in
Amsterdam. All patients were diagnosed by a neurologist as
having idiopathic Parkinson’s disease according to the UK
Parkinson’s Disease Society Brain Bank criteria. This study
was approved by the Medical Ethical Review committee
(METc) of the VU Medical Center, Amsterdam. Twenty-four
age-matched control subjects (nine females, mean age = 60.3 �
8.5 years old) were also recruited from the local community or
via the Parkinson’s disease patients (e.g. spouses, relatives). In
total, five spouses of Parkinson’s disease patients were included
in the control sample. At each session of the study, the severity
of clinical symptoms was assessed according to the Hoehn and
Yahr rating scale (Hoehn and Yahr, 1967) and the motor part
of the Unified Parkinson’s Disease Rating Scale (UPDRS III;
Fahn et al., 1987). Demographic and clinical data of the
included participants can be seen in Supplementary Table 1.
Information on Parkinson-related medication per patient is
available in Supplementary Table 2. We excluded one patient
with Parkinson’s disease (excessive falling asleep in scanner)
and one control subject (could not learn the task) from both
learning and transfer phase behavioural and functional MRI
analyses. Functional MRI data of one control subject could
not be analysed (T1 scan was not collected; session was termi-
nated early because of claustrophobia). Transfer phase func-
tional MRI and behavioural data were not collected for one
other control subject because of early termination of scanning
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session (technical malfunction). Overall, we included 23
Parkinson’s disease patients ON and OFF dopaminergic medi-
cation in all behavioural and functional MRI analyses.
Twenty-three control subjects were included in the learning
phase behavioural analysis, 22 in the learning phase functional
MRI analysis, and 21 in the transfer phase behavioural and
functional MRI analyses. Additional participant information is
provided in the Supplementary material.

Procedure

The study was set up as a dopaminergic manipulation, within-
subject design in Parkinson’s disease patients, to reduce the
variance associated with interindividual differences. All
Parkinson’s disease patients and control subjects took part in
at least two sessions, the first of which was always a neuro-
psychological examination (lasting 2 h; 30 min of which were
spent practicing the reinforcement learning task with basic-
shape stimuli). Parkinson’s disease patients subsequently parti-
cipated in two separate functional MRI scanning sessions
(once in a dopamine-medicated ‘ON’ state and once in a
lower dopamine ‘OFF’ state), and control subjects underwent
one functional MRI session. The patient functional MRI ses-
sions were carried out over the same weekend in all but one
patient (2 weeks apart) and were counterbalanced for ON/OFF
medication order. All OFF sessions had to be carried out in the

morning for ethical reasons. Patients were instructed to with-
hold from taking their usual dopamine medication dosage on
the evening prior to and the morning of the OFF session,
thereby allowing 412 h withdrawal at the time of scanning.
Patients on dopamine-agonists (pramipexole, ropinerol) took
their final dopamine-agonist dose on the morning prior to
the day of scanning (�24-h withdrawal). One Parkinson’s dis-
ease patient took his medication 8.5 h before OFF day scan-
ning to relieve symptoms but was nevertheless included in the
analysis.

Neuropsychological assessment

Participants completed a battery of neuropsychological tests on
their first visit. A description of these tests and self-report ques-
tionnaires, along with group results, is included in
Supplementary Table 1. All patients used their dopaminergic
medication as usual during this session. These assessments
were not examined in the current study, but are discussed in
greater detail elsewhere (Engels et al., 2018a, b).

Reinforcement learning task

Participants completed a probabilistic selection reinforcement
learning task consisting of two stages; a learning phase and
transfer phase. This task has been used in several previous
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Figure 1 Experimental design and learning performance. (A) Learning phase: in each trial participants chose between two everyday

objects and observed a probabilistic outcome ‘correct’ or ‘wrong’, corresponding to winning 10 cents or nothing. Each participant viewed three

fixed pairs of stimuli (AB, CD, and EF) and tried to learn which was the best option of each pair, based on the feedback received. Reward

probability contingency per stimulus during learning is shown on the right. Transfer phase: participants were presented with all possible com-

binations of stimuli from the learning phase and had to choose what they thought was the better option, based on what they had learned. No

feedback was provided in this phase. (B) The transfer phase analysis was performed on correctly choosing A on trials in which A was paired with

another stimulus (approach accuracy) or correctly avoiding B on trials where B was paired with another stimulus (avoidance accuracy). (C)

Accuracy in choosing the better option of each pair across each group during learning (mean �1 SEM). Parameter estimates of these medication

and disease effects are presented in Supplementary Fig. 1. HC = healthy controls; PD = Parkinson’s disease.
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studies, in both Parkinson’s disease patients (Frank et al.,
2004; Shiner et al., 2012; Grogan et al., 2017) and healthy
participants (Jocham et al., 2011; Jahfari et al., 2018; Van
Slooten et al., 2018). We used pictures of everyday objects
from different object categories, such as hats, cameras, and
leaves (stimulus set extracted from Konkle et al., 2010).

Learning phase

In the learning phase, three different pairs of object stimuli
(denoted as AB, CD and EF) were repeatedly presented in
random order. Each pair had specific reward probabilities asso-
ciated with each stimulus, and participants had to learn to
choose the best option of each pair based on the feedback
provided (Fig. 1A). Participants were instructed to try to find
the better option of a pair in order to maximize reward.
Feedback was either ‘Goed’ or ‘Fout’ text (meaning ‘correct’
or ‘wrong’ in Dutch), indicating a payout of 10 cents for correct
trials and nothing for incorrect trials. Different objects were
used across each functional MRI session of patients, so as not
to induce any familiarity or reward associations with particular
stimuli. In the ‘easiest’ AB pair, the probability of receiving
reward was 80% for the A stimulus and 20% for the B stimu-
lus, with ratios of 70:30 for CD and 60:40 for EF. The EF pair
was therefore the hardest to learn because of more similar
reward probabilities between the two options. All object stimuli
were counterbalanced for reward probability pair and for better
versus worse option of a pair across subjects (for instance, a leaf
and hat as the A and B stimuli for one participant were the D
and C stimuli for another participant). In total, there were 12
object stimuli and each participant viewed six of these objects in
a given functional MRI session, with Parkinson’s disease pa-
tients viewing the remaining six stimuli in their second func-
tional MRI session. The learning phase consisted of two runs
of 150 trials each (totalling 100 trials per stimulus pair). Each
run was interspersed with 15 null trials to improve model fitting
of this rapid event-related functional MRI design. Null trials,
during which only the fixation cross was presented, lasted at
least 4 s plus an additional interval generated randomly from an
exponential distribution with a mean of 2 s. Each task trial had
a fixed duration of 5000 ms, and began with a jittered interval
of 0, 500, 1000, or 1500 ms to obtain an interpolated temporal
resolution of 500 ms. During the interval, a black fixation cross
was presented and participants were asked to hold fixation.
Two objects were then presented simultaneously left and right
of the fixation cross (counterbalanced across left/right locations
per pair) and remained on the screen until a response was
made. If a response was given on time, a black frame surround-
ing the chosen object was shown (300 ms) and followed by
feedback (600 ms). Omissions were followed by the text ‘te
langzaam’ (‘too slow’ in Dutch). The fixation cross was dis-
played alone after feedback was presented, until the full trial
duration was reached.

