
Systems biology

clustermq enables efficient parallelization of

genomic analyses

Michael Schubert *,†

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome

Campus, Cambridge, UK

*To whom correspondence should be addressed.
†Present address: European Research Institute for the Biology of Ageing, University of Groningen, University Medical

Center Groningen, 9713 AV Groningen, the Netherlands

Associate Editor: Jonathan Wren

Received on November 30, 2018; revised on April 11, 2019; editorial decision on April 14, 2019; accepted on May 22, 2019

Abstract

Motivation: High performance computing (HPC) clusters play a pivotal role in large-scale bioinfor-

matics analysis and modeling. For the statistical computing language R, packages exist to enable a

user to submit their analyses as jobs on HPC schedulers. However, these packages do not scale

well to high numbers of tasks, and their processing overhead quickly becomes a prohibitive

bottleneck.

Results: Here we present clustermq, an R package that can process analyses up to three orders of

magnitude faster than previously published alternatives. We show this for investigating genomic

associations of drug sensitivity in cancer cell lines, but it can be applied to any kind of parallelizable

workflow.

Availability and implementation: The package is available on CRAN and https://github.com/mschu

bert/clustermq. Code for performance testing is available at https://github.com/mschubert/clus

termq-performance.

Contact: m.schubert@rug.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The volume of data produced in the biological sciences has recently

increased by orders of magnitude across many disciplines, most ap-

parent in single cell sequencing (Svensson et al., 2018). In order to

analyze this data, there is a need not only for efficient algorithms,

but also for efficient and user-friendly utilization of high perform-

ance computing (HPC). Having reached a limit in the speed of single

processors, the focus has shifted to distributing computing power to

multiple processors or indeed multiple machines. HPC clusters have

played and are continuing to play an integral role in bioinformatic

data analysis and modelling. However, efficient parallelization using

low-level systems such as MPI, or submitting jobs that later commu-

nicate via network sockets, requires specialist knowledge.

For the popular statistical computing language R (Ihaka and

Gentleman, 1996) several packages have been developed that are

able to automate parallel workflows on HPC without the need for

low-level programming. The best-known packages for this are

BatchJobs (Bischl et al., 2015) and batchtools (Lang et al., 2017).

They provide a consistent interface for distributing tasks over mul-

tiple workers by automatically creating the files required for proc-

essing each individual computation, and collect the results back to

the main session upon completion.

However, these packages write arguments and results of individ-

ual function calls to a networked file system. This is highly ineffi-

cient for a large number of calls and effectively limits these packages

at about 106 function evaluations (cf. Fig. 1 and Supplementary

Methods). In addition, it hinders load balancing between computing

nodes (as it requires a file-system based lock mechanism) and the use

of remote compute facilities without shared storage systems.

Here we present the R package clustermq that overcomes these

limitations and provides a minimal interface to submit jobs on a

VC The Author(s) 2019. Published by Oxford University Press. 4493

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(21), 2019, 4493–4495

doi: 10.1093/bioinformatics/btz284

Advance Access Publication Date: 27 May 2019

Applications Note

http://orcid.org/0000-0002-6862-5221
https://github.com/mschubert/clustermq
https://github.com/mschubert/clustermq
https://github.com/mschubert/clustermq-performance
https://github.com/mschubert/clustermq-performance
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz284#supplementary-data
Deleted Text: s
Deleted Text: s
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz284#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz284#supplementary-data
https://academic.oup.com/

range of different schedulers (LSF, SGE, Slurm, PBS, Torque). It dis-

tributes data over the network without involvement of network-

mounted storage, monitors the progress of up to 109 function eval-

uations and collects back the results.

2 Implementation

In order to provide efficient distribution of data as well as compute

instructions, we use the ZeroMQ library (Hintjens, 2013), which

provides a level of abstraction of simple network sockets and han-

dles low-level operations such as message envelopes and timeouts.

