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Summary.

Regularization methods, including Lasso, group Lasso and SCAD, typically focus on selecting 

variables with strong effects while ignoring weak signals. This may result in biased prediction, 

especially when weak signals outnumber strong signals. This paper aims to incorporate weak 

signals in variable selection, estimation and prediction. We propose a two-stage procedure, 

consisting of variable selection and post-selection estimation. The variable selection stage involves 

a covariance-insured screening for detecting weak signals, while the post-selection estimation 

stage involves a shrinkage estimator for jointly estimating strong and weak signals selected from 

the first stage. We term the proposed method as the covariance-insured screening based post-

selection shrinkage estimator. We establish asymptotic properties for the proposed method and 

show, via simulations, that incorporating weak signals can improve estimation and prediction 

performance. We apply the proposed method to predict the annual gross domestic product (GDP) 

rates based on various socioeconomic indicators for 82 countries.
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1 Introduction

Given n independent samples, we consider a high-dimensional linear regression model

y = Xβ + ε, (1)

where y = (y1, … , yn)T is an n-vector of responses, X = (Xij)n×p is an n × p random design 

matrix, β = (β1, …, βp)T is a p-vector of regression coefficients and ε = (ε1, … , εn)T n is an 

n-vector of independently and identically distributed random errors with mean 0 and 

variance σ2. Let β* = β1*, …, βp*
T
 denote the true value of β. We write X = (x(1), …, x(n))T = 

(x1, …, xp), where x(i) = (Xij, … , Xip)T is the i-th row of X and xj is the j-th column of X, 
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for i = 1, …, n and j = 1, …, p. Without the subject index i, we write y, Xj and ε as the 

random variables underlying yi, Xij and εi, respectively. We assume that each Xj is 

independent of ε. We write x as the random vector underlying x(i) and assume that x follows 

a p-dimensional multivariate sub-Gaussian distribution with mean zeros, variance proxy σx
2, 

and covariance matrix Σ. Sub-Gaussian distributions contain a wide class of distributions 

such as Gaussian, binary and all bounded random variables. Therefore, our proposed 

framework can accommodate more data types, as opposed to the conventional Gaussian 

distributions.

We assume that model (1) is sparse. That is, the number of nonzero β* components is less 

than n. When p > n, the essential problem is to recover the set of predictors with nonzero 

coefficients. The past two decades have seen many regularization methods developed for 

variable selection and estimation in high-dimensional settings, including Lasso (Tibshirani, 

1996), adaptive Lasso (Zou, 2006), group Lasso (Yuan and Lin, 2006), SCAD (Fan and Li, 

2001) and MCP (Zhang, 2010), among many others. Most regularization methods assume 

the restrictive β-min condition which requires that the strength of nonzero β j*′s is larger than 

a certain noise level (Zhang and Zhang, 2014). Hence, regularization methods may fail to 

detect weak signals with nonzero but small β j*′s, and this will result in biased estimates and 

inaccurate predictions, especially when weak signals outnumber strong signals.

Detection of weak signals is challenging. However, if weak signals are partially correlated 

with strong signals which satisfy the β-min condition, they may be more reliably detected. 

To elaborate on this idea, first notice that the regression coefficient β j* can be written as

β j* = ∑
1 ≤ j′ ≤ p

Ω j j′ cov X j′, y , j = 1, …, p, (2)

where Ωjj′ is the jj′-th entry of of Ω = Σ−1, the precision matrix of x. Let ρjj′ be the partial 

correlation of Xj and Xj′, i.e. the correlation between the residuals of Xj and Xj′ after 

regressing them on all the other X variables. It can be shown that ρ j j′ = − Ω j j′/ Ω j jΩ j′ j′. 

Hence, that Xj and Xj′ are partially uncorrelated is equivalent to Ωjj′ = 0. Assume that Ω is a 

sparse matrix with only a few nonzero entries in Ω. When the right hand side of (2) can be 

accurately evaluated, weak signals can be distinguished from those of noises. In high-

dimensional settings, it is impossible to accurately evaluate ∑1 ≤ j′ ≤ pΩ j j′cov  X j′, y . 

However, under the faithfulness condition that will be introduced in Section 3, a variable, 

say, indexed by j′, satisfing the β-min condition will have a nonzero cov(Xj′, y). Once we 

identify such strong signals, we set to discover variables that are partially correlated with 

them.

For brevity, we term weak signals which are partially correlated with strong signals as “weak 

but correlated” (WBC) signals. This paper aims to incorporate WBC signals in variable 

selection, estimation and prediction. We propose a two-stage procedure which consists of 

variable selection and post-selection estimation. The variable selection stage involves a 

covariance-insured screening for detecting weak signals, and the post-selection estimation 
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stage involves a shrinkage estimator for jointly estimating strong and weak signals selected 

from the first stage. We call the proposed method as the covariance-insured screening based 

post-selection shrinkage estimator (CIS-PSE). Our simulation studies demonstrate that by 

incorporating WBC signals, CIS-PSE improves estimation and prediction accuracy. We also 

establish the asymptotic selection consistency of CIS-PSE.

The paper is organized as follows. We outline the proposed CIS-PSE method in Section 2 

and investigate its asymptotic properties in Section 3. We evaluate the finite-sample 

performance of CIS-PSE via simulations in Section 4, and apply the proposed method to 

predict the annual gross domestic product (GDP) rates based on the socioeconomic status for 

82 countries in Section 5. We conclude the paper with a brief discussion in Section 6. All 

technical proofs are provided in Appendix.

