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Abstract

Motivation: Metagenomic contig binning is an important computational problem in metagenomic

research, which aims to cluster contigs from the same genome into the same group. Unlike classic-

al clustering problem, contig binning can utilize known relationships among some of the contigs or

the taxonomic identity of some contigs. However, the current state-of-the-art contig binning meth-

ods do not make full use of the additional biological information except the coverage and sequence

composition of the contigs.

Results: We developed a novel contig binning method, Semi-supervised Spectral Normalized Cut

for Binning (SolidBin), based on semi-supervised spectral clustering. Using sequence feature simi-

larity and/or additional biological information, such as the reliable taxonomy assignments of some

contigs, SolidBin constructs two types of prior information: must-link and cannot-link constraints.

Must-link constraints mean that the pair of contigs should be clustered into the same group, while

cannot-link constraints mean that the pair of contigs should be clustered in different groups. These

constraints are then integrated into a classical spectral clustering approach, normalized cut, for

improved contig binning. The performance of SolidBin is compared with five state-of-the-art gen-

ome binners, CONCOCT, COCACOLA, MaxBin, MetaBAT and BMC3C on five next-generation

sequencing benchmark datasets including simulated multi- and single-sample datasets and real

multi-sample datasets. The experimental results show that, SolidBin has achieved the best per-

formance in terms of F-score, Adjusted Rand Index and Normalized Mutual Information, especially

while using the real datasets and the single-sample dataset.

Availability and implementation: https://github.com/sufforest/SolidBin.

Contact: fsun@usc.edu or zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial communities consist of mixtures of large number of

microorganisms. In metagenomic studies, genetic material is directly

extracted from the microbial communities and is sequenced using

high-throughput sequencing technologies resulting in large quantity

of sequencing reads of different read lengths depending on the
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sequencing technologies and platforms. During sequencing, the in-

formation on what reads come from the same genome or closely

related genomes is lost. Usually the first step in metagenomic data

analysis is ‘reads assembly’ aiming to assemble the reads into rela-

tive longer genomic fragments called contigs based on the overlap-

ping information of the reads. The second step is ‘contig binning’

aiming to cluster the contigs from the same genome or closely

related genomes into the same bin. In the third step, reads are

mapped to known genomic sequences or the contigs in the bins and

the relative abundance profiles of genomes and genomic bins are

estimated in each sample. Finally, statistical methods are used to as-

sociate the abundance profiles of genomes/bins with the environ-

mental factors or phenotypes of the individuals (Bahram et al.,

2018; Huttenhower et al., 2012; Qin et al., 2010; Sunagawa et al.,

2015). Metagenomic studies have shown that microbial commun-

ities in human gut have been shown to be significantly associated

with several diseases (Jostins et al., 2012; Khor et al., 2011) and the

effect of immunotherapy (Chen et al., 2017; Wilck et al., 2017). In

this paper, we concentrate on the usual second step of metagenomic

data analysis, contig binning.

The available contig binning methods can be divided into two

major categories: taxonomy dependent methods (also called super-

vised methods) that map the contigs to known reference databases,

such as MEGAN (Huson et al., 2007), and taxonomy independent

methods (also called unsupervised methods), such as MaxBin ( Wu

et al., 2014, 2016 ), CONCOCT (Alneberg et al., 2014), MetaBAT

(Kang et al., 2015), COCACOLA (Lu et al., 2017a) and BMC3C

(Yu et al., 2018) that cluster the contigs ‘de novo’ without mapping

the contigs to known genomes. Both categories of methods have

their own limitations. Since the known genomes are limited and a

large number of genomes are still unknown, many contigs cannot be

mapped to known genomes. In addition, alignment is computation-

ally expensive and thus alignment based contig binning methods are

generally slow. Without relying on reference genomes, unsupervised

binning methods can partially overcome some of the above-

mentioned shortcomings. On the other hand, existing unsupervised

binning methods have not made full use of additional available bio-

logical information such as the alignment of some the contigs to

known genomes, which can improve the binning performance.

Therefore, it is imperative to develop effective contig binning

approaches that can not only be used for the datasets that contain a

large amount of contigs from unknown genomes, but also make use

of the available biological information from alignment for better

binning performance.

To tackle this issue, we develop a novel contig binning method,

Semi-supervised Spectral Normalized Cut for Binning (SolidBin),

which is inspired by various studies in semi-supervised clustering

(Gu et al., 2013; Wagstaff et al., 2001) that can improve the cluster-

ing performance by incorporating pairwise constraints. There are

two types of pairwise constraints: must-link (ML) constraints and

cannot-link (CL) constraints. Specifically, SolidBin is based on semi-

supervised spectral clustering. Compared with other clustering

methods, spectral clustering algorithm can relatively easily incorpor-

ate additional information on pairwise relationships of contigs.