Transfer phase

In the transfer phase, novel pairings of all possible combinations
of the six stimuli were presented in addition to the original three
stimulus pairs, thereby making up 15 possible pairings. This
phase consisted of two runs of 120 trials each (eight trials per
pair), and each run randomly interspersed with 12 null trials.
The duration of these null trials was generated in the same way
as in the learning phase. Participants were instructed to choose
what they thought was the better option, given what they had

learned. There was no feedback in this phase and no frame
surrounded the chosen response. Each trial began with a jittered
interval of 500, 1000, 1500 or 2000 ms, with a new trial
starting whenever a response was made.

Learning and transfer

Each object stimulus was presented equally often on the left or
right side in both learning and transfer phases. Responses were
made with the right hand, using the index or middle finger to
choose the left or right stimulus, respectively. One patient was
uncomfortable using two fingers of the right hand and so re-
sponded with the left and right index finger on separate button
boxes (in both ON and OFF sessions). The feedback text was
made larger for one patient in both ON and OFF sessions to
make it easier to read.

Computational model

The Q-learning reinforcement learning algorithm (Sutton and
Barto, 1998) captures trial-by-trial updates in the expected
value of options and has been used extensively to model be-
haviour during learning (Daw et al., 2011; Jocham et al.,
2011; Schmidt et al., 2014; Grogan et al., 2017; Jahfari et
al., 2018). We used a variant of this model with three free
parameters, allowing us to determine how subjects learned
separately from positive and negative feedback (�gain and
�loss) and how much they exploited differences in value be-
tween stimulus pair options (b). In hierarchical models,
group and individual parameter distributions are fit simultan-
eously and constrain each other, leading to greater statistical
power over standard non-hierarchical methods (Ahn et al.,
2011; Steingroever et al., 2013; Wiecki et al., 2013;
Kruschke, 2015; Jahfari et al., 2018). We also fit two addi-
tional models, one model with only one learning rate for any
outcome event, and another model with an additional free
parameter, relating to persistence of choices irrespective of
feedback. We then performed model comparison, allowing us
to verify that the chosen model better represented the data
(Supplementary Table 3). These models were performed
using R (R Development Core and Team, 2017) and RStan.

Subject-level Q-learning model

The Q-learning algorithm assumes that after receiving feed-
back on a given trial, subjects update their expected value of
the chosen stimulus (Qchosen) based on the difference between
the reward received for choosing that stimulus (r = 1 or 0 for
reward or no reward, respectively) and their prior expected
value of that stimulus, according to the following equation:

Qchosenðt þ 1Þ ¼ QchosenðtÞ þ
�gain½rðtÞ �QchosenðtÞ�; if r ¼ 1

�loss½r tð Þ �QchosentÞ�; if r ¼ 0

(

ð1Þ

The term r tð Þ �Qchosen tð Þ is the reward prediction error (RPE).
Accordingly, choices followed by positive feedback (r = 1) were
weighted by the �gain learning rate parameter and choices fol-
lowed by negative feedback (r = 0) were weighted by the �loss

learning rate parameter (0 5 �gain, �loss51). All Q-values
were initialized at 0.5 (no initial bias in value). The probability
of choosing one stimulus over another is described by the soft-
max rule:
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Pchosen tð Þ ¼
exp b�Qchosen tð Þð Þ

exp b�Qunchosen tð Þð Þ þ exp b�Qchosen tð Þð Þ
ð2Þ

where b is known as the inverse temperature or ‘explore-
exploit’ parameter (05b5100). Effectively, b is used as a
weighting on the difference in value between the two options.
The free parameters �gain, �loss and b were fit for each individ-
ual subject, in a combination that maximizes the probability of
the actual choices made by the subject.

Figure 2A shows a graphical representation of the model. The
free parameters �gain and �loss are labelled as �G and �L for
viewing purposes, respectively. The quantities ri, t�1–(reward
for participant i on trial t–1) and chi,t (choice for participant i
on trial t) are obtained directly from the data. The subject-level
quantities �Gi, �Li and bi are deterministic, and were transformed

during estimation using the inverse probit (phi) transformation

Z0i (�0Gi, �
0
Li, b

0

i), which is the cumulative distribution function
of a unit normal distribution. An prime symbol attached to par-

ameters indicates that a phi transformation was applied to these

parameters. The transformed parameters have no prime symbol.
The parameters Z0i (i.e. �0Gi, �

0
Li, b

0

i) lie on the probit scale

covering the entire real line. In this way, transformed parameters
were obtained by applying an inverse probit transformation to

normally-distributed priors centred on zero, with a standard de-
viation (SD) of 1, e.g. m�0G � N (0,1). Weakly informative priors

such as these are recommended in small sample sizes to reduce

the influence of the priors on posterior distributions (Gelman et
al., 2013; Ahn et al., 2017). This guarantees that the converted

priors will be uniformly distributed between 0 and 1 (Wetzels et
al., 2010; Ahn et al., 2014, 2017). The calculation for the

A

D

B

C

Figure 2 Modelling approach and medication-driven parameter shifts in Parkinson’s disease. (A) Graphical outline of the Bayesian

hierarchical Q-learning model with three free parameters, i.e. �gain (denoted here as �G), �loss (denoted here as �L) and b. The prime symbol

attached to these parameters indicates that an inverse probit (phi) transformation was applied to the parameters (refer to the ‘Materials and

methods’ section for description). The model consists of an outer subject (i = 1, . . ., N, including P = 1, . . ., NPD, and h = 1, . . ., NHC), and an inner

trial plane (t = 1, . . ., T). Nodes represent variables of interest. Arrows are used to indicate dependencies between variables. Double borders indicate

deterministic variables. Continuous variables are denoted with circular nodes, and discrete variables with square nodes. Observed variables are

shaded in grey. Per subject and session, ri,t�1 is the reward received on the previous trial of a particular option pair, Qi,t is the current expected value

of a particular stimulus, and P[St] is the probability of choosing a particular stimulus in the current trial. On top of the three-parameter Q-learning

model, dummy variables were defined in accordance with Sharp et al. (2016) to capture group-level disease-related differences in learning (denoted

as: Dis_�gain, Dis_�loss, Dis_b), and within-subject medication differences (Med_�gain, Med_�loss, Med_b). (B) Graphical cartoon for the comparison

of Parkinson’s disease to control subjects in an illustrative Dis parameter. (C) Demonstration of the within-subject comparison of Parkinson’s disease

