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Abstract

Summary: Human alpha satellite and satellite 2/3 contribute to several percent of the human gen-

ome. However, identifying these sequences with traditional algorithms is computationally inten-

sive. Here we develop dna-brnn, a recurrent neural network to learn the sequences of the two

classes of centromeric repeats. It achieves high similarity to RepeatMasker and is times faster.

Dna-brnn explores a novel application of deep learning and may accelerate the study of the evolu-

tion of the two repeat classes.

Availability and implementation: https://github.com/lh3/dna-nn

Contact: hli@jimmy.harvard.edu

1 Introduction

Eukaryotic centromeres consist of huge arrays of tandem repeats,

termed satellite DNA (Garrido-Ramos, 2017). In human, the two

largest classes of centromeric satellites are alpha satellite (alphoid)

with a 171 bp repeat unit, and satellite II/III (hsat2,3) composed of

diverse variations of the ATTCC motif. They are totaled a couple of

hundred megabases in length (Schneider et al., 2017). Both alphoid

and hsat2,3 can be identified with RepeatMasker (Tarailo-Graovac

and Chen, 2009), which is alignment based and uses the TRF tan-

dem repeat finder (Benson, 1999). However, RepeatMasker is ineffi-

cient. Annotating a human long-read assembly may take days;

annotating high-coverage sequence reads is practically infeasible. In

addition, RepeatMasker requires RepBase (Kapitonov and Jurka,

2008), which is not commercially free. This further limits its uses.

We reduce repeat annotation to a classification problem and

solve the problem with a recurrent neural network (RNN), which

can be thought as an extension to non-profile hidden Markov model

but with long-range memory. Because the repeat units of alphoid

and hsat2,3 are short, RNN can ‘memorize’ their sequences with a

small network and achieve high performance.

2 Materials and methods

2.1 The dna-brnn model
Given m types of non-overlapping features on a DNA sequence, we

can label each base with number 0; . . . ;m, where ‘0’ stands for a

null-feature. Dna-brnn learns how to label a DNA sequence. Its overall

architecture (Fig. 1) is similar to an ordinary bidirected RNN (BRNN),

except that dna-brnn feeds the reverse complement sequence to the op-

posite array of Gated Recurrent Units (GRUs) and that it ties the weights

in both directions. Dna-brnn is strand symmetric in that the network out-

put is the same regardless of the input DNA strand. The strand symmetry

helps accuracy (Shrikumar et al., 2017). Without weight sharing between

the two strands, we will end up with a model with twice as many param-

eters but 16% worse training cost (averaged in 10 runs).

In theory, we can directly apply dna-brnn to arbitrarily long

sequences. However, given a single sequence or multiple sequences of

variable lengths, it is non-trivial to implement advanced parallelization

techniques and without parallelization, the practical performance

would be tens of times slower. As a tradeoff, we apply dna-brnn to

150 bp subsequences and discard information in a longer range.

To identify satellites, we assign label ‘1’ to hsat2,3 and label ‘2’

to alphoid. The size of the GRU hidden vector is 32. There are

<5000 free parameters in such a model.

2.2 Training and prediction
In training, we randomly sampled 256 subsequences of 150 bp in

length and updated the model weights with RMSprop on this mini-

batch. To reduce overfitting, we randomly dropped out 25% ele-

ments in the hidden vectors. We terminated training after processing

250 Mb randomly sampled bases. We generated ten models with dif-

ferent random seeds and manually selected the one with the best ac-

curacy on the validation data.
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On prediction, we run the model in each 150 bp long sliding win-

dow with 50 bp overlap. In each window, the label with the highest

probability is taken as the preliminary prediction. In an overlap be-

tween two adjacent windows, the label with higher probability is

taken as the prediction. Such a prediction algorithm works well in

long arrays of satellites. However, it occasionally identifies satellites

of a few bases when there is competing evidence. To address this

issue, we propose a post-processing step.

With the previous algorithm, we can predict label ci and its prob-

ability pi at each sequence position i. We introduce a score si which

is computed as

ti ¼ log
minðpi; 0:99Þ

1�minðpi; 0:99Þ ; si ¼
ti ðci > 0Þ
�10ti ðci ¼ 0Þ :

�
(1)

Here si is usually positive at a predicted satellite base and negative at a

non-satellite base. Let Sa;b ¼
Pb

i¼a si be the sum of scores over segment

½a; b�. Intuitively, we say ½a; b� is maximal if it cannot be lengthened or

shortened without reducing Sa;b. Ruzzo and Tompa (1999) gave a rigor-

ous definition of maximal scoring segment (MSS) and a linear algorithm

to find all of them. By default, dna-brnn takes an MSS longer than 50bp

as a satellite segment. The use of MSS effectively clusters fragmented sat-

ellite predictions and improves the accuracy in practice.

2.3 Training and testing data
The training data come from three sources: chromosome 11, annotated

alphoids in the reference genome and the decoy sequences, all for

GRCh37. RepeatMasker annotations on GRCh37 were acquired from

the UCSC Genome Browser. Repeats on the GRCh37 decoy were

obtained by us with RepeatMasker (v4.0.8 with rmblast-2.6.0þ and

the human section of RepBase-23.11). RepeatMasker may annotate

hsat2,3 as ‘HSATII’, ‘(ATTCC)n’, ‘(GGAAT)n’, ‘(ATTCCATTCC)n’

or other rotations of the ATTCC motif. We combined all such repeats

into hsat2,3. We take the RepeatMasker labeling as the ground truth.