SolidBin mainly utilizes two kinds of sequence features: contig

coverage information and tetranucleotides frequencies. The pairwise

constraints can be generated from both internal (contig features)

and external information (additional biological information such as

co-alignment). With respect to different kinds of information used

for generating constraints, SolidBin has several different modes,

SolidBin-sequence feature similarity (SFS), SolidBin-coalign,

SolidBin-CL and SolidBin-SFS-CL. SolidBin-SFS generates ML

constraints between contig pairs with high similarity based on in-

ternal information of sequence features. On the other hand,

SolidBin-coalign and SolidBin-CL generate constraints using exter-

nal co-alignment information. By aligning contigs to known

genomes, TAXAassign (https://github.com/umerijaz/taxaassign) can

assign some contigs belonging to the known genomes to the corre-

sponding genomes/species. The contig pairs with the same species

assignment by TAXAassign have a ML constraint in SolidBin-

coalign, while the contig pairs with different genus assignment have

a CL constraint in SolidBin-CL. SolidBin-SFS-CL removes the CL

pairs from the constraints set on the basis of SolidBin-SFS. The per-

formance of SolidBin has been extensively investigated on five next-

generation sequencing benchmark datasets including simulated

multi- and single-sample datasets, as well as real multi-sample data-

sets. Compared with five state-of-the-art genome binners,

CONCOCT, COCACOLA, MaxBin, MetaBAT and BMC3C,

SolidBin has achieved the best performance in terms of F-score,

Adjusted Rand Index (ARI) and Normalized Mutual Information

(NMI), especially while using the real datasets and the single-sample

dataset. Specifically, SolidBin-SFS achieves better performance when

there are sufficient samples. SolidBin-coalign also works very well

except the case that the dataset contains many genomes on the strain

level.

2 Related work

Unsupervised contig binning methods can be roughly divided into

three categories based on the sequence characteristics used for

binning: (i) Nucleotide Composition-based, (ii) Differential

Abundance-based and (iii) both Nucleotide Composition and

Abundance-based (Sangwan et al., 2016). Nucleotide Composition-

based methods (Dick et al., 2009; Laczny et al., 2015) take oligo-

nucleotide frequency as features, based on the assumption that the

oligonucleotide composition of fragments from the same genome

are much more similar than fragments from different genomes.

Differential Abundance-based methods [Abundancebin (Wu and Ye,

2011)] cluster contigs mainly according to the differential coverage

of average nucleotide coverage of each contig, based on the assump-

tion that the contigs that belong to the same genome should have

similar abundance in the same sample. Nucleotide Composition and

Abundance-based methods (MaxBin, MetaBAT, CONCOCT and

COCACOLA) combine the two kinds of information and have been

shown to outperform methods using only one kind of information

(Sedlar et al., 2017).

The MaxBin algorithm utilizes the single-copy marker genes to

determine the number of bins and expectation–maximization algo-

rithm is performed while binning. MaxBin 2.0 can be applied to the

datasets that contain multiple samples based on the assumption that

all samples are independently sequenced. The MetaBAT algorithm

utilizes two different genomic features to calculate the distance of

contig pairs, and then converts the distance to the probability of

them being in the same genome. Finally, the modified K-medoids al-

gorithm is used for binning. CONCOCT takes sequence compos-

ition and coverage across multiple samples as sequence feature

vectors, and then uses principal component analysis to reduce the di-

mension of the feature vectors. Finally, it obtains the binning results

using the Gaussian mixture model. It determines the number of bins

by the variational Bayesian approach. COCACOLA employs the

similar sequence feature vectors as CONCOCT and it takes advan-

tage of both the soft and hard clustering by employing non-negative

matrix factorization with sparse regularization. The performances
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of COCACOLA and CONCOCT depend largely on the number of

samples, partially due to the way to construct feature vectors.

Several investigators realized the importance of incorporating

additional biological information for binning, such as co-alignment

and pair-end read linkage. However, the co-alignment information

was not considered by CONCOCT, MaxBin and MetaBAT, while

the pair-end reads linkage information was not considered in

MaxBin and MetaBAT. CONCOCT utilizes the pair-end reads link-

age information only in the post-processing stage of binning. It

merges the clusters with sufficient pair-end links and similar cover-

age to perform a hierarchical clustering (https://concoct.readthe

docs.io/en/latest/), which may improve the recall of the binning re-

sult but reduce the precision. On the other hand, COCACOLA uses

non-negative matrix factorization to factorize the feature matrix of

contigs, and integrates co-alignment information and paired-end

read linkage across multiple samples into a cost function. It was

shown that the additional information can improve the binning per-

formance, especially when the number of samples is small. Hetero-

RP (Lu et al., 2017b) automatically adjusts the weights of contig fea-

tures according to the additional co-alignment information before

using other binning methods, and the method is integrated into the

COCACOLA-python version. However, the performance of

Hetero-RP depends heavily on the accuracy of the additional infor-

mation and the fraction of contig pairs having such information.

These studies have inspired us to develop a new binning method

with a semi-supervised spectral clustering approach, SolidBin, where

pairwise constraints among contigs can be effectively integrated into

the spectral clustering framework of contig graph partition.

Recently, several ensemble clustering methods have been devel-

oped for metagenomic contig binning. BMC3C (Yu et al., 2018)

takes sequence composition, coverage information and codon usage

as sequence feature vectors and repeatedly applying the K-means

clustering with different initialization to form a weight graph of con-

tigs for partitioning. Additionally, ensemble models combing results

from multiple binning algorithms have been proposed. Binning re-

finer (Song and Thomas, 2017) performs a pairwise comparison of

contigs between the output bins of two binners using blastn to ob-

tain shared contigs between two sets of bins. Each set of shared con-

tigs is treated as a refined bin if its total length is longer than a

predefined threshold. DAS Tool (Sieber et al., 2018) proposes a

scoring function based on single-copy genes and uses it to rank bins

generated by different binners. It picks up high-scoring bins itera-

tively and updates the scores of the remaining candidate bins.

MetaWRAP (Uritskiy et al., 2018) uses the output bin sets of

MetaBAT2, MaxBin2 and CONCOCT to generate hybrid bin sets,

in which every pair of contigs in different bins from any original sets

are separated. MetaWRAP then selects the best bin based on the

estimated completion and contamination scores. In contrast to these

ensemble approaches, SolidBin is a stand-alone method that can be

integrated into these ensemble approaches as a component for better

binning performance.