OFF to Parkinson’s disease ON, resulting in both a subject-level and group-level posterior medication shift in an illustrative Med parameter. Refer to

the ‘Materials and methods’ section for a detailed description of the model with these subject/group difference parameters and definition of priors

and transformations. (D) Group-level posteriors for medication shift in Parkinson’s disease during the learning phase, for all parameters. A leftward

shift in the Med_�loss distribution indicates greater learning from negative outcomes in Parkinson’s disease OFF compared to ON. HC = healthy

controls; PD = Parkinson’s disease.
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transformed b parameter included a multiplicative factor of 100
in the same step as the transformation to allow for a range
between 0 and 100. Following recommendations from the Stan
development team (2016) we used non-centred reparameteriza-
tion to reduce the dependency between mz

0, �z
0 and Z0i when for

example, moving from �0Gi to �Gi with the phi transformation
[see below for elaboration, or Ahn et al. (2017) for more ex-
amples with non-centred reparameterization]. Stan provides a
fast approximation of the inverse probit transformation with
the Phi_approx function.

Group-level Q-learning model

The subject-level model described above was nested inside a
group-level model in a hierarchical manner (Ahn et al., 2017).
Parameters Z0i were drawn from group-level normal distribu-
tions with mean mz

0 and standard deviation �z
0. A normal

prior was assigned to group-level means mz
0�N(0,1), and a

half-Cauchy prior to the group-level standard deviations
�z
0�Cauchy(0,5). The model was extended in two ways in ac-

cordance with Sharp et al. (2016). To capture medication-related
shifts (Parkinson’s disease ON versus OFF) in each of the three
parameters, we included three additional parameters on both the
subject level and on the group level (Fig. 2C and D). Similarly,
we incorporated three additional parameters to capture disease-
related differences (control subjects versus Parkinson’s disease)
on the group level.

For the �gain parameters, these were: Med_�G
0p (for the effect of

medication on �gain in Parkinson’s disease patient p) and Dis_�G
0h

(for the effect of no disease on �gain in control participant h), with
the analogous terms for �loss (Med_�L

0p and Dis_�L
0h) and b

(Med_b0p and Dis_b0h). Symmetric boundaries for all phi trans-
formed Med and Dis parameter distributions were used to con-
strain the model and assist with convergence (�5 5 Med, Dis
5 5). These boundaries were adopted from recent work with a
similar hierarchical Bayesian parameter approach (Pedersen et al.,
2016). Prior to committing to these bounds we evaluated two al-
ternative bounds for these parameters, with either �1 5 Med, Dis
5 1 or �10 5 Med, Dis 5 10. The [�1,1] bounds were found
to be too conservative, as posterior distributions were cut off at
boundary values. In contrast, the [�10,10] bounds were overly
liberal, as the distributions were well-contained within the [�5,5]
interval. Group-level priors were the same as those on the subject-
level, i.e. a normal prior was assigned to the group-level means of
all the Med and Dis free parameters, e.g. Med_m�0G � N (0,1), and
a half-Cauchy prior was applied to all group-level standard devi-
ations, e.g. Med_��0G � Cauchy (0,5).

We took Parkinson’s disease OFF as ‘baseline’ by using two
binary indicators: I 0on

0� �
= 0, and I 0healthy

0� �
= 0. Parkinson’s

disease ON was coded as I 0on
0� �

= 1, I 0healthy
0� �

= 0, and con-
trol subjects was coded as I 0on

0� �
= 0, I 0healthy

0� �
= 1. For sub-

ject s and medication condition m, the phi transformed �gain

parameter (denoted as �G below) of an individual subject was
formulated as follows:

�Gs;m ¼ Phiapprox

�
m�G þ ð��G � �

0Gs;mÞ þ ½Med�G � Im; 0on0�

þ ½Dis�G � I s;
0

healthy
0� �
�

�
ð3Þ

As mentioned, Phiapprox is an approximation of the inverse
probit transformation, a function provided by Stan for efficient
computation. We used a non-centred reparameterization

technique to move from �0Gs;mto �Gs;m; a normal (m, �) dis-
tribution can be reparameterized and sampled from a unit
normal distribution that is multiplied by the scale parameter
� and then shifted by the location parameter m (Stan
Development Team, 2015; Ahn et al., 2017). Using the
binary indicators described above, Parkinson’s disease OFF
did not contain either of the Med_�G or Dis_�G terms,
Parkinson’s disease ON included the Med_�G term to indicate
the within-subject effect of medication, and control subjects
included the Dis_�G term to denote the between-subject
effect of disease. �loss and b parameters were distributed in
the same way with their corresponding terms. As the medica-
tion effect was within-subject, it was itself a subject-specific
random variable with its own population-level mean and vari-
ance. Once again using non-centred reparameterization, the
medication effect was formulated as follows:

Med �Gs ¼ Phiapprox Med �Gþ �Med �G �Med �0Gsð Þð Þ ð4Þ

Refer to the Supplementary material for the model estimation
procedure and Supplementary Fig. 2 for an evaluation of the
model fit. Bayes factors (BFs) of group level posterior distribu-
tions for medication and disease differences were calculated as
the ratio of the posterior density above zero relative to the
posterior density below zero (Pedersen et al., 2016). This
method is possible as the priors for the distributions of these
parameters were symmetric (unbiased) around zero (Marsman
and Wagenmakers, 2017). Categories of evidential strength of
an effect are based on Jeffreys (1998), with BFs 410 con-
sidered as strong evidence that the shift in the posterior distri-
bution is different from zero. We provide all fitting code online
at: https://github.com/mccoyb4/Parkinson_RL.

Statistical evaluations of behaviour

General

As Parkinson’s disease patients were tested twice and control
participants only once, we confirmed that session order effects
did not affect performance during either the learning phase or
transfer phase (Supplementary material and Supplementary
Fig. 3).