2 Methods

2.1 Notation

We use scripted upper-case letters, such as S, to denote the subsets of {1, … , p}. Denote by 

𝒮  the cardinality of 𝒮 and by 𝒮c the complement of 𝒮. For a vector v, we denote a 

subvector of v indexed by 𝒮 by v𝒮. Let X𝒮 = x j, j ∈ 𝒮  be a submatrix of the design matrix 

X restricted to the columns indexed by 𝒮. For the symmetric covariance matrix Σ, denote by 

Σ𝒮𝒮′ its submatix with the row and column indices restricted to subsets 𝒮 and 𝒮′, 

respectively. When 𝒮 = 𝒮′, we write Σ𝒮 = Σ𝒮𝒮′ for short. The notation also applies to its 

sample version Σ.

Denote by 𝒢(𝒱, ℰ; Ω) the graph induced by Ω, where the node set is 𝒱 = 1, …, p  and the 

set of edges is denoted by ℰ. An edge is a pair of nodes, say, k and k′, with Ωkk′ ≠ 0. For a 

subset 𝒱l ⊂ 𝒱, denote by Ωl the principal submatrix of Ω with its row and column indices 

restricted to 𝒱l and by ℰl the corresponding edge set. The subgraph 𝒢(𝒱l, ℰl; Ωl) is a 

connected component of 𝒢(𝒱, ℰ; Ω) if (i) any two nodes in 𝒱l are connected by edges in ℰl; 

(ii) for any node k ∈ 𝒱l
c, there exists a node k′ ∈ 𝒱l such that k, k′ cannot be connected by 

any edges in ℰ.

For a symmetric matrix A, denote by tr(A) the trace of A, and denote by λmin(A) and 

λmax(A) the minimum and maximum eigenvalues of A. We define the operator norm and the 

Frobenius norm as ‖A‖ = λmax
1/2 ATA  and ‖A‖F =  tr  ATA 1/2

, respectively. For a p-vector v, 

denote its Lq norm by ‖v‖q = ∑ j = 1
p v j

q 1/q
 with q ≥ 1. For two real numbers a and b, 

denote a∨b = max(a, b).

Denote the sample covariance matrix and the marginal sample covariance between Xj and y, 
j = 1, …, p, by
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Σ = 1
n ∑

i = 1

n
x(i) x(i) T and  cov  X j, y = 1

n ∑
i = 1

n
Xi jyi .

For a vector V = (V1, …,Vp)T, denote  cov (V, y) =  cov  V1, y , …,  cov  V p, y T
.

2.2 Defining strong and weak signals

Consider a low-dimensional linear regression model where p < n. The ordinary least squares 

(OLS) estimator βOLS = Σ−1 cov (x, y) = Ω cov (x, y) minimizes the prediction error, where 

Ω = Σ−1 is the empirical precision matrix. It is also known that βOLS is an unbiased 

estimator of β* and yields the best outcome prediction ybest  = XΩ cov (x, y) with the minimal 

prediction error.

However, when p > n, Σ becomes non-invertible, and thus β Cannot be estimated using all X 

variables. Let 𝒮0 = j: β j* ≠ 0  be the true signal set and assume that 𝒮0 < n. If 𝒮 were 

known, the predicted outcome, ybest = X𝒮0
Σ𝒮0

−1 cov  x𝒮0
, y , would have the smallest 

prediction error. In practice, 𝒮0 is unknown and some variable selection method must be 

applied first to identify 𝒮0. We define the set of strong signals as

𝒮1 = j: |β j*| > c logp/n for some c > 0, 1 ≤ j ≤ p (3)

and let 𝒮2 = 𝒮0\𝒮1 be the set of weak signals. Then, the OLS estimator and the best outcome 

prediction are given by

βOLS =
β𝒮1
OLS

β𝒮2
OLS =

Ω11  cov  x𝒮1
, y + Ω12  cov  x𝒮2

, y

Ω21  cov  x𝒮1
, y + Ω22  cov  x𝒮2

, y

and

y best  = X𝒮1
Ω11  cov  xS1

, y + XS2
Ω21  cov  x𝒮1

, y + X𝒮1
Ω12  cov  x𝒮2, y + X𝒮2

Ω22  cov  xS2
, y ,

where 
Ω11 Ω12
Ω21 Ω22

=
Σ𝒮1

Σ𝒮1𝒮2
Σ𝒮2𝒮1

Σ𝒮2

−1

 is the partitioned empirical precision matrix. We 

observe that the partial Correlations between the variables in 𝒮1 and 𝒮2 contribute to the 

estimation of β𝒮1
 and β𝒮2

, and outcome prediction. Therefore, incorporating WBC signals 

helps reduce the estimation bias and prediction error.
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We now further divide 𝒮2 into 𝒮WBC and 𝒮2 *. Here, 𝒮WBC is the set of weak signals which 

have nonzero partial correlations with the signals in 𝒮1 and 𝒮2 * is the set of weak signals 

which are not partially orrelated with signals in 𝒮1. Formally, with c given in (3),

𝒮WBC = j:0 < |β j*| < c logp/n and Ω j j′ ≠ 0 for some  j′ ∈ 𝒮1, 1 ≤ j ≤ p

and

𝒮2 * = j:0 < |β j*| < c logp/n and Ω j j′ = 0 for any  j′ ∈ 𝒮1, 1 ≤ j ≤ p .

Thus, p predictors can be partitioned as 𝒮1 ∪ 𝒮WBC ∪ 𝒮2 * ∪ 𝒮null = 1, …, p , where 

𝒮null = j: β j* = 0 . We assume that |𝒮1| = p1, |𝒮WBC| = pWBC and |𝒮2 *| = p2 *.

2.3 Covariance-insured screening based post-selection shrinkage estimator (CIS-PSE)

Our proposed CIS-PSE method consists of the variable selection and post-shrinkage 

estimation steps.