The main function used to distribute tasks on compute nodes and

subsequently collect the results is the Q function. It takes named

iterated arguments, and a list of const (objects that do not change

their value between function calls) and export objects (which will be

made available in the worker environment). The Q function will

check which schedulers are available, and is hence often usable with-

out any additional required setup (cf. Supplementary User Guide).

load the library and create a simple function

library(clustermq)

fx ¼ function(x, y) x * 2þy
queue the function call on your scheduler

Q(fx, x¼1: 3, const¼list(y¼1), n_jobs¼1)
list(3, 5, 7)

Another way of parallelization is to register clustermq as a paral-

lel foreach backend. This is particularly useful if a third-party pack-

age uses foreach loops internally, like all Bioconductor (Gentleman

et al., 2004) packages that make use of BiocParallel.

library(foreach)

register_dopar_cmq(n_jobs¼2, memory¼1024)
this will be executed as jobs

foreach(i¼1: 3)
also for Bioconductor packages using this

BiocParallel::register(BiocParallel::DoparParam())

BiocParallel:: bplapply(1: 3, sqrt)

In addition, the package provides a documented worker API that

can be used to build tools that need fine-grained control over the

calls sent out instead of the normal scatter-gather approach (cf.

Supplementary Technical Documentation).

3 Evaluation

In order to evaluate the performance of clustermq compared to the

BatchJobs and batchtools packages (cf. Supplementary Methods), we

first tested the overhead cost for each of these tools by evaluating a

function of negligible runtime and repeating this between 1000 and

109 times. We found that clustermq has about 1000� less overhead

cost compared to the other packages when processing 105 or more

calls, although across the whole range a clear speedup is apparent

(Fig. 1a). The maximum number of calls that BatchJobs could success-

fully process was 105, while batchtools increased this limit to 106. By

contrast, clustermq was able to process 109 calls in about one hour.

For our second evaluation, we chose a realistic scenario with ap-

plication to biological data. The Genomics of Drug Sensitivity in

Cancer (GDSC) project published molecular data of approximately

1000 cell lines and their response (IC50) to 265 drugs (Iorio et al.,

2016). We ask the question if any one of 1073 genomic

or epigenomic events (mutation/copy number aberration of a gene

and differential promoter methylation, respectively) is correlated

with a significant difference in drug sensitivity across all cell lines or

for 25 specific cancer types (n¼7 392 970 associations). We found

that for this setup, clustermq is able to process the associations in

about one hour with 10% lost to overhead (Fig. 1b; dashed line).

The other packages produced too many small temporary files for

our networked file system to handle, and by extrapolation process-

ing all associations would have taken over a week.

To achieve similar results using the previously published pack-

ages one would need to adapt the analysis code to chunk together

related associations and explicitly loop through different subsets of

data. clustermq lifts this requirement and lets the analyst focus on

the biological question they are trying to address instead of manual-

ly optimizing code parallelization for execution time (cf.

Supplementary Discussion).

4 Conclusion

The clustermq R package enables computational analysts to effi-

ciently distribute a large number of function calls via HPC schedu-

lers, while reducing the need to adapt code between different

systems. We have shown its utility for drug screening data, but it

(a)

(b)

Fig. 1. Performance evaluation of HPC packages for (a) processing overhead

and (b) application to GDSC data. Along the range of tested number of func-

tion calls, clustermq requires substantially less time for processing in both

scenarios. Indicated measurements are averages of two runs with range

shown as vertical bars. (b) The dashed grey line indicates the actual number

of calls required for all GDSC associations

4494 M.Schubert

Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz284#supplementary-data
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz284#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz284#supplementary-data
Deleted Text: ,
Deleted Text: <italic>x</italic>
Deleted Text: By
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: s
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz284#supplementary-data

can be used a broad range of analyses. This includes Bioconductor

packages that make use of BiocParallel.

Conflict of Interest: none declared.

References

Bischl,B. et al. (2015) BatchJobs and BatchExperiments: abstraction mecha-

nisms for using R in batch environments. J. Stat. Softw., 64, 1–25.

Gentleman,R.C. et al. (2004) Bioconductor: open software development for

computational biology and bioinformatics. Genome Biol., 5, R80.

Hintjens,P. (2013) ZeroMQ: Messaging for Many Applications. O’Reilly

Media, Inc, Sebastopol, California.

Ihaka,R. and Gentleman,R. (1996) R: a language for data analysis and graph-

ics. J. Comput. Graph. Stat., 5, 299–314.

Iorio,F. et al. (2016) A landscape of pharmacogenomic interactions in cancer.

Cell, 166, 740–754.

Lang,M. et al. (2017) batchtools: tools for R to work on batch systems.

J. Open Source Softw., 2, 135.

Svensson,V. et al. (2018) Exponential scaling of single-cell RNA-seq in the

past decade. Nat. Protoc., 13, 599–604.

Clustermq 4495