Learning phase

Bayesian mixed-effects logistic regression modelling was car-
ried out on trial-by-trial behaviour (Wunderlich et al., 2012;
Doll et al., 2016; Sharp et al., 2016). These analyses were
performed in R (R Development Core and Team, 2017),
using the Bayesian Linear Mixed-Effects Models (blme) pack-
age (Chung et al., 2013), built on top of lme4 (Bates et al.,
2014). In our mixed-effects models, we coded for both fixed
and random trial-by-trial effects and allowed for a varying
intercept on a per subject basis. For the model on learning
behaviour, the dependent variable was accuracy in choosing
the better stimulus of a pair (correct = 1, incorrect = 0).
Stimulus pair (‘Pair’) was taken as a within-subject (random-
effect) explanatory variable (EV), from easiest to most difficult
(AB pair = 1, CD pair = 0, EF pair = �1). We also included
two binary covariates (as in Sharp et al., 2016); the be-
tween-subject effect of disease (Dis, where Parkinson’s dis-
ease = 0, control subjects = 1) and the within-subject effect of
dopaminergic medication state (Med, where OFF = 0, ON = 1),
as well as their interactions with the stimulus pair variable.
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The medication variable for control subjects was coded as 0 as
we wanted this to capture only the within-subject effect of
medication. As disease and medication status were both
included in the same model, Parkinson’s disease OFF was con-
sidered to act as a baseline (Dis = 0, Med = 0). Within-subject
effects of medication for Parkinson’s disease ON (Dis = 0,
Med = 1) were therefore captured by the medication variable
only and between-subject effects of disease for control subjects
(Dis = 1, Med = 0) were captured by the disease variable only
(with Dis = 1 meaning ‘healthy’). This is summarized in the
following regression equation:

Correct ¼ PairþMedþDisþ Pair�Medþ Pair�Dis

þ Subject Intercept
ð5Þ

Positive beta estimates obtained from the model therefore in-
dicate higher accuracy for either Parkinson’s disease ON or
control subjects compared to Parkinson’s disease OFF in the
Med and Dis variables, respectively, with negative estimates
for those variables reflecting greater accuracy for Parkinson’s
disease OFF.

Transfer phase

The mixed-effects regression on transfer phase behaviour was
carried out on trials in which either the A or B stimulus ap-
peared, excluding those in which both appeared together
(Fig. 1B). The expectation was that participants should opt
to choose A (Approach A) and avoid choosing B (Avoid B)
whenever they were presented, since they were associated with
the highest and lowest reward probabilities during learning,
respectively. The regression was performed similarly to that
in the learning phase, except that the stimulus pair variable
was replaced with an Approach A / Avoid B trial variable
(A = 1, B = �1). The dependent variable (accuracy) was then
coded as 1 for correctly choosing A in Approach A or cor-
rectly not choosing B in Avoid B trials, and as 0 for incorrectly
choosing the other option for each trial type. Medication and
disease status were included as covariates, with a varying inter-
cept per subject. To assess the role of medication and disease
status on Approach A and Avoid B performance separately, we
carried out a regression analysis on each subset, with the same
covariates as described previously.

Learning and transfer

The relationship between medication-induced shifts during
learning and transfer was evaluated in two steps. First, we
compared three multiple regression models, as shown in
Supplementary Table 4, to evaluate how the learning rate
medication shifts (i.e. Med_�G, Med_�L, or both) relate to
the transfer phase approach/avoid shifts on an individual
level. In these (multiple) regression models, the approach/
avoid shift (defined for each subject as the OFF 4 ON medi-
cation difference in Avoid B 4 Approach A accuracies) was
set as the dependent variable. Next, Bayesian information cri-
terion (BIC) scores were computed for each regression (with
explanatory variables being either only Med_�G, Med_�L, or
both), to select the optimal model for the evaluation of medi-
cation relationships between the learning and transfer phase.
Individual learning-rate medication differences were quantified
as the modes of the within-subject medication difference par-
ameter distributions, to capture peak probability densities
(Supplementary Fig. 4).

Functional MRI image acquisition

Functional MRI scanning was carried out using a 3 T GE
Signa HDxT MRI scanner (General Electric) with 8-channel
head coil at the VU University Medical Center (Amsterdam,
The Netherlands). Functional data for the learning and trans-
fer phase runs were acquired using T2*-weighted echo-planar
images with BOLD contrasts, containing �410 and 240 vol-
umes for learning and transfer runs, respectively. The first two
repetition time volumes were removed to allow for T1 equili-
bration. Each volume contained 42 axial slices, with 3.3 mm
in-plane resolution, repetition time = 2150 ms, echo time = 35
ms, flip angle = 80�, field of view = 240 mm, 64 � 64 matrix.
Structural images were acquired with a 3D T1-weighted mag-
netization prepared rapid gradient echo (MPRAGE) sequence
with the following acquisition parameters: 1 mm isotropic
resolution, 176 slices, repetition time = 8.2 ms, echo
time = 3.2 ms, flip angle = 12�, inversion time = 450 ms, 256
� 256 matrix. The subject’s head was stabilized using foam
pads to reduce motion artefacts.

Functional MRI analysis

Preprocessing was performed using FMRIPREP version 1.0.0-
rc2 (Esteban et al., 2018a, b), a Nipype-based tool
(Gorgolewski et al., 2011, 2017). On the learning phase
data, we carried out a single-trial whole-brain analysis and
deconvolution analyses on targeted striatal regions of interest.
For the transfer phase data, BOLD per cent signal change was
extracted for the relevant approach/avoidance conditions. See
Supplementary material for full details on each of these steps.

Data availability

Related analysis code is available at https://github.com/
mccoyb4/Parkinson_RL.

For ethical reasons, we are unable to share the patient data.
The raw data underpinning the findings of this study are avail-
able upon reasonable request from the corresponding author.
These are in BIDS format and preprocessed with fMRIPrep to
ease and encourage sharing upon request. Functional MRI
statistics maps and associated tables of activated regions per
group and per group comparison are available to view on
figshare, at: https://doi.org/10.6084/m9.figshare.6989024.v2.

Results
During the learning phase, participants successfully learned

to choose the best option out of three fixed pairs of stimuli

(Fig. 1C). Each pair was associated with its own relative

reward probability among the two options, labelled as AB

(with 80:20 reward probability for A:B stimuli), CD

(70:30) and EF (60:40). Choice accuracy analysis showed

that learning took place in Parkinson’s disease ON,

Parkinson’s disease OFF and control subjects (n = 23 in

each group), with the probability with which participants

chose the better option of each stimulus pair largely reflect-

ing the underlying reward probabilities (Parkinson’s disease

ON: 82.3% � 3.1, 70.8% � 3.5, and 63.7% � 3.5;

Parkinson’s disease OFF: 76.6% � 3.4, 70.7% � 3.7,
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and 64.4% � 3.6; and control subjects: 83.7% � 2.7,

78.4% � 3.1, and 66.5% � 4.4 for AB, CD, and EF

stimulus pairs, respectively).