Variable selection: First, we detect strong signals by regularization methods such as 

Lasso or adaptive Lasso. Denote by 𝒮1 the set of detected strong signals. To identify WBC 

signals, we evaluate (2) for each j ∈ 𝒮1
c. When there is no confusion, we use a j′ to denote a 

strong signal.

Though estimating cov(Xj′, y) for every 1 ≤ j′ ≤ p can be easily done, identifying and 

estimating nonzero entries in Ω is still challenging in high-dimensional settings. However, 

for identifying WBC signals, it is unnecessary to estimate the whole Ω matrix. Leveraging 

intra-feature correlations among predictors, we introduce a computationally efficient method 

for detecting nonzero Qjj′’s.

Variables that are partially correlated with signals in 𝒮1 form the connected components of 

𝒢(𝒱, ℰ; Ω) that contain at least one element of 𝒮1. Therefore, for detecting WBC signals, it 

suffices to focus on such connected components. Under the sparsity assumptions of β* and 

Ω, the size of such connected components is relatively small. For example, as shown in 

Figure 1, the first two diagonal blocks of a moderate size are relevant for detection of WBC 

signals.

Under the sparsity assumption of Ω, the connected components of Ω can be inferred from 

those of the thresholded sample covariance matrix (Mazumder and Hastie, 2012; Bickel and 

Levina, 2008; Fan et al., 2011; Shao et al., 2011), which is much easier to estimate and can 

be calculated in a parallel manner. Denote by Σα the thresholded sample covariance matrix 

with a thresholding parameter α, where Σkk′
α = Σkk′1 |Σkk′| ≥ α , 1 ≤ k, k′ ≤ p with 1(·) being 

the indicator function. Denote by 𝒢 𝒱, ℰ; Σα  the graph corresponding to Σα. For variable k, 
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1 ≤ k ≤ p, denote by 𝒞[k] the vertex set of the connected component in 𝒢(𝒱, ℰ; Ω) containing 

k. If variables k and k′ belong to the same connected component, 1 ≤ k ≠ k′ ≤ p, then 

𝒞[k] = 𝒞 k′ . For example, 𝒞[14] = 𝒞[16] = 𝒞[24] = 𝒞[26] = 𝒞[29] in the third panel of Figure 

1. Clearly, when k′ ∉ 𝒞[k], Ωkk′ = 0, evaluating (2) is equivalent to estimating

β j* = ∑
j′ ∈ 𝒞[ j]

Ω j j′ cov  X j′, y , j = 1, …, p .
(4)

Correspondingly, for a variable k, 1 ≤ k ≤ p, denote by 𝒞[k] the vertex set of the connected 

component in 𝒢 𝒱, ℰ; Σα  containing k. For a multivariate Gaussian x, Mazumder and Hastie 

(2012) showed that 𝒞[k] ′s can be exactly recovered from 𝒞[k] ′s with a properly chosen α. 

For a multivariate sub-Gaussian x, we refer to the following lemma.

Lemma 2.1. Suppose that the maximum size of a connected component in Ω containing a 
variable in 𝒮0 is of order O(exp(nξ)), for some 0 < ξ < 1, then under Assumption (A7) 

specified in Section 3, with an α = O nξ − 1  and for any variable k, 1 ≤ k ≤ p, we have

P 𝒞[k] = 𝒞[k] ≥ 1 − C1nξexp −C2n1 + ξ 1 (5)

for some positive constants C1 and C2.

We summarize the variable selection procedure for 𝒮1 and 𝒮WBC.

Step S1: Detection of 𝒮1. Obtain a candidate subset 𝒮1 of strong signals using a penalized 

regression method. Here, we consider the penalized least squares (PLS) estimator from Gao 

et al. (2017):

βPLS = argmin
β

‖y − Xβ‖2
2 + ∑

j = 1

p
Penλ β j , (6)

where Penλ(βj) is a penalty on each individual βj to shrink the weak effects toward zeros and 

select the strong signals, with the tuning parameter λ > 0 controlling the size of the 

candidate subset 𝒮1. Commonly used penalties are Penλ(βj) = λ|βj| and Penλ(βj) = λωj |βj| 

for Lasso and adaptive Lasso, where ωj > 0 is a known weight.

Step 2: Detection of 𝒮WBC. First, for a given threshold α, construct a sparse estimate of the 

covariance matrix Σα. Next, for each selected variable j′ in 𝒮1 from Step S1, detect 𝒞 j′ , the 

node set, corresponding to its connected component in 𝒢 𝒱, ℰ; Σα . Let 𝒰 α, 𝒮1  be the 

union of the vertex sets corresponding to those connected components detected. That is, 

𝒰 α, 𝒮1 = ∩
j′ ∈ 𝒮1

𝒞 j′ . Then according to (4), it suffices to identify WBC signals within 
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𝒰 α, 𝒮1 . Specifically, for each j ∈ 𝒮1
c ∩ 𝒰 α, 𝒮1 , let Σ[ j]

α  be the submatrix from restricting 

Σα on 𝒞 j . We then evaluate (4) and select WBC variables by

𝒮WBC = j ∈ 𝒮1
c ∩ 𝒰 α, 𝒮1 : ∑

j′ ∈ 𝒞[ j]

Σ[ j]
α

j j′
−1 cov  X j′, y ≥ νn (7)

for some pre-specified νn. Here Σ[ j]
α

j j′
−1

 denotes the entry of Σ[ j]
α −1

 corresponding to 

variables j and j′. In our numerical studies, we rank the magnitude of variable 

j ∈ 𝒮1
c ∩ 𝒰 α, 𝒮1  according to the magnitude of |∑

j′ ∈ 𝒞[ j]
Σ[ j]

α
j j′
−1 cov  X j′, y | and select up 

to the first n − |𝒮1| variables.