3 Materials and methods

3.1 Semi-supervised clustering and spectral clustering
Semi-supervised clustering methods can use prior information to im-

prove clustering performance. One important type of prior informa-

tion is pairwise constraints that can be divided into two categories:

ML constraints and CL constraints. A ML constraint means that

two instances should be grouped in the same cluster, while a CL

constraint indicates that two instances should appear in different

clusters. For the contig binning problem, instances correspond to

contigs and affinity between instances correspond to similarity be-

tween contigs.

Spectral clustering methods are based on the spectral graph the-

ory (Ng et al., 2002). A given dataset can be mapped to a graph

whose nodes represent the instances of the dataset and the edges re-

flect the affinity of the instances. The essence of spectral clustering

methods is to transform the clustering problem into an optimal par-

tition problem of the graph. Spectral clustering has several variants

according to different criteria for graph partitioning and the normal-

ized cut (Ncut) criterion is a reliable one that measures both the total

inter-cluster dissimilarity and the total intra-cluster similarity (Shi

and Malik, 2000). Compared with other clustering methods, the

combination of spectral clustering algorithm and the semi-

supervised method has obvious advantages. Spectral clustering algo-

rithm utilizes the similarity among instances, and thus the pairwise

constraints among instances can be easily incorporated into the al-

gorithm to improve clustering performance.

3.2 The SolidBin algorithm
In this paper, we developed a contig binning method, SolidBin,

based on the semi-supervised spectral clustering method that can

utilize additional biological information and make full use of both

sequence composition and coverage information. The method has

five major steps. First, the contigs are mapped into a graph after

obtaining the feature representations of contigs. Then, the bin num-

ber K is initialized according to the single-copy marker genes, and

the final bin number will be determined by the iterative binning

results of K-means. Next, constraints are generated differently

according to the modes of SolidBin, and then the constraints will be

used for semi-supervised NCut with the final bin number. Finally,

the method will evaluate the clustering performance with different

parameter values without labels and keep the optimal one as the

final result. The general pipeline of SolidBin is shown in Figure 1

and more details of the steps are as follows.

3.2.1 Construct feature vectors and graph

Similar to CONCOCT and COCACOLA, we employ the combin-

ation of an M dimensional coverage vector and a T dimensional

composition vector to represent each contig, where M is the number

of the samples and T is the number of distinct tetramers. T¼136 in

our method considering one tetramer and its reverse-complement

Fig. 1. The general workflow of SolidBin
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are combined. After adding a pseudo-count, the composition vectors

are normalized over contigs to account for different contig lengths.

The coverage vectors are normalized over contigs and over samples,

so that different read numbers from a sample are accounted for

Alneberg et al. (2014). Therefore, the feature matrix of the contigs is

denoted as X 2 R
N�ðMþTÞ, where N denotes the number of contigs.

For graph construction, we use L1-distance to measure the dis-

similarity between each pair of contigs (Lu et al., 2017a) and con-

vert it to the affinity using the following formula, where A denotes

the affinity matrix, Dist denotes the dissimilarity matrix of the con-

tigs and max(.) and min(.) denotes the maximum and minimum of

all the elements of the matrix, respectively.

Aij ¼ 1� Distij �minðDistÞ
maxðDistÞ �minðDistÞ : (1)

3.2.2 Bin number determination

Similar to the method used in COCACOLA, we utilize single-copy

marker genes to estimate the initial bin number k0, and then, we try

a list of numbers larger than k0 as the bin numbers sequentially and

use the K-means algorithm for binning. Then we calculate the sil-

houette coefficient (Rousseeuw, 1987) of the binning result, which

is an index to evaluate the clustering performance without labels by

measuring the cohesion and the separation of the clusters. Our

methods will find two local maxima of the silhouette coefficient val-

ues, and the larger one corresponds to a bin number, which is our

final bin number.

3.2.3 Generate constraints
• Generate ML constraints

ML constraints are mainly generated in three ways as three modes

of SolidBin:

i. SolidBin-SFS mode: constraints are generated according to SFS,

which is a taxonomy-independent method. In this mode, we

underline the reliable information from sequence features them-

selves without using reference genomes. The contig pairs with

high similarity are chosen as ML constraints. Because the affin-

ity graphs of different datasets have different connection struc-

tures, the ratio of the pairwise constraints we selected from

whole similarity matrix may vary widely. Therefore, we deter-

mine the ratio of the pairwise constraints adaptively as follows.

We assume that the connection relationship obtained from the

binning results is close to the real connection relationship and

varies among different datasets. The assumption will be exam-

ined in the experiments. We run the NCut method and obtain

the initial binning results for the connection graphs. The con-

nection ratio is calculated as follows, where K represents the

number of the bins used by NCut method and Numk represents

the number of contigs contained in the k-th bin.

linkSum ¼ 2�
XK

k¼1

Numk

2

� �
(2)

ratio ¼ linkSum

N � ðN � 1Þ � 100%: (3)

ii. SolidBin-coalign mode: we take the contig pairs with the same

assignment on species level using NCBI taxonomy by

TAXAassign as ML constraints. In this mode, we take advan-

tage of some contigs that belong to the known reference

genomes although the reference genomes are incomplete.

iii. SolidBin-SFS-CL: constraints are first generated according to

the SFS as in SolidBin-SFS. We next remove the contig pairs

assigned to different genera by TAXAassign.