We examined within- and between-subject differences in

choice accuracy using a Bayesian mixed-effects logistic re-

gression on the observed trial-by-trial behaviour

(Supplementary Fig. 1). This analysis assessed how choice

accuracy was affected by stimulus pair, medication, disease

status, and their interactions. When patients were ON

medication, overall performance was more accurate in

comparison to OFF, with the biggest difference for the

easier AB choices and a smaller difference for the more

uncertain EF pair. This was evidenced by a main effect of

stimulus pair [b (standard error, SE) = 0.35 (0.03),

z = 10.19, P 55 0.001], medication [b (SE) = 0.11

(0.04), z = 2.80, P = 0.005], and, specifically, an interaction

between medication and stimulus pair [b (SE) = 0.17 (0.05),

z = 3.47, P 5 0.001]. Importantly, this specific effect of

medication was reflected in an analogous effect of disease

when comparing Parkinson’s disease OFF to control sub-

jects, with a significant interaction between disease status

and stimulus pair [b (SE) = 0.20 (0.05), z = 3.81, P 5
0.001]. As learning of the AB pair plays a particularly im-

portant role in subsequent transfer phase choices during

Approach A and Avoid B trials, we also carried out

mixed-effects logistic regression analyses to assess how

positive and negative feedback affect choice behaviour for

the AB pair during learning. We found that in trials fol-

lowing negative, but not positive, feedback, Parkinson’s

disease ON chose the better A stimulus more often than

Parkinson’s disease OFF [b (SE) = 0.52 (0.13), z = 3.96,

P 5 0.001], indicating that Parkinson’s disease ON are

less likely to use negative outcomes to guide subsequent

choices (Supplementary material).

Overall, these first analyses show an improvement in

choice accuracy when patients are ON compared to OFF

medication, with performance on the easiest option pair

restored to the level of control subjects. However, although

choice accuracy provides us with a general assessment of

medication effects on performance, it does not relate these

effects to a mechanistic explanation of how underlying in-

dices of learning might be affected by medication. These

underlying mechanisms can be studied and defined both

at the group level (control subjects versus Parkinson’s dis-

ease), and within-subject level (Parkinson’s disease ON

versus OFF) by adopting a formal learning model of be-

haviour, to which we turn next.

Medication reduces learning rate for
negative outcomes

Reinforcement learning theories describe how an agent

learns to select the highest-value action for a given decision,

based on the incorporation of received rewards (Rescorla

and Wagner, 1972; Sutton and Barto, 1998). We imple-

mented a Q-learning model, graphically represented in

Fig. 2A–C, to describe both value-based decision-making

and the integration of reward feedback in our experiment

(Daw et al., 2011; Jocham et al., 2011; Schmidt et al.,

2014). Our model used separate parameters to describe,

for a given agent, how strongly current value estimates

are updated by positive (�gain) and negative (�loss) feedback,

i.e. positive and negative learning rates (Grogan et al.,

2017; Jahfari et al., 2018; Van Slooten et al., 2018;

Verharen et al., 2018), as well as a parameter that deter-

mines the extent to which differences in value between

stimuli are exploited (b). To understand how medication

affects learning in Parkinson’s disease we examined the

posterior distributions of group-level parameters represent-

ing the within-subject medication shift in �gain, �loss and b
(Fig. 2D). The large leftward shift of the �loss posterior

distribution indicates higher learning rates after negative

outcomes in Parkinson’s disease OFF compared to ON

(BF = 11.40). This is consistent with the theory that

Parkinson’s disease increases the sensitivity to negative out-

comes, and that dopaminergic medication remediates spe-

cifically this disease symptom. Conversely, shifts in the

distributions of the �gain and b parameters were merely

anecdotal (1 5 BFs 5 2, see Supplementary Table 5 and

Supplementary Fig. 4 for individual within-subject effects of

medication). For parameter comparisons between

Parkinson’s disease and control subjects based on disease

status, we found strong evidence for a higher b, i.e. greater

exploitation, in control subjects compared to Parkinson’s

disease (BF = 16.89) in addition to a moderate effect on

�loss (Supplementary Figs 5 and 6).

Medication in Parkinson’s disease
reduces the sensitivity of dorsal
striatum to reward prediction error

In the Q-learning model, the learning rate weighs the extent

to which value beliefs are updated based on trial-by-trial

RPE. The processing of choice outcomes is known to influ-

ence BOLD signals in the striatum, where the sensitivity to

RPE is changed when dopamine levels are manipulated

(Pessiglione et al., 2006; Jocham et al., 2011; Schmidt

et al., 2014). To establish whether RPE processing in the

current study was influenced by dopaminergic state, we first

examined within-subject medication-related differences in

whole-brain responses to all positive and negative RPEs

in the learning phase using a single-trial general linear

model (Supplementary material). This analysis provides an

unbiased overview of any RPE-related (positive and/or

negative) differences caused by dopaminergic medication

across the entire brain. We found a significant

Parkinson’s disease OFF 4 ON medication difference in

RPE modulation of the caudate nucleus and putamen

(Fig. 3), and in several other regions including the globus

pallidus interna and externa, thalamus, cerebellum, lingual

gyrus and precuneus. Comparisons of control subjects with

Parkinson’s disease (ON and OFF) showed no RPE-related
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differences in the striatum, with significant RPE differences

in frontal medial cortex, subcallosal cortex, and precuneus

(control subjects 4 Parkinson’s disease OFF) and in the

occipital pole (control subjects 4 Parkinson’s disease

ON). The opposing contrasts, i.e. Parkinson’s disease

ON/OFF 4 control subjects, showed more extended acti-

vations, with RPE-related group differences in the paracin-

gulate gyrus, superior frontal gyrus, frontal pole,

supramarginal gyrus, cerebellum, occipital pole and lateral

occipital cortex (Parkinson’s disease OFF 4 control sub-

jects) and in the cerebellum, brainstem, and lateral occipital

cortex (Parkinson’s disease ON 4 control subjects).

Because our model-based behavioural analysis revealed a

medication-related difference specific to learning from nega-

tive outcomes (Fig. 2D), we proceeded by analysing BOLD

response time series to positive and negative outcomes

separately.

Medication effects in dorsal striatum
are specific to the processing of
negative reward prediction errors

To disentangle the separate effects of positive and negative

RPE signalling, we examined feedback-triggered BOLD

time courses from three independent striatal masks; the

caudate nucleus, putamen, and nucleus accumbens

(Supplementary material and Supplementary Figs 7 and

8). We found a significant medication difference only in

the caudate nucleus, in BOLD activity associated only

with negative RPE (Fig. 4). RPE modulation of the

BOLD response was greater in Parkinson’s disease OFF

compared to ON, during the interval 7.51–10.67 s after

the onset of negative feedback. Medication status did not

alter the BOLD responses to positive RPE, indicating that

changes due to dopaminergic medication are specific to

negative RPE signalling in the caudate nucleus, the most

dorsal part of the striatum. As well as tracking RPEs at

the time of feedback, the striatum has been shown to rep-

resent the Q-value of the (to-be) chosen stimulus during the

choice period (Kim et al., 2009; Horga et al., 2015; Jahfari

et al., 2019). We therefore also performed a separate time-

course analysis on the effect of Q-values on the BOLD

signal in striatal regions of interest during stimulus presen-

tation (Supplementary material). This showed a medica-

tion-related increase in the modulation of BOLD by

Q-values in the putamen (Supplementary Fig. 9).