Step 3: Detection of 𝒮2 *. To identify 𝒮2 *, we first solve a regression problem with a ridge 

penalty only on variables in 𝒮1WBC
c , where 𝒮1WBC = 𝒮1 ∪ 𝒮WBC. That is,

βr = argmin
β

‖y − Xβ‖2
2 + λn‖β

𝒮1
c
WBC

‖2
2 , (8)

where λn > 0 is a tuning parameter controlling the overall strength of the variables selected 

in 𝒮1WBC
c . Then a post-selection weighted ridge (WR) estimator βWR has the form

β j
WR =

β j
r, j ∈ 𝒮1WBC,

β j
r1 |β j

r | > an , j ∈ 𝒮1WBC
c ,

(9)

where an is a thresholding parameter. Then the candidate subset 𝒮2 * is obtained by

𝒮2 * = j ∈ 𝒮1WBC
c : β j

WR ≠ 0, 1 ≤ j ≤ p . (10)

Post-selection shrinkage estimation: We consider the following two cases when 

performing the post-selection shrinkage estimation.

Case 1: p1 + pWBC + p2 * < n. We obtain the CIS-PSE on 𝒮0 by

β𝒮0

CIS−PSE = Σ𝒮0

−1  cov  x𝒮0
, y , (11)

where 𝒮0 = 𝒮1 ∪ 𝒮WBC ∪ 𝒮2 *. Then β𝒮1
ClS−PSE and β

SWBC
CIS−PSE can be obtained by restricting 

β𝒮0
CIS−PSE to 𝒮1 and 𝒮WBC, respectively.
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Case 2: p1 + pWBC + p2 * > n. Recall that β𝒮1WBC
WR = β j

r, j ∈ 𝒮1WBC
T
 and 

β𝒮2
WR = β j

r1 |β j
r | > an , j ∈ 𝒮2 *

T
. We obtain the CIS-PSE of β𝒮1WBC by

β𝒮1WBC

CIS‐PSE = β𝒮1WBC

WR −
s2 − 2

Tn
∧ 1 β𝒮1WBC

WR − β𝒮1WBC

RE , (12)

Where s2 = |𝒮2 *| and Tn is as defined by

Tn = β𝒮2 *

WR T
X𝒮2 *

T M𝒮1WBC
X𝒮2 *

β𝒮2 *

WR /σ2, (13)

where M𝒮1WBC
= In − X𝒮1WBC

X𝒮1WBC
T X𝒮1WBC

−1
X𝒮1WBC

T  and 

σ2 = ∑i = 1
n yi − X𝒮2

T β𝒮2
WR 2

/(n − S2). If X𝒮1WBC
T X𝒮1WBC

 is singular, we replace 

(X𝒮1WBC
T X𝒮1WBC

)−1
 with a generalized inverse. Then β𝒮1

CIS−PSE and β𝒮WBC
CIS−PSE can be 

obtained by restricting β𝒮1
CIS−PSE to 𝒮1 and 𝒮WBC, respectively.

Set 𝒮null = 𝒮1 ∪ 𝒮WBC  ∪ 𝒮2 *
c. The final CIS-PSE estimator βCIS−PSE is defined as

βCIS−PSE = β𝒮1

CIS−PSE T
, β

SWBC

CIS−PSE T
, β𝒮2 *

WR T
, 0𝒮 null 

T
. (14)

2.4 Selection of tuning parameters

When selecting strong signals, the tuning parameter λ in Lasso or adaptive Lasso can be 

chosen by BIC (Zou, 2006). To choose νn for the selection of WBC signals according to (7), 

we rank variables j ∈ 𝒮1
c ∩ 𝒰 α, 𝒮1  according to the magnitude of 

|∑
j′ ∈ 𝒞[ j]

Σ[ j]
α

j j′
−1 cov  X j′, y | and select the first r ≤ n − |𝒮1| variables to be 𝒮WBC. Here, r is 

chosen so that 𝒮1WBC minimizes prediction errors on an independent validation dataset. For 

tuning parameter α, we set α = c3 log(n), for some positive constant c3, as suggested in Shao 

et al. (2011). Our empirical experiments show that α = c3 log(n) tends to give the larger true 

positives and the smaller false positives in identifying WBC variables. Figure 7 in Appendix 

reveals that in order to find the optimal α that minimizes the prediction error on a validation 

dataset, it suffices to conduct a grid search with only a few proposed values of α. In our 

numerical studies, instead of thresholding the sample covariance matrix, we threshold the 

sample correlation matrix. As correlations are ranged between −1 and 1, it is easier to set a 

target range for α. To detect signals in 𝒮2 *, we follow Gao et al. (2017) to use cross-
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validation to choose λn and an in (8) and (9), respectively. In particular, we set and 

λn = c1an
−2(loglogn)3log(n ∨ p) an = c2n−1/8 for some positive constants c1 and c2. In the 

training dataset we fix the tuning parameters and fit the model, and in the validation dataset 

we compute the prediction error of the model. We repeat this procedure for various c1 and 

c2, and choose a pair that gives the smallest prediction error on the validation dataset.

3 Asymptotic properties

To investigate the asymptotic properties of CIS-PSE, we assume the following.

(A1) The random error ϵ has a finite kurtosis.

(A2) log(p) = O(nν) for some 0 < ν < 1.

(A3) There are positive constants κ1 and κ2 such that 0 < κ1 < λmiη(Σ) ≤ λmax(Σ) < κ2 < ∞.

(A4) Sparse Riesz condition (SRC): For the random design matrix X, any 𝒮 ⊂ 1, …, p  with 

|𝒮| = q, q ≤ p, and any vector v ∈ ℝq, there exist 0 < c* < c* < ∞ such that 

c* ≤ ‖XS
Tv‖2

2/‖v‖2
2 ≤ c * holds with probability tending to 1.