• Generate CL constraints

SolidBin-CL: to obtain CL constraints with high accuracy, the

contigs assigned to different genus by TAXAassign are regarded as

CL pairs.

3.2.4 Incorporate constraints into spectral clustering
• Spectral clustering with NCut

A popular criterion in spectral clustering is the NCut, for which the

cost function of given K clusters fP1; . . . ;PKg is defined as follows

(Gu et al., 2013; Ji et al., 2006):

FNcut ¼
XK

k¼1

CutðPk; �Pk Þ
CutðPk;VÞ

(4)

where V denotes the vertex set, CutðPk;Pk0 Þ ¼
P

i2Pk ;j2Pk0
Wij and W

denotes the affinity matrix. Let Hi ¼ ½h1i;h2i; . . . ; hNi�T be the binary

indicator vector of cluster Pi, and hni ¼ 1 means the n-th contig

belongs to Pi. Let D be a diagonal matrix with dnn ¼
PN

i¼1Wni

FNcut can be rewritten as follows:

FNcut ¼
XK

i¼1

HT
i ðD�WÞHi

HT
i DHi

¼ K�
XK

i¼1

HT
i WHi

HT
i DHi

¼ K�
XK

i¼1

HT
i D

1
2D�

1
2WD�

1
2D

1
2Hi

HT
i D

1
2D

1
2Hi

¼ K�
XK

i¼1

YT
i D�

1
2WD�

1
2Yi

(5)

where Y ¼ ½Y1;Y2; . . . ;YK�; Yi ¼ D
1
2Hi=jjD

1
2Hijj, and Y TY ¼ I.

FNcut � K� ðk1 þ k2 þ � � � þ kKÞ (6)

where k1; . . . ; kK are the largest K eigenvalues of matrix D�
1
2WD�

1
2,

and when Y1;Y2; . . . ;YK are their corresponding eigenvectors, the

equality sign of in Equation (6) holds.

• Integrate ML constraints

If the i-th contig and the j-th contig belong to the same species,

the i-th and j-th row of the indicator matrix H should be the same.

Therefore, If there are C ML constraints, the c-th ML constraints

can be represented as a constraint row vector

Uc ¼ ½u1c; u2c; . . . ; uNc�, where uic ¼ 1, ujc ¼ –1, and the rest of all

elements are zero. We can encode all ML constraints by matrix

UC ¼ ½U1;U2; . . . ;UC�T such that:

UH ¼ 0) jjUHjj2 ¼ 0) TrðHTUTUHÞ ¼ 0

) TrðYTD�
1
2UTUD�

1
2YÞ ¼ 0:

(7)

• Integrate CL constraints

If the i-th contig and the j-th contig belong to different genomes,

the i-th and j-th rows of the indicator matrix H should be orthogon-

al to each other. So, we can use an N�N non-negative matrix to

represent the CL information, where Zij ¼ 1 means that the i-th con-

tig and the j-th contig belong to different genomes, while Zij ¼ 0

means that the relationship between the i-th contig and the j-th con-

tig is unknown. The CL constraints can be represented as follows:
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TrðHTZHÞ ¼ 0: (8)

ML and CL constraints can be incorporated into the framework

of the NCut as follows (Gu et al., 2013):

FSolidBin ¼ FNcut þ ajjUHjj2 þ bTrðHTZHÞ

¼ K�
XK

i¼1

YT
i D�

1
2WD�

1
2Yi

þaTrðYTD�
1
2WD�

1
2YÞ þ bTrðYTD�

1
2ZD�

1
2YÞ

¼ K� TrðYTD�
1
2ðW � aUTU � bZÞD�1

2YÞ:

(9)

3.2.5 Tune parameters (a or b)

For parameter tuning, we use the Calinski–Harabasz index (Cali�nski

and Harabasz, 1974) to evaluate the clustering performance without

labels by measuring the cohesion and the separation of the clusters.

There is only one parameter to be tuned in all the modes, and a one-

dimensional search is conducted for the optimal parameter in a

range of candidate a or b.

3.2.6 Different SolidBin modes

There are several SolidBin modes according to the prior adopted in-

formation. The summary of different modes and the summary of

performance of different modes compared in the experiments are

shown in Table 1.

4 Experiments

4.1 Data
As shown in Table 2, we compared SolidBin with the-state-of-art

binners on five benchmark datasets.

• Multi-sample dataset on the species level: ‘SpeciesMock’

(Alneberg et al., 2014)

The dataset was constructed based on the analysis of 16S rRNA

samples originated from the Human Microbiome Project

(Huttenhower et al., 2012) and consisted of 101 different species

across 96 samples. A total of 37 628 contigs remain for binning after

co-assembly and filtering. The dataset is used for evaluating the in-

fluence of sample numbers on different SolidBin modes.

• Multi-sample dataset on the strain level: ‘StrainMock’ (Alneberg

et al., 2014)

The dataset was constructed to test the performance of the bin-

ners at different levels (Huttenhower et al., 2012). It consisted of 20

different species or strains across 64 samples. A total of 9417 contigs

remain for binning after co-assembly and filtering.

• Single-sample dataset: ‘SimHC’ (Wu et al., 2014)

The single-sample dataset was simulated by Wu et al. (2014) and

29 535 contigs remain for binning after assembling and filtering.

SimHC simulated high-complexity communities lacking dominant

populations and it contains 100 genomes. A total of 13 918 out of

29 535 co-assembled contigs are unambiguously labeled on the spe-

cies level for evaluation by Wang (Wang et al., 2017) and we binned

all the contigs. The dataset is used for evaluating the performance of

different binners on single-sample datasets.