Behavioural analysis of transfer phase

The previous sections reveal how medication remediates the

way patients learn from negative outcomes by detailing

medication-related changes in brain and behaviour. Much

of the previous literature, however, has focused on how

subsequent decision-making in the transfer phase is affected

by dopaminergic medication (Frank et al., 2004; Frank,

2007; Shiner et al., 2012; Grogan et al., 2017). We next

set out to explore the relation between medication-induced

changes in learning and subsequent behaviour. In the trans-

fer phase of the experiment, participants were presented

with novel pairings of the learning phase stimuli and

were asked to choose the best option based on their previ-

ous experience with the options (Fig. 1A). We examined

accuracy in correctly choosing the stimulus associated

with the highest value from the learning phase

(‘Approach A’ trials) and correctly avoiding the stimulus

associated with the lowest value (‘Avoid B’ trials) (Frank

et al., 2004; Jocham et al., 2011), as in Fig. 1B (also refer

to the ‘Materials and methods’ section). Replicating several

previous reports (Frank et al., 2004; Frank, 2007), results

showed a strong interaction between medication

(Parkinson’s disease ON or OFF) and trial type

(Approach A or Avoid B) [b (SE) = 0.34 (0.06), z = 5.75,

P 5 0.001]. That is, medication in Parkinson’s disease im-

proved accuracy scores for Approach trials, but decreased

accuracy for Avoid trials (Fig. 5A). Notably, there were no

main effects of trial type, medication or disease status in

addition to this pivotal approach/avoidance medication

interaction. Thus, medication only influenced Approach A

versus Avoid B choice patterns, with no further differences

in the overall accuracy across groups or trials. An inde-

pendent analysis of Approach A and Avoid B trials separ-

ately revealed a main effect of medication on performance

for both approach trials [a positive effect of medication on

accuracy; b (SE) = 0.39 (0.08), z = 4.28, P 5 0.001] and

avoid trials [a negative effect of medication on accuracy;

P A

x = -8 y = 9

R L

6.27

2.30
R L

z = 8

Figure 3 Whole-brain medication-related difference in RPE modulation. Whole-brain medication effects for the comparison

Parkinson’s disease OFF 4 ON in RPE-related modulations during the learning phase (z = 2.3, P 5 0.01, cluster-corrected), showing a dopamine-

driven difference in the left dorsal striatum (see Supplementary Table 5 for a full list of brain region differences and contrast statistics). Whole-

brain group-level contrasts of RPE and feedback valence are available to view on figshare, at https://doi.org/10.6084/m9.figshare.6989024.v2.

A = anterior; L = left; P = posterior; R = right.
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b (SE) = �0.35 (0.09), z = 4.03, P 5 0.001]. Finally, an

evaluation of control subjects’ performance showed an

interaction between disease status (control subjects versus

Parkinson’s disease OFF) and Approach A/Avoid B trial

type [b (SE) = 0.29 (0.06), z = 4.56, P 5 0.001], with con-

trol subjects showing an approach/avoid asymmetry similar

to Parkinson’s disease ON (Supplementary Fig. 10). There

were no main effects of disease, i.e. there was no significant

difference between control subjects and Parkinson’s disease

OFF for either trial type. Approach/avoidance asymmetries

are therefore particularly evident when assessing within-pa-

tient effects of dopaminergic medication.

Medication shifts in learning rate
for negative outcomes relate to
behavioural and striatal changes
during transfer

We have described how medication affects the updating of

individual patients’ beliefs after encounters with negative

feedback, and replicate previous work by showing medica-

tion-induced changes in approach/avoidance choices during

a follow-up transfer phase with no feedback. In this final

section we explore how the shift in learning rates caused by

medication during learning relates to the subsequent ap-

proach/avoidance interaction in (i) choice outcomes; and

(ii) the BOLD response of the dorsal striatum.

Consistent with the observation that medication only af-

fects learning rates after negative outcomes, we found that

only the medication-related shift in �loss (and not �gain) was

predictive of the magnitude of change in approach/avoid-

ance behaviour, as indicated by the lowest BIC in a formal

model comparison analysis (Supplementary Table 4). In

other words, the more �loss was lowered by medication,

the bigger the medication-induced interaction effect in

future approach/avoidance choice patterns [b (SE) = 91.97

(41.26), t(22) = 2.23, P = 0.037] (Fig. 5B). Because the

dorsal striatum was differentially responsive to RPE

during learning, we additionally examined how learning

rate shifts relate to the striatal BOLD response in ap-

proach/avoidance trials, while patients were ON or OFF

A

B

Figure 4 BOLD response and RPE modulation of the BOLD signal during feedback events. (A) BOLD per cent signal change in

response to positive (left) and negative (right) feedback events, in Parkinson’s disease (PD) patients ON and OFF medication. There were no

significant medication-driven differences for either event type. (B) BOLD RPE covariation time courses for positive (left) and negative (right)

feedback events. We found a significant difference between Parkinson’s disease OFF and ON in negative RPE responses, but not in positive RPE

responses. The grey shaded area reflects a significant Parkinson’s disease OFF 4 ON difference passing cluster-correction for multiple com-

parisons across time points (P 5 0.05). Coloured bands represent 68% confidence intervals (�1 SEM). A similar comparison between control

subjects and each Parkinson’s disease ON or OFF state showed no significant differences in the caudate nucleus (Supplementary Fig. 7). The same

analyses of putamen and nucleus accumbens regions of interest revealed no medication-related RPE differences in these regions (Supplementary

Fig. 8).
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medication. To this end, we masked the caudate and puta-

men using the whole-brain RPE z-statistics map shown in

Fig. 3. From these masks BOLD responses were extracted

for Approach A and Avoid B trials, for each of the

Parkinson’s disease ON and OFF sessions. Again, only

the medication-induced shift in �loss predicted the magni-

tude of change in the BOLD response of the caudate nu-

cleus, but not the putamen, for approach/avoidance trials

of OFF compared to ON (Supplementary Table 4) [b
(SE) = 1.54, (0.56), t(22) = 2.77, P = 0.012] (Fig. 5C). In

summary, these findings show that within-subject medica-

tion-related shifts in learning from negative outcomes are

predictive of subsequent approach/avoidance medication-

related changes, both in terms of behavioural accuracy

and BOLD signalling in the caudate nucleus.

Discussion
Our findings provide a bridge between a previously dispar-

ate set of findings relating to reinforcement learning in

Parkinson’s disease. First, using a formalized learning

theory, we show how dopaminergic medication remediates

learning behaviour by reducing the patient’s emphasis on

negative outcomes. These behavioural adaptations were

tied to BOLD changes in the dorsal striatum, with medica-

tion reducing the sensitivity to RPEs, specifically during the

processing of negative outcomes. Second, we show a rela-

tionship between how the medication-induced change in

learning and subsequent approach/avoidance choices that

differ in Parkinson’s disease when patients are ON or

OFF medication. We found that the greater the degree of

restoration by medication in the learning rate for negative

outcomes, the greater the medication-related impact on

both subsequent behaviour and associated BOLD responses

of the dorsal striatum during value-based decision-making.