(A5) Faithfulness Assumption: Suppose that

max|Σ
𝒮1

c𝒮1
β𝒮1
* | + max|Σ

𝒮1
c𝒮2

β𝒮2
* | + min|Σ𝒮1𝒮2

β𝒮2
* | < min|Σ𝒮1𝒮1

β𝒮1
* |,

where the absolute value function | · | is applied component-wise to its argument vector. The 

max and min operators are with respect to all individual components in the argument 

vectors.

(A6) Denote by Cmax = max1 ≤ l ≤ B|𝒱l| the maximum size of the connected components in 

graph 𝒢(𝒱, ℰ; Ω) that contains at least one signal in 𝒮1, where B is the number of such 

connected components. Assume Cmax = O(ηξ) for some ξ ∈ (0,1).

(A7) Assume min k, k′ ∈ ℰ|Σkk′| ≥ C nξ − 1 for some constant C > 0 and 

max k, k′ ∉ ℰ|Σkk′| = O( nξ − 1) for the ξ in (A6).

(A8) For any subset 𝒱l ⊂ 1, …, p  with |𝒱l| = O(n), sup jE|Xi j1 j ∈ 𝒱l |2ν < Cν < ∞ for some 

constant ν > 0.

(A9) Assume that ‖β𝒮2 *
* ‖2 = o nτ  for some 0 < τ < 1, where || · ||2 is the Euclidean norm.

(A1), a technical assumption for the asymptotic proofs, is satisfied by many parametric 

distributions such as Gaussian. The assumption is mild as we do not assume any parametric 

distributions for ε except that it has finite moments. (A2) and (A3) are commonly assumed 
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in the high-dimensional literature. (A4) guarantees that 𝒮1 can be recovered with probability 

tending to 1 as n → ∞ (Zhang and Huang, 2008). (A5) ensures that for all j ∈ 𝒮1, 

min j ∈ 𝒮1
| cov  X j, y | > max

j ∈ 𝒮1
c| cov  X j, y | holds with probability tending to 1 (Lemma 4 in 

Genovese et al., 2012). (A6) implies that the size of each connected component of a strong 

signal, i.e., 𝒞 j′ , j′ ∈ 𝒮1, cannot exceed the order of exp(nξ) for some ξ ∈ (0,1). This 

assumption is required for estimating sparse covariance matrices. (A7) guarantees that with 

a properly chosen thresholding parameter α, Xk and Xk′ have non-zero thresholded sample 

covariances for k, k′ ∈ ℰ, and have zero thresholded sample covariances for k, k′ ∉ ℰ. As a 

result, the connected components of the thresholded sample covariance matrix and those of 

the precision matrix can be detected with adequate accuracy. (A8) ensures that the precision 

matrix can be accurately estimated by inverting the thresholded sample covariance matrix; 

see Shao et al. (2011) and Bickel and Levina (2008) for details. (A9), which bounds the total 

size of weak signals on 𝒮2 *, is required for selection consistency on 𝒮2 * (Gao et al., 2017).

We show that given a consistently selected 𝒮1, we have selection consistency for 𝒮WBC.

Theorem 3.1. With (A1)-(A3) and (A6)-(A8),

lim
n ∞

P 𝒮WBC = 𝒮WBC 𝒮1 = 𝒮1 = 1.

The following corollary shows that Theorem 3.1, together with Theorem 2 in Zhang and 

Huang (2008) and Corollary 2 in Gao et al. (2017), further implies selection consistency for 

𝒮1 ∪ 𝒮WBC ∪ 𝒮2 *.

Corollary 3.2. Under Assumptions (A1)-(A9), we have

lim
n ∞

P 𝒮1 = 𝒮1 ∩ 𝒮WBC = 𝒮WBC ∩ 𝒮2 * = 𝒮2 * = 1.

Corollary 3.2 implies that CIS-PSE can recover the true set asymptotically. Thus, when 

|𝒮0| < n, CIS-PSE gives an OLS estimator with probability going to 1 and has the minimum 

prediction error asymptotically, among all the unbiased estimators.

4 Simulation studies

We conduct simulations to compare the performance of the proposed CIS-PSE and the post-

shrinkage estimator (PSE) by Gao et al. (2017). The key difference between CIS-PSE and 

PSE lies in that PSE focuses only on 𝒮1 whereas CIS-PSE considers 𝒮1 ∪ 𝒮WBC.

Data are generated according to (1) with
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β* = 20, 20, 20
𝒮1

, 0.5, …, 05
𝒮WBC

30
, 0.5, …, 05

𝒮2*

30
, 0, …, 0

𝒮null

p − 63

T

. (15)

The random errors ϵi are independently generated from N(0,1). We consider the following 

examples.

Example 1: The first three variables, which belong to 𝒮1, are independently generated from 

N(0,1). The first ten, next ten and the last ten signals in 𝒮WBC belong to the connected 

component of X1, X2 and X3, respectively. These three connected components are 

independent of each other. 𝒮2 * is independent of 𝒮1 and 𝒮WBC. Each connected component 

within 𝒮1 ∪ 𝒮WBC and 𝒮2 * are generated from a multivariate normal distribution with mean 

zeros, variance 1, and a compound symmetric (CS) correlation matrix with correlation 

coefficient of 0.7. Variables in 𝒮null are independently generated from N(0, 1).

Example 2: This example is the same as Example 1 except that the three connected 

components within 𝒮1 ∪ 𝒮WBC and 𝒮2 * follow the first order autocorrelation (AR(1)) 

structure with correlation coefficient of 0.7.