• Real dataset: ‘MetaHIT’

The dataset from MetaHIT consortium (Qin et al., 2010) con-

tains 264 samples, is the same dataset used in COCACOLA (Lu

et al., 2017a) and MetaBAT (Kang et al., 2015). A total of 17 136

out of 192 673 co-assembled contigs are unambiguously labeled on

Table 1. Summary of different SolidBin modes

SolidBin mode Constraints Type Parameter Description Performance profiles

SolidBin-naive None Taxonomy-independent None The NCut mode Comparable performance to other binners

SolidBin-SFS ML Taxonomy-independent a Take the contig pairs with

high similarity as ML

constraints

Good performance when the number of samples

is large. It can obtain good results with high

similarity quality, and more samples could

bring more useful coverage information

SolidBin-coalign ML Taxonomy-dependent a Take the contig pairs with

the same assignment by

TAXAassign as ML

constraints

Good performance when the genomes contained

in the datasets are on the species level, while

using the results from TAXAassign. It can ob-

tain good results if the pairwise ML con-

straints have high accuracy

SolidBin-CL CL Taxonomy-dependent b Take the contig pairs

assigned to different genera

by TAXAassign as CL

constraints

Good performance when the genomes contained

in the datasets are on the species level, often

worse than SolidBin-coalign, while using the

results from TAXAassign. It can obtain good

results if the pairwise CL constraints have

high accuracy

SolidBin-SFS-CL ML Taxonomy-dependent a Remove the contig pairs

assigned to different genera

by TAXAassign from the

constraints set on the basis

of SolidBin-SFS

Often a little better than SolidBin-SFS at a cost

of spending much time on taxonomy

alignment

Table 2. Datasets used in the experiments

Datasets Data type Sample num Contig num Labeled contig num

SpeciesMock Simulated 96 37 628 37 628

StrainMock Simulated 64 9417 9417

SimHC Simulated 1 29 535 13 918

Sharon Real 18 5579 2614

MetaHIT Real 264 192 673 17 136

SolidBin 4233



the species level for evaluation (Lu et al., 2017a). We binned the

contigs with unambiguously labels for evaluation as in Lu et al.

(2017a) and Yu et al. (2018). The dataset is used for evaluating the

performance of different binners on high-complexity real datasets.

• Real dataset: ‘Sharon’ (Sharon et al., 2013)

The dataset from a time-series study of microbiome samples from a

premature infant contains 18 samples. All the contigs are binned, and

2614 of 5579 contigs are unambiguously labeled on the species level

for evaluation (Lu et al., 2017a). The dataset is used for evaluating the

performance of different binners on low complexity real datasets.

4.2 Evaluation metric
For the unambiguously labeled contigs belonging to the datasets, the

measures including precision, recall, F-score, Normalized Mutual

Information and Adjusted Rand Index are used to evaluate the binning

results and their definitions are shown in Supplementary Material.

4.3 Experimental procedures
We compared SolidBin with different modes to five advanced bin-

ners: CONCOCT-0.4.0, COCACOLA-python, MaxBin 2.2.4,

MetaBAT 2.12.1 and BMC3C, respectively.

First, we conducted some preliminary experiments to show the

necessity and effectiveness of determining the ratio of the pairwise

constraints adaptively in SolidBin-SFS, and the accuracy of different

constraints. We then compared the performance SolidBin with dif-

ferent modes with other binners. Finally, we investigated the effect

of the number of samples on the performance of SolidBin-SFS and

SolidBin-coalign based on sub-samples of the speciesmock dataset.

4.4 Experimental results
To make a fair comparison, the input bin numbers are determined

by the respective binners. Tables 5–9 show the results of SolidBin-

SFS and SolidBin-SFS-CL when the ratio of pairwise constraints

¼40% of the estimated ratio. The values of ‘a*’ and ‘b*’ are the esti-

mated parameters chosen by the Calinski–Harabasz index.

COCACOLA-coalign means incorporating co-alignment informa-

tion into COCACOLA.

4.4.1 Preliminary experiments
• Determine the ratio of the pairwise constraints adaptively.

Table 3 shows the results of our method for determining the ratio of

the pairwise constraints adaptively. The ‘real link ratio’ and ‘esti-

mated link ratio’ are computed using Equation (2) according to the

real labels and the binning result of SolidBin-naive, respectively. The

‘real link ratio’ varies greatly among different datasets and the esti-

mated link ratios are close to their corresponding real link ratio on

most datasets. For the Sharon dataset, the cluster numbers are

underestimated by SolidBin using the contigs unambiguously labeled

on species level. Overall, the consistency between real and estimated

link ratios shows the validity of our estimation method.

• Accuracy of constraints.

The accuracy of constraints defined as the fraction of true rela-

tionships among all the constrained contig pairs on different data-

sets is shown in Table 4. In order to obtain adequate constraints

with high accuracy on the SolidBin-SFS mode, we take the contig

pairs with high similarity according to the estimated ratio as con-

straints. We test the accuracy of SolidBin-SFS mode constraints with

the proportion ranging from 20 to 80%, with 20% as an incremen-

tal interval, and the proportion is set to 40% in our experiments.