For validation, we annotated the GRCh38 decoy sequences

(Mallick et al., 2016) with RepeatMasker and used that to tune hyper-

parameters such as the size of GRU and non-model parameters in

Equation (1), and to evaluate the effect of random initialization. For

testing, we annotated the CHM1 assembly (AC: GCA_001297185.1)

with RepeatMasker as well. Testing data do not overlap training or

validation data.

For measuring the speed of RepeatMasker, we used a much smaller

repeat database, composed of seven sequences (‘HSATII’, ‘ALR’,

‘ALR_’, ‘ALRa’, ‘ALRa_’, ‘ALRb’ and ‘ALRb_’) extracted from the pre-

pared RepeatMasker database. We used option ‘-frag 300000 -no_is’ as

we found this achieves the best performance. The result obtained with a

smaller database is slightly different from that with a full database be-

cause RepeatMasker resolves overlapping hits differently.

2.4 Implementation
Unlike mainstream deep learning tools which are written in Python

and depend on heavy frameworks such as TensorFlow, dna-brnn is

implemented in C, on top of the lightweight KANN framework that

we developed. KANN implements generic computation graphs. It

uses CPU only, supports parallelization and has no external depend-

encies. This makes dna-brnn easily deployed without requiring spe-

cial hardware or software settings.

3 Results

Training dna-brnn takes 6.7 wall-clock minutes using 16 CPUs; pre-

dicting labels for the full CHM1 assembly takes 56 min. With 16

CPUs, RepeatMasker is 5.3 times as slow in CPU time, but 17 times as

slow in real time, likely because it invokes large disk I/O and runs on a

single CPU to collate results. Table 1 shows the testing accuracy with

different prediction strategies. Applying MSS clustering improves both

false negative rate (FNR) and false positive rate (FPR). We use the

‘mss: Y, minLen: 50’ setting in the rest of this section.

Dna-brnn takes �1.5 days on 16 threads to process whole-

genome short or long reads sequenced to 30-fold coverage. For the

NA24385 CCS dataset (Wenger et al., 2019), 2.91% of bases are

alphoid and 2.56% are hsat2,3. If we assume the human genome is

3 Gb in size, these two classes of satellites amount to 164 Mb per

haploid genome. The CHM1 assembly contains 105 Mb hsat2,3 and

alphoid, though 70% of them are in short contigs isolated from

non-repetitive regions. In the reference genome GRCh37, both

classes are significantly depleted (<0.3% of the genome). GRCh38

includes computationally generated alphoids but still lacks hsat2,3

(<0.1%). Partly due to this, 82% of human novel sequences found

by Sherman et al. (2019) are hsat2,3. There are significantly less

novel sequences in euchromatin.

We have also trained dna-brnn to identify the Alu repeats to high

accuracy. Learning beta satellites, another class of centromeric

Fig. 1. The dna-brnn model. Dna-brnn takes a k-long one-hot encoded DNA se-

quence as input. It feeds the input and its reverse complement to two GRU

arrays running in the opposite directions. At each position, dna-brnn averages

the two GRU output vectors, transforms the dimension of the average with a

dense layer and applies softmax. The final output is the predicted distribution of

labels for each input base. All GRUs in both directions share the same weights

Table 1. Evaluation of dna-brnn accuracy

Alphoid hsat2,3

Setting FNR (%) FPR FNR (%) FPR

mss: N, minLen: 0 0.42 1/9952 0.42 1/4086

mss: N, minLen: 50 0.59 1/28 908 0.68 1/4639

mss: Y, minLen: 50 0.33 1/44 095 0.30 1/4370

mss: Y, minLen: 200 0.36 1/60 078 0.50 1/6010

mss: Y, minLen: 500 0.48 1/69 825 0.85 1/10 505

Note: RepeatMasker annotations on the CHM1 assembly (3.0 Gb in total,

including 55 Mb alphoid and 50 Mb hsat2,3) are taken as the ground truth.

‘mss’: whether to cluster predictions with MSSs. ‘minLen’: minimum satellite

length. ‘FNR’: false negative rate, the fraction of RepeatMasker annotated

bases being missed by dna-brnn. ‘FPR’: false positive rate, the fraction of non-

satellite bases being predicted as satellite by dna-brnn. A format ‘1=x’ in the

table implies one false positive prediction per x-bp.
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repeats, is harder. We can only achieve moderate accuracy with

larger hidden layers. Dna-brnn fails to learn the L1 repeats, which

are longer, more divergent and more fragmented. We are not sure if

this is caused by the limited capacity of dna-brnn or by innate ambi-

guity in the RepeatMasker annotation.

4 Conclusion

Dna-brnn is a fast and handy tool to annotate centromeric satellites

on high-throughput sequence data and may help biologists to under-

stand the evolution of these repeats. Dna-brnn is also a general ap-

proach to modeling DNA sequences. It can potentially learn other

sequence features and can be easily adapted to different types of se-

quence classification problems.
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