Example 3: This example is the same as Example 1 except that there are 30 variables in 

𝒮null (i.e., variables X64-X93) are set to be correlated with signals in 𝒮1. That is, X64-X73 are 

correlated with X1, X74-X83 are correlated with X2, and X84-X93 are correlated with X3. 

These three connected components within 𝒮1 ∪ 𝒮null have a CS correlation structure with 

correlation coefficient of 0.7.

For each example, we conduct 500 independent experiments with p=200, 300, 400 and 500. 

We generate a training dataset of size n = 200, a test dataset of size n = 100 to assess the 

prediction performance, and an independent validation dataset of size n = 100 for tuning 

parameter selection.

First, we compare CIS-PSE and PSE in selecting 𝒮0 under Examples 1–2. We use Lasso and 

adaptive Lasso to select 𝒮1. Since both Lasso and adaptive Lasso give similar results, we 

report only the Lasso results in this section and present the results of adaptive Lasso in 

Appendix. We report the number of correctly identified variables (TP) in 𝒮0 and the number 

of incorrectly selected variables (FP) in 𝒮0
c. Table 1 shows that CIS-PSE outperforms PSE in 

identifying signals in 𝒮0. We observe that the performance of PSE deteriorates as p 

increases, whereas CIS-PSE selects 𝒮0 signals consistently even when p increases.

Next, we evaluate estimation accuracy on the targeted sub-model 𝒮1 ∪ 𝒮WBC using the mean 

squared error (MSE) as the criterion under Examples 1–2. Figure 2 indicates that the 
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proposed CIS-PSE detects WBC signals and provides more accurate and precise estimates. 

Figure 3 shows that CIS-PSE also improves the estimation of β𝒮1
 Compared to PSE.

We explore the prediction performanCe under Examples 1–2 using the mean squared 

prediction error (MSPE), defined as ‖y − ytest‖2
2/ntest = ‖Xβ⋄ − ytest‖2

2/ntest, where β⋄ is 

obtained from the training data, ytest is the response variable for the test dataset, ntest is the 

size of test dataset, and ◊ represents either the proposed CIS-PSE or PSE. Table 2, whiCh 

summarizes the results, shows that CIS-PSE outperforms PSE, suggesting incorporating 

WBC signals helps to improve the prediction accuracy.

Lastly, we consider the setting where a subset of 𝒮null is correlated with a subset of 𝒮1; see 

Example 3. Compared to Example 1, the results that are summarized in Table 4 show that 

the number of false positives only slightly increases, when some variables in 𝒮null are 

correlated with variables in 𝒮1.

5 A real data example

We apply the proposed CIS-PSE method to analyze the gross domestic product (GDP) 

growth data studied in Gao et al. (2017) and Barro and Lee (1994). Our goal is to identify 

factors that are associated with the long-run GDP growth rate. The dataset includes the GDP 

growth rates and 45 socioeconomic variables for 82 countries from 1960 to 1985. We 

consider the following model:

GRi = β0 + β1log GDP60i + zi
Tβ2 + 1 GDP60i < 2898

δ0 + δ1log GDP60i + zi
Tδ2 + εi,

(16)

where i is the country indicator, i = 1, …, 82, GRi is the annualized GDP growth rate of 

country i from 1960 to 1985, GDP60i is the GDP per capita in 1960, and zi are 45 

socioeconomic covariates, the details of which can be found in Gao et al. (2017). The β1 and 

β2 represent the coefficients of log(GDP60) and socioeconomic predictors, respectively. The 

δ0 represents the coefficient of whether the GDP per capita in 1960 is below a threshold 

(=2898) or not. The δ1 represents the coefficient of log(GDP60) when GDP per capita in 

1960 is below 2898. The δ2 represent the coefficients of the interactions between the 

GDP60i < 2898 and the socioeconomic predictors when GDP per capita in 1960 is below 

2898.

We apply the proposed CIS-PSE and PSE by Gao et al. (2017) to detect 𝒮1. Additionally, 

CISPSE is used to further identify 𝒮WBC. Effects of covariates in 𝒮1 are estimated by Lasso, 

adaptive Lasso, PSE and CIS-PSE. Effects of covariates in 𝒮WBC are estimated by CIS-PSE. 

The sample correlations between variables in 𝒮1 and 𝒮WBC are also provided. Table 4 

reports the selected variables and their estimated coefficients.
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Next, we evaluate the accuracy of predicted GR using a leave-one-out cross-validation. For 

each country, we treat it itself as the test set while using all other countries as the training 

set. We apply Lasso, adaptive Lasso, PSE and CIS-PSE. All tuning parameters are selected 

as described in Section 4. The prediction results in Figure 4 show that CIS-PSE has the 

smallest prediction errors compared to PSE, Lasso and adaptive Lasso, with 𝒮1 detected by 

either Lasso or adaptive Lasso.

6 Discussion

To improve the estimation and prediction accuracy in high-dimensional linear regressions, 

we introduce the concept of weak but correlated (WBC) signals, which are commonly 

missed by the Lasso-type variable selection methods. We show that these variables can be 

easily detected with the help of their partial correlations with strong signals. We propose a 

CIS-PSE procedure for high-dimensional variable selection and estimation, particularly for 

WBC signal detection and estimation. We show that, by incorporating WBC signals, it 

significantly improves the estimation and prediction accuracy.

An alternative approach to weak signal detection would be to group them according to a 

known group structure and then select by their grouped effects (Bodmer and Bonilla, 2008; 

Li and Leal, 2008; Wu et al., 2011; Yuan and Lin, 2006). However, grouping strategies 

require prior knowledge on the group structure, and, in some situations, may not amplify the 

grouped effects of weak signals. For example, as pointed out in Buhlmann et al. (2013) and 

Shah and Samworth (2013), when a pair of highly negatively correlated variables are 

grouped together, they cancel out each other’s effect. On the other hand, our CIS-PSE 

method is based on detecting partial correlations and can accommodate the “canceling out” 

scenarios. Hence, when the grouping structure is known, it is worth combining the grouping 

strategy and CIS-PSE for weak signal detection. We will pursue this in the future.