The results show that all the multi-sample datasets can obtain con-

straints with high accuracy on the SolidBin-SFS mode with the pro-

portion 20 and 40%. Single-sample dataset ‘SimHC’ cannot obtain

constraints with high accuracy on the SolidBin-SFS mode, which is

reasonable given that the effect of coverage information is limited in

the case of a single sample. In contrast, the SolidBin-SFS-CL mode

can generate constraints with higher accuracy than the correspond-

ing SolidBin-SFS mode in the case of a single sample, for instance,

from 0.7238 to 0.9436 on the SimHC dataset. Moreover, the

SolidBin-coalign mode can generate relatively accurate constraints

except for the strain level dataset ‘StrainMock’, because the co-

alignment information is reliable on the species or higher levels

other than the strain level. For example, the accuracy of SolidBin-

coalign constrants on the SpeciesMock is 0.9130, while the one on

the StrainMock dataset is 0.5160.

Table 3. The adjacency relationship between contigs in different

datasets

Dataset Estimated link ratio (%) Real link ratio (%)

SpeciesMock 1.54 1.55

StrainMock 9.30 9.67

SimHC 1.58 1.74

Sharon 34.65 19.19

MetaHIT 3.71 3.44

Note: For Sharon and MetaHIT datasets, only unambiguously labeled con-

tigs are considered.

Table 4. The accuracy of the constraints generated by different SolidBin modes

Mode SpeciesMock StrainMock SimHC Sharon_partial MetaHIT_partial

Acc (%) Num Acc (%) Num Acc (%) Num Acc (%) Num Acc (%) Num

SolidBin-SFS ratio�0.2 100.00 4 410 072 100.00 1 658 091 72.38 1 824 430 99.24 363 286 99.80 2 190 826

— ratio�0.4 100.00 8 782 498 99.98 3 306 241 55.59 2 390 242 98.24 550 808 99.61 4 356 334

— ratio�0.6 100.00 13 154 614 99.89 4 950 081 45.13 2 633 940 93.86 769 282 98.83 6 474 940

— ratio�0.8 99.98 17 523 650 99.44 6 567 453 38.06 2 767 326 86.67 986 612 83.17 7 260 682

SoliBin-coalign — 91.30 20 293 038 51.60 8 179 998 99.71 3 065 364 99.19 1 199 672 99.90 9 171 166

SolidBin-CL — 99.99 1 370 250 256 99.62 67 069 672 100.00 188 819 244 99.96 3 955 520 99.95 237 793 612

SolidBin-SFS-CL ratio�0.2 100.00 4 369 002 100.00 1 646 968 94.36 1 810 484 99.24 360 192 99.81 2 172 750

— ratio�0.4 100.00 8 727 240 99.98 3 249 328 89.83 2 376 178 98.60 547 706 99.71 4 336 152

— ratio�0.6 100.00 13 071 540 99.89 4 834 258 87.06 2 619 628 97.43 766 180 99.14 6 448 034

— ratio�0.8 99.98 17 416 512 99.44 6 382 828 85.28 2 752 684 95.74 983 508 92.36 7 228 632
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4.4.2 The binning results on the simulated datasets

For the ‘StrainMock’ dataset, COCACOLA, SolidBin and BMC3C

have better performance compared with other methods as shown in

Table 5, and SolidBin-SFS performs best in general. Just considering

the binning results of the different SolidBin modes, SolidBin-SFS and

SolidBin-CL can generate constraints with high accuracy on this

dataset as shown in Table 4, and have better performance in terms

of all metrics compared with SolidBin-naive. On the other hand,

since the co-alignment information is not reliable on the strain level,

both the COCACOLA-coalign and SolidBin-coalign have worse

performance than COCACOLA and SolidBin-SFS on this strain level

dataset.

To figure out whether the coalignment information is useful to

the ‘StrainMock’ dataset, we evaluated the results of the

StrainMock at the species level. As shown in Table 6, both the

COCACOLA and SolidBin have better performance with coalign-

ment information at the species level. SolidBin-coalign has larger im-

provement than COCACOLA-coalign. For example, the ARI of

COCACOLA-coalign increases from 0.8667 (COCACOLA) to

0.8801, and the ARI of SolidBin-coalign increases from 0.8689

Table 5. The performance of COCACOLA, CONCOCT, MaxBin, MetaBAT, BMC3C and SolidBin on the StrainMock dataset

StrainMock Recall (%) Precision (%) F-score (%) NMI (%) ARI (%)

COCACOLA 99.20 99.26 99.23 98.63 99.03

COCACOLA-coalign 95.87 93.53 94.69 95.46 94.57

MaxBin 96.35 91.00 93.60 98.36 86.69

CONCOCT 98.21 93.85 95.98 96.24 93.99

MetaBAT 81.24 59.87 68.94 69.76 33.50

BMC3C(9401/9417) 99.01 99.01 99.01 98.42 98.73

SolidBin-naive 98.92 98.92 98.92 98.49 98.91

SolidBin-SFS(a*¼20) 99.29 99.29 99.29 98.75 99.13

SolidBin-coalign(a*¼10) 99.46 92.59 95.90 95.93 87.74

SolidBin-CL(b*¼0.1) 99.29 99.29 99.29 98.74 99.12

SolidBin-SFS-CL(a*¼ 30) 99.29 99.29 99.29 98.75 99.12

Note: The optimal values of the results are in bold.