Our finding that medication reduces negative learning

rate directly replicates studies showing a medication-

driven impairment in behavioural responses relating to

negative feedback, in a variety of probabilistic learning

tasks (Frank et al., 2004; Cools et al., 2006; Bódi et al.,

2009; Palminteri et al., 2009). Furthermore, this finding

corroborates a dopamine-driven reduction in model-based

negative learning rate in Parkinson’s disease patients (Voon

et al., 2010) and rats (Verharen et al., 2018). The shift

towards lower sensitivity to negative outcomes in

Parkinson’s disease ON reflects a partially restorative

effect. While sensitivity to negative outcomes became

more similar to that observed in healthy controls, deci-

sion-making volatility, i.e. the exploitation of higher-

valued options, did not (Supplementary Fig. 6). Although

theory on dopaminergic signalling has suggested a dual in-

fluence of medication on learning from both positive and

negative outcomes (Frank, 2005), conclusions in the litera-

ture have been mixed. While this dual effect has been

shown in several studies (Bódi et al., 2009; Palminteri et

al., 2009; Voon et al., 2010; Maril et al., 2013), much

literature has indicated an effect of medication only on

negative feedback learning (Frank et al., 2004; Cools et

al., 2006; Frank, 2007; Mathar et al., 2017) or only on

positive feedback learning (Rutledge et al., 2009; Shiner et

al., 2012; Smittenaar et al., 2012). The notion of a dual

influence of medication on both positive and negative RPEs

A B C

r = −0.52, P = 0.012

r = 0.44, P = 0.037

Behaviour

Figure 5 Medication-induced changes in learning from negative outcomes in Parkinson’s disease predicts the magnitude of

medication difference in subsequent approach/avoidance behavioural choices and striatal response. (A) Transfer phase behavioural

accuracy in Approach A and Avoid B responses, showing a significant within-subject medication interaction in approach/avoidance behaviour (P 5
0.001). Parkinson’s disease (PD) ON had a higher accuracy in approach trials but a lower accuracy in avoid trials than Parkinson’s disease OFF.

Control subjects’ performance is shown in Supplementary Fig. 10. (B) A positive relationship between the medication difference, i.e. the

parameter shift for OFF 4 ON, in negative learning rate and the transfer phase medication accuracy difference (OFF 4 ON) in avoiding the

lowest-value stimulus versus approaching the highest-valued stimulus, i.e. the interaction observed in A. (C) A negative relationship between the

medication difference (OFF 4 ON) in negative learning rate and the same transfer phase medication difference (OFF 4 ON) in avoid compared

to approach trials, here in terms of BOLD per cent signal change in the caudate nucleus.
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is therefore not always, and in fact frequently is not, seen in

the literature.

The medication interaction in subsequent approach/

avoidance behaviour we find in the transfer phase supports

previous research on the transfer of learned value to new

contexts (Frank et al., 2004; Frank, 2007; Cox et al.,

2015). A similar interaction effect for control subjects com-

pared to Parkinson’s disease OFF suggests that medication

may play a role in normalizing the balance in approach/

avoidance behaviour towards healthy levels (Supplementary

Fig. 10). This reinforces the notion that dopaminergic

medication shifts the balance in activation of the Go and

NoGo pathways of the striatum (Frank, 2005). It has been

an open question whether these Go and NoGo pathways

are in competition with each other or function independ-

ently. A recent review suggests that the Go and NoGo

pathways should not be viewed as separate, parallel sys-

tems (Calabresi et al., 2014). The two pathways are instead

described to be structurally and functionally intertwined,

with ‘cross-talk’ occurring between Go and NoGo neuronal

subtypes. It is therefore possible that differences in the pro-

cessing of negative feedback during learning not only affect

the NoGo pathway, but also the Go pathway (in a push-

pull manner). This account represents a potential means by

which the dopamine-dependent alterations in learning from

negative outcomes observed in the current study can lead to

an integrated (interactive) effect on subsequent approach

and avoidance behaviour and associated BOLD activation

in the striatum.

We observed greater RPE modulation of BOLD signal-

ling in Parkinson’s disease OFF compared to ON, indicat-

ing a medication-related role in the modulation of caudate

nucleus activity during learning. Striatal BOLD activations

have previously been demonstrated to track RPE, with nu-

merous studies implicating the caudate nucleus in RPE sig-

nalling during goal-directed behaviour (Davidson et al.,

2004; O’Doherty et al., 2004; Delgado et al., 2005;

Haruno and Kawato, 2006). The whole-brain analysis

used in the current study reveals greater within-subject

RPE modulation in patients OFF compared to ON medica-

tion in the dorsal striatum, a region well established to

suffer substantial depletion of dopamine availability in

Parkinson’s disease (Bernheimer et al., 1973; Dauer and

Przedborski, 2003). Patients in our study do not exhibit

clear medication-related differences that signify an excessive

level of dopamine in the ventral striatum, as postulated by

the dopamine overdose hypothesis (Cools et al., 2001,

2006) and presented in studies focusing on the nucleus

accumbens (Cools, 2006; Schmidt et al., 2014). In our

data, there does appear to be a quantitative medication-

induced increase in the modulation of nucleus accumbens

activity by positive RPE, however, this effect is not signifi-

cant (Supplementary Fig. 8). One recent study describing

the mechanisms underlying ‘optimism bias’ (a higher rate of

learning from positive than negative outcomes) revealed

greater RPE signalling in the ventral striatum for individuals

who had a higher optimism bias (Lefebvre et al., 2017).

Given that we found reduced sensitivity to negative out-

comes in Parkinson’s disease ON than OFF, with no dif-

ference in learning from positive outcomes, we deem it

likely that there is a relationship between optimism bias

and (quantitative) medication-related differences in the ven-

tral striatum in Parkinson’s disease.

Activation of the dorsal striatum has been reported for

instrumental but not Pavlovian learning, suggesting its role

in establishing stimulus-response-outcome associations

(O’Doherty et al., 2004). A prominent theory of dopamine

functioning, the actor-critic model, highlights distinct roles

for reward prediction and action-planning in reinforcement

learning (Houk, 1995; Suri and Schultz, 1999; Joel et al.,

2002), with the ventral striatum (critic) implicated in the

prediction of future rewards (Cardinal et al., 2002), and the

dorsal striatum (actor) proposed to maintain information

about rewarding outcomes of current actions to help

inform future actions (Packard and Knowlton, 2002;

Atallah et al., 2007). Connectivity between the midbrain

substantia nigra and dorsal striatum has also been found

to predict the impact of differing reinforcements on future

behaviour (Kahnt et al., 2009). Overall, the caudate nu-

cleus has been put forward as a hub that integrates infor-

mation from reward and cognitive cortical areas in the

development of strategic action planning (Haber and

Knutson, 2010). The dopamine-dependent differences in

RPE modulation of BOLD activity in the caudate nucleus

presented here therefore suggest that Parkinson’s disease’s

dopamine-related effects are specific to the processing of

feedback to guide future actions. The dopamine-related

interaction in approach/avoidance behaviour found in the

transfer phase, in which actions were guided by previously

learned values, provides further support for this

interpretation.