7: Appendix

We provide technical proofs for Theorem 3.1, Corollary 3.2 and lemmas in this section. We 

first list some definitions and auxiliary lemmas.

Definition 7.1. A random vector Z = (Z1, …, Zp) is a sub-Gaussian with mean vector μ and 

variance proxy σz
2, if for any a ∈ ℝp, E exp aT(Z − μ) ≤ exp σz

2‖a‖2
2/2 .

Let Z be a sub-Gaussian random variable with variance proxy σz
2. The sub-Gaussian tail 

inequality is given as, for any t > 0,

P(Z > t) ≤ e

− t2

2σz
2

 and P(Z < − t) ≤ e

− t2

2σz
2

.

The following Lemma 7.2 ensures that the set of signals with non-vanishing marginal 

sample correlations with y coincides with 𝒮1 with probability tending to 1. Therefore, 
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evaluating condition (4) for a covariate j is equivalent to estimating nonzero Ωjj’s for every 

j′ ∈ S1. Let rj′ be the rank of variable j′ according to the magnitude of 

| cov  X j′, y |, j′ = 1, …, p. Denote by 𝒮1(k) = j′:r j′ ≤ k  the first k covariates with the largest 

absolute marginal correlations with y, for k = 1, …, p. Recall that s1 = |𝒮1|.

Lemma 7.2. Under Assumption (A5), we have

lim
n ∞

P 𝒮1 s1 = 𝒮1 = 1.

Proof of Lemma 7.2. By the definition of 𝒮1 s1 , it is suffice to show that with probability 

tending to 1, as n → ∞,

max 1
nX

𝒮1
c

T y < min 1
nX𝒮1

T y .

Since y = Xβ* + ε = X𝒮0
β𝒮0
* + ε = X𝒮1

β𝒮1
* + X𝒮2

β𝒮2
* + ε, we have

1
nX

𝒮1
c

T y = 1
nX

𝒮1
c

T X𝒮1
β𝒮1
* + 1

nX
𝒮1

c
T X𝒮2

β𝒮2
* + 1

nX
𝒮1

c
T ε .

Notice that for each j′ ∈ 𝒮1
c, 1

nx j′
Tε  cov  X j′, ε = 0 in probability, then max|1nX

𝒮1
c

T ε| = oP(1)

as n → ∞.

It follows that when n → ∞,

max 1
nX

𝒮1
c

T y ≤ max|Σ
𝒮1

c𝒮1
β𝒮1
* | + max|Σ

𝒮1
c𝒮2

β𝒮2
* | + oP(1) .

Similarly, when n → ∞,

min 1
nX𝒮1

T y ≥ min|Σ𝒮1𝒮1
β𝒮1
* | − min|Σ𝒮1𝒮2

β𝒮2
* | + oP(1) .

Lemma 7.2 is concluded by combining the above two inequalities with the faithfulness 

condition. ◻

Bickel and Levina (2008) showed that for α = O( log|𝒮[ j]|/n), ‖Σ[ j]
α − Σ[ j]‖ = OP ρn , where 

ρn = O n−1Cmax
1/4  with Cmax

1/4  given in (A6). Furthermore, Bickel and Levina (2008) and Fan et 

al. (2011) showed that the estimation error for each connected component of the precision 

matrix is bounded by
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‖Ω[ j] − Ω[ j]‖ = ‖ Σ[ j]
α −1 − Σ[ j]

−1‖ = OP ρn . (17)

Here we adopt the recursive labeling Algorithm in Shapiro and Stockman (2002) to detect 

the connected components of the thresholded sample covariance matrix.

Without loss of generality, suppose that the strong signals in 𝒮1 belong to distinct connected 

components of Σα. We rearrange the indices in 𝒮1 as 1, …, |𝒮1|  and write the submatrix of 

Σα corresponding to j′, 1 ≤ j′ ≤ |𝒮1|, as Σ j′
α . For notational convenience, we rewrite

Ω = diag Σ1
α −1, …, Σ

|𝒮1
(α)|

α
−1

, 0
p × p

.

The following Lemma 7.3 is useful for controlling the size of 𝒞[ j].

Lemma 7.3. Under (A6)-(A7), when x is from a multivariate sub-Gaussian distribution, we 

have P |𝒞[ j]| ≤ O nξ ≥ 1 − nξC1exp −C2n1 + ξ  for some positive constants C1 and C2.

Lemma 7.3 is a direct conclusion of Lemma 2.1 and Assumption (A6). Next we prove 

Theorem 3.1.

Proof of Theorem 3.1. Notice that β j* = ∑ j′ ∈ 𝒞[ j]
Ω j j′cov  X j′, y  and 

β j = ∑
j′ ∈ 𝒞[ j]

Ω j j′ cov   X j′, y . Consider a sequence of thresholding parameters νn = 

O(n3ξ/2) with a decreasing series of positive numbers un = 1 + n−ξ/4 such that limn→∞ un = 

1,

P j ∉ 𝒮1: |β j*| > νnun ⊆ j ∉ 𝒮1: |β j| > νn

≥ 1 − P ∪
j ∉ S1, |β j*| > νnun

|β j| ≤ νn .
(18)

Moreover, since |β j| ≤ νn  and |β j*| > νnun , we have |β j − β j*| ≥ νn un − 1 . As a result,