Table 6. The performance of COCACOLA, CONCOCT, MaxBin, MetaBAT, BMC3C and SolidBin on the ‘StrainMock’ dataset (evaluated on

species level)

StrainMock Recall (%) Precision (%) F-score (%) NMI (%) ARI (%)

COCACOLA 91.81 99.96 95.71 95.90 86.67

COCACOLA-coalign 91.27 99.94 95.41 96.89 88.01

MaxBin 91.01 91.01 91.01 91.87 78.50

CONCOCT 91.11 99.63 95.18 96.82 89.50

MetaBAT 81.24 67.32 73.63 72.46 34.10

BMC3C(9401/9417) 91.58 99.97 95.59 95.94 86.51

SolidBin-naive 91.94 99.99 95.80 96.06 86.89

SolidBin-SFS(a*¼20) 92.00 99.99 95.83 96.06 86.92

SolidBin-coalign(a*¼10) 99.46 99.97 99.71 99.39 98.83

SolidBin-CL(b*¼0.1) 92.01 99.98 95.83 96.05 86.92

SolidBin-SFS-CL(a*¼30) 92.00 99.99 95.83 96.06 86.92

Note: The optimal values of the results are in bold.

Table 7. The performance of COCACOLA, CONCOCT, MaxBin, MetaBAT, BMC3C and SolidBin on the ‘SimHC’ dataset

SimHC Recall (%) Precision (%) F-score (%) NMI (%) ARI (%)

COCACOLA 92.51 77.09 84.09 90.17 76.15

COCACOLA-coalign 94.41 80.43 86.86 91.66 80.73

MaxBin 85.84 83.28 84.54 89.34 76.90

CONCOCT 96.92 82.70 89.25 93.71 82.17

MetaBAT 90.38 72.18 80.26 86.42 57.07

BMC3C(13 918/13 918) 69.18 93.03 79.35 90.23 68.58

SolidBin-naive 90.20 78.88 84.16 89.95 75.78

SolidBin-SFS(a*¼0) 90.20 78.88 84.16 89.95 75.78

SolidBin-coalign(a*¼10) 98.85 90.94 94.73 97.32 93.19

SolidBin-CL(b*¼0.2) 97.15 87.22 91.92 96.30 87.22

SolidBin-SFS-CL(a*¼0) 90.20 78.88 84.16 89.95 75.78

Note: The optimal values of the results are in bold.
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(SolidBin-naive) to 0.9883. Therefore, SolidBin-colaign can better

utilize coalignment information than COCACOLA-coalign, which

highlights the effectiveness of spectral clustering in incorporating

pairwise constraints.

For the only single-sample dataset ‘SimHC’, CONCOCT and

SolidBin have better performance compared with other methods as

shown in Table 7, and SolidBin performs better in two modes. The

F-score, NMI and ARI of SolidBin-coalign reach 0.9473, 0.9732

and 0.9319, respectively. In comparison, CONCOCT achieves

0.8925 in terms of F-score, 0.9371 in terms of NMI, and 0.8217 in

terms of ARI, respectively. Taking different SolidBin modes into

consideration, the SolidBin-SFS mode cannot obtain constraints

with high accuracy and have better binning results than SolidBin-

naive on the single dataset due to insufficient sample number. In

contrast, sequence alignment information is quite useful in improv-

ing the binning results of the dataset. Both SolidBin-coalign and

SolidBin-CL have better performance in terms of all metrics com-

pared with other binners and SolidBin modes. Both COCACOLA-

coalign and SolidBin-coalign have better performance than

COCACOLA and SolidBin-naive on this dataset, but the improve-

ment of SolidBin-coalign is more significant, from 0.8416 to 0.9473

in terms of F-score.

4.4.3 The binning results of the real datasets

For the ‘MetaHIT’ dataset, the results of the 17 136 contigs with un-

ambiguous labels are shown in Table 8. SolidBin have better per-

formance than other tools in general. Both SolidBin-SFS and

SolidBin-SFS-CL have comparable performance with COCACOLA

and CONCOCT, and achieve much better performance than

Maxbin and MetaBAT, but worse performance than BMC3C.

Considering the performance of different SolidBin modes, all the

other modes have better performance than the SolidBin-naive mode,

especially the modes that use the sequence alignment information.

Both COCACOLA-coalign and SolidBin-coalign have better per-

formance than COCACOLA and SolidBin-naive on this dataset, but

the improvement of SolidBin-coalign is more significant, from

0.7730 to 0.9349 in terms of ARI and from 0.8649 to 0.9710 in

terms of F-score.

Table 8. The performance of COCACOLA, CONCOCT, MaxBin, MetaBAT, BMC3C and SolidBin on the ‘MetaHIT’ (partial) dataset

MetaHIT_partial Recall (%) Precision (%) F-score (%) NMI (%) ARI (%)

COCACOLA 91.87 83.63 87.56 84.26 76.38

COCACOLA-coalign 91.92 85.39 88.54 86.04 80.91

MaxBin 84.75 73.58 78.77 77.84 69.02

CONCOCT 80.41 90.26 85.05 85.29 74.33

MetaBAT 74.34 52.59 61.60 61.37 30.19

BMC3C(17 122/17 136) 87.50 91.45 89.43 87.90 82.82

SolidBin-naive 85.85 87.15 86.49 85.76 77.30

SolidBin-SFS(a*¼10) 86.24 87.22 86.73 85.91 77.95

SolidBin-coalign(a*¼40) 97.01 97.18 97.10 96.01 93.49

SolidBin-CL(b*¼0.2) 90.47 91.17 90.82 89.98 85.34

SolidBin-SFS-CL(a*¼0) 85.85 87.15 86.49 85.76 77.30

Note: The optimal values of the results are in bold.