A separate evaluation of medication-related differences

during the choice period revealed that modulation of

BOLD activation by Q-values was higher in the putamen

when patients were ON compared to OFF medication

(Supplementary Fig. 9). Interestingly, the putamen has

been demonstrated to track action-specific (Q-) value sig-

nals (Jahfari et al., 2019) and the covariation of this track-

ing was found to be higher in good compared to bad

learners (Horga et al., 2015). Our behavioural analysis

on choice accuracy during learning demonstrated greater

overall learning in Parkinson’s disease ON compared to

OFF, which fits well with this Parkinson’s disease ON 4
OFF group level difference of Q-value signalling in the pu-

tamen. Medication-related differences in the putamen for

choice valuation during learning is thus an interesting

avenue for future Parkinson’s disease research.

We established a link between medication-dependent

changes in learning from negative outcomes to subsequent

changes in approach/avoidance striatal activity by specific-

ally focusing on the region that showed a robust medica-

tion-dependent difference in phasic RPE modulation during

learning. This suggests that the caudate nucleus’ processing

of negative RPE in Parkinson’s disease ON plays an
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important role in the subsequent medication-induced shift

in balance between approach and avoidance behaviour.

Although focusing on the ventral striatum, a recent study

on rats showed that increased activation in the VTA-NAc

(nucleus accumbens) pathway associated with a higher

dopaminergic state was reflected in behaviour by a reduced

sensitivity to negative outcomes (Verharen et al., 2018).

Our findings suggest that the caudate nucleus may play a

similar role in the processing of negative outcomes in

Parkinson’s disease. Future research could address whether

this is modulated by substantia nigra-caudate nucleus con-

nectivity and/or the interplay between instrumental and

Pavlovian learning.

In several previous studies, dopamine level was manipulated

pharmacologically in healthy adults, via levodopa medication

(Pessiglione et al., 2006) or NoGo (D2) receptor antagonists

(Jocham et al., 2011; Van Der Schaaf et al., 2014). Here, we

examined separable disease-related and dopaminergic medica-

tion-related effects in Parkinson’s disease. Patients in the cur-

rent study used a combination of dopaminergic medications,

including those acting on both Go and NoGo receptors (levo-

dopa), inhibitors that slow the effect of levodopa to give a

more stable release, and dopamine agonists, which have a

particular affinity for NoGo receptors. Accordingly, a limita-

tion of our study is that we cannot pin down the relationship

between specific dopaminergic medications and changes in

learning. Dissociation between the different types of dopamin-

ergic medication could therefore be a potential avenue for

future research.

Although there is moderate evidence for a higher sensi-

tivity to negative feedback in Parkinson’s disease OFF com-

pared to control subjects, we found that the greatest

disease-related difference lies in the explore/exploit param-

eter of the model (Supplementary Fig. 5). Higher choice

accuracy during easier decisions in control subjects is

likely strongly influenced by greater exploitation of value

differences between options; indeed, a positive correlation

has recently been shown between choice accuracy and ex-

ploitation in a similar reinforcement learning task (Jahfari

et al., 2018). In the current study, this difference in exploit-

ation was observed regardless of Parkinson’s disease medi-

cation state (Supplementary Fig. 6), showing that dopamine

medication in Parkinson’s disease does not reinstate healthy

exploitative behaviour. This selectivity of dopaminergic

medication’s effects on learning may indicate certain mech-

anisms underlying Parkinson’s disease-related psychiatric

disorders (Voon et al., 2010). Recent evidence from a per-

ceptual decision-making study in Parkinson’s disease

showed an impaired use of prior information in patients

in making perceptual decisions (Perugini et al., 2016), a

deficiency that also was not alleviated by dopaminergic

medication (Perugini et al., 2018). Thus, regardless of

medication status, Parkinson’s disease patients show im-

pairment in the integration of memory with the current

sensory input. As the explore/exploit parameter of the

task used in our experiments is dependent upon the re-

trieval of the expected value of chosen options, a similar

memory-guided decision-making impairment may have also

played a role in the current reinforcement learning task.

We included several spouses of Parkinson’s disease patients

in our control sample. Spouses of patients may be under more

stress or anxiety than usual, which may impact how they

learn from reinforcements. Since control subjects as a group

performed significantly better than Parkinson’s disease pa-

tients during the learning phase and similar to control subjects

during the transfer phase in a similar previous study (Frank et

al., 2004), it seems likely that our control sample was suffi-

ciently representative of healthy older adults to allow us to

examine disease-related differences in learning.

Computational psychiatry is a burgeoning field of re-

search with the aim of translating advances in computa-

tional methods to practical benefits for patient diagnosis

and intervention (Huys et al., 2016; Maia and Conceição,

2017). The surge in the application of reinforcement learn-

ing models to patient data warrants extensive examination

of the model fitting procedures, parameter recovery, and

model identifiability, i.e. if parameters are highly correlated,

then one parameter may falsely absorb an effect that is not

actually true (Maia and Conceição, 2017). With this in

mind, we used a hierarchical Bayesian modelling approach

where individual and group parameters are estimated sim-

ultaneously in a mutually constraining manner (Wetzels et

al., 2010; Steingroever et al., 2013; Wiecki et al., 2013;

Ahn et al., 2017). The performance of this model was sub-

sequently extensively evaluated with a focus on reliability.

Overall, we show: (i) that our model’s parameters are only

weakly related (Supplementary Fig. 11); (ii) accurate par-

ameter recovery for each participant in our study; and (iii)

accurate data recovery (Supplementary Fig. 2), which indi-

cates that the model can suitably reproduce the observed

data for both patients and healthy controls. Moreover, we

note that the parameter estimates in this study are compar-

able to our other work using this task and a similar Q-

learning model (Jahfari and Theeuwes, 2017; Jahfari et al.,

2018; Van Slooten et al., 2018, 2019).

In conclusion, we comprehensively illustrate how dopa-

minergic medication used in Parkinson’s disease can help

remediate sensitivity to negative outcomes, indicated by

both changes in negative learning rate and the dorsal stri-

atum’s response to negative RPE. Furthermore, we show

how, when using experience garnered during learning to

guide subsequent value-based decisions, these effects shift

the balance of approach/avoidance behaviour and asso-

ciated striatal activation. Aside from explicating dopa-

mine’s role in reinforcement learning and value-based

decision-making, our findings open new avenues of treat-

ment in Parkinson’s disease and its associated psychiatric

symptoms.
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