Table 9. The performance of COCACOLA, CONCOCT, MaxBin, MetaBAT, BMC3C and SolidBin on the ‘Sharon’ dataset

Sharon Recall (%) Precision (%) F-score (%) NMI (%) ARI (%)

COCACOLA 91.21 97.98 94.47 91.58 93.21

COCACOLA-coalign 92.65 97.49 95.00 91.43 92.02

MaxBin 96.02 90.57 93.21 89.18 87.74

CONCOCT 93.66 98.90 96.21 93.53 94.53

MetaBAT 90.91 68.74 78.28 71.49 58.97

BMC3C(2591/2614) 99.27 99.02 99.14 97.16 97.98

SolidBin-naive 98.11 97.58 97.84 93.90 94.38

SolidBin-SFS(a*¼1) 99.33 98.76 99.04 96.61 97.66

SolidBin-coalign(a*¼10) 99.64 99.09 99.37 97.71 98.46

SolidBin-CL(b*¼0.1) 99.44 98.88 99.16 97.03 97.96

SolidBin-SFS-CL(a*¼1) 99.53 98.97 99.25 97.35 98.16

Note: The optimal values of the results are in bold.

Fig. 2. Evaluation of the result of SolidBin-coalign and SolidBin-SFS on sub-

samples of the ‘SpeciesMock’ dataset
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For the ‘Sharon’ dataset, we binned all the contigs and the results

of the 2 614 contigs with unambiguous labels are shown in Table 9

and the estimated input bin number is 7 for SolidBin. All the modes

of SolidBin and BMC3C have better performance than other tools.

The F-score, NMI and ARI of the best performed SolidBin-coalign

reach 0.9937, 0.9771 and 0.9846, respectively. In comparison, the

F-score, NMI and ARI of CONCOCT, best one among other bin-

ners on the dataset, is 0.9621, 0.9353 and 0.9453, respectively.

Taking different SolidBin modes into consideration, all the other

modes have better performance than the SolidBin-naive mode,

which shows that both the additional biological information and the

internal information are useful for the binning. On the other hand,

COCACOLA-coalign achieved similar performance with

COCACOLA, which indicates the inefficiency of COCACOLA in

incorporating coalignment information.

4.4.4 Evaluation of the impact of incorporating constraint

information on sub-samples of the ‘SpeciesMock’ dataset

In order to evaluate the impact of co-alignment information and the

ML constraints generated by SolidBin-SFS mode when the number

of samples is small, we investigate the performance of SolidBin-SFS

and SolidBin-coalign on sub-samples without overlapping of the

‘SpeciesMock’ dataset. The sample size ranges from 10 to 90, with

10 as increment. As shown in Figure 2, the results of SolidBin-SFS

vary greatly with the number of samples and SolidBin-SFS can ob-

tain better performance when the number of samples is large. The

results of ARI and NMI are in the Supplementary Material. The

results of SolidBin-coalign are relatively stable and can obtain good

performance even when the number of samples is relatively low.

4.5 Running time and memory usage of the binners
All the experiments were done on a machine with 4-way 6-core

1.87 GHz Intel Xeon CPUs and 1 T memory. We ran all the binners

with multiple threads. The running time and memory usage of the bin-

ners on different datasets are as shown in Table 10. On the one hand,

SolidBin has excellent performance on the binning, but on the other

hand, it takes a lot of time and memory to compute the similarity matrix

for singular value decomposition, especially for the datasets with large

contig numbers. However, unlike other binners, the number of the sam-

ples almost has no impact on the running time and memory of SolidBin.

4.6 Analysis of the results
In summary, SolidBin with different modes have better performance

than other binners in most cases. For the different SolidBin modes,

the performance mainly depends on the accuracy of the constraints

of different modes, which will be affected by the properties of the data-

sets, such as the number of samples. SolidBin-SFS is a reliable mode

without any taxonomy information when the number of samples is

large, and our method can determine the ratio of the pairwise constraints

adaptively according to the data distribution. Sequence alignment infor-

mation can improve the binning results markedly such as the SolidBin-

coalign mode and the SolidBin-CL mode, especially when there are in-

sufficient samples and the genomes contained in the dataset are at the

species level, not at the strain level. The performance profiles of different

SolidBin modes are shown in Table 1. Both COCACOLA and SolidBin

can utilize co-alignment information, however, the improvements of

SolidBin-coalign are always more significant, which shows that spectral

clustering algorithm can integrate additional information better.

5 Discussion and conclusion

In this paper, we developed a binning method, SolidBin, based on

semi-supervised spectral clustering. To our knowledge, this is the

first method to apply semi-supervised spectral clustering for contig

binning. It uses two types of prior information: ML constraints and

CL constraints. We examined two ways to generate ML constraints,

one is taxonomy independent, named as SolidBin-SFS and the other

is based on the co-alignment information, which can take advantage

of some contigs that belong to the known reference genomes, named

as SolidBin-coalign. In this paper, our method is compared with five

advanced binning tools, CONCOCT, COCACOLA, MaxBin,

MetaBAT and BMC3C, using five different types of datasets. As

shown in the Section 4.4, our method, compared with the-state-of-

the-art binning methods, has best performance in terms of F-score,

ARI and NMI in most cases.

However, our method has its own limitations. For example,

SolidBin-SFS does not perform best when the number of samples is

small. But SolidBin-coalign may perform well under these circum-

stances if the genomes contained in the dataset are at the species

level. However, how to choose a, b and bin number K is still chal-

lenging. In addition, how to extend our method to handle large-scale

datasets is still worthy further investigation.

In future research, we plan to incorporate more prior informa-

tion into our method, such as linkage information used in Lu et al.

(2017a), gene prediction information (Sunagawa et al., 2015) and

DNA methylation (Beaulaurier et al., 2018).
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