1 − P ∪
j ∉ S1, |β j*| > νnun

|β j| ≤ νn

≥ 1 − ∑
j ∉ S1, β j* > νnun

P |β j − β j*| ≥ νn un − 1 .
(19)
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Notice that from Lemma 2.1, P 𝒞[ j] ⊆ 𝒞[ j] ≥ 1 − C1nξexp −C2nξ  for some positive 

constants C1 and C2 and 0 < ξ < 1. Therefore, we further have

P β j − β j* ≥ νn un − 1

= P ∑
j′ ∈ 𝒞 j

Ω j j′ cov  X j′, y − ∑
j′ ∈ ℰ j

Ω j j′ cov  X j′, y ≥ νn un − 1

= P ∑
j′ ∈ 𝒞 j

Ω j j′ cov  X j′, y − ∑
j′ ∈ C j

Ω j j′ cov  X j′, y ≥ νn un − 1

+ C1nξexp −C2nξ

≤ P ∑
j′ ∈ C j

Ω j j′ − Ω j j′  cov  X j′, y + Ω j j′  cov  X j′, y −  cov  X j′, y

≥ νn un − 1 + C1nξexp −C2nξ

≤ P ∑
j′ ∈ 𝒞 j

Ω j j′ − Ω j j′  cov  X j′, y ≥ νn un − 1 /2

+ P ∑
j′ ∈ 𝒞 j

Ω j j′  cov  X j′, y −  cov  X j′, y ≥ νn un − 1 /2

+ C1nξexp −C2nξ .

(20)

By (17) and Assumption (A6), ‖Ω − Ω‖ ≤ Mn−(1 − ξ/4), for some 0 < M < ∞. As n → ∞, 

the first term in (20) can be shown as:
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P ∑
j′ ∈ C[ j]

| Ω j j′ − Ω j j′  cov  X j′, y | > νn un − 1 /2

≤ P 1
n2yTx𝒞[ j]( Ω − Ω )

j𝒞[ j]

T ( Ω − Ω )
j𝒞[ j]

x𝒞[ j]
T y >

νn
2 un − 1 2

4

≤ P λmax
1
nx

C[ j]
( Ω − Ω )

jC[ j]

T ( Ω − Ω )
j𝒞[ j]

x𝒞[ j]
T 1

nyTy >
νn

2 un − 1 2

4 .

≤ P λmax
1
nx𝒞[ j]

x𝒞[ j]
T λmax ( Ω − Ω )

j𝒞[ j]

T ( Ω − Ω )
jC[ j]

1
nyTy >

νn
2 un − 1 2

4

.

(21)

Notice that E yTy/n = E y2 = σ2 + β* TΣβ* ≤ σ2 + λmax(Σ)‖β*‖2 < C1 for some positive 

constant C1. For sufficiently large n, 

λmax x𝒞[ j]
x𝒞[ j]

T /n ≤ λmax(Σ) ≤ κ2 + λmax(Σ − Σ) = κ2 + ‖Σ − Σ‖1/2 = κ2 + O ρn
1/2 < C2 for 

some positive constant C2. And λmax (Ω − Ω) jc[ j]
T (Ω − Ω)

j𝒞[ j]
≤ ‖Ω − Ω‖2 ≤ M2n−(2 − ξ/2)

Therefore, from (21), for suffitiently large n,

P ∑
j′ ∈ 𝒞[ j]

| Ω j j′ − Ω j j′  cov  X j′, y | > νn un − 1 /2

≤ P C2M21
nyTy > n(2 − ξ/2)νn

2 un − 1 2

4

≤ P 1
nyTy > 1

C2M2
n2

4 ≤
4C2M2E yTy/n

n2 ≤
4C1C2M2

n2 0,

(22)

where the second last step is from applying Markov inequality to the positively valued 

random variable yTy/n.

For the second term in (20), let 

z = Z1, …, Z p
T = x1

Ty/n −  cov  X1, y , …, xp
Ty/n − cov  X p, y

T
, then we have
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P ∑
j′ ∈ C[ j]

|Ω j j′ x j′
Ty/n −  cov  X j′, y | ≥ νn un − 1 /2

≤ P λmax ΩT Ω ‖z
𝒞[ j]

‖2
2 ≥

νn
2 un − 1 2

4

≤ P |Z j′| >
νnκ1 un − 1

2|C[ j]|

for some j′ ∈ 𝒞[ j]. Notice that E Z j′ = E X j′y −  cov  X j′, y = 0. Also 

E Z j′
2 =  Var  X j′y ≤ E X j′

2 y2 ≤ E X j′
4 + E y4 /2 < C3 for some positive Constant C3 as 

E X j′
4 ≤ λmax

2 (Σ) and E y4 ≤ λmax(Σ)‖β‖2 2 + E ε4 < ∞. Therefore, from Jensen’s 

inequality, E |Z j′| = E Z j′
2 1/2 ≤ E Z j′

2 1/2 ≤ C3
1/2. Then using Lemma 7.3 to Control the 

size of C[ j] and applying Markov inequality on |Z j′|, we have

P |Z j′| >
νnκ1 un − 1

2|𝒞[ j]|
≤ P |Z j′| >

κ1nξ/4

2 ≤
2E |Z j′|
κ1nξ/4 ≤

2C3
1/2

κ1nξ/4 0. (23)

Plugging (22) and (23) into (20) and then plugging (20) into (19) gives

lim
n ∞

P j ∉ 𝒮1: |β j*| > νnun ⊆ j ∉ 𝒮1: |β j| > νn = 1. (24)

By a similar argument, we also have

lim
n ∞

P j ∉ 𝒮1: |β j*| > νn/un ⊆ j ∉ 𝒮1: |β j| > νn = 1. (25)

Combining (24) and (25), we have

lim
n ∞

P 𝒮WBC = 𝒮WBC 𝒮1 = 𝒮1 .

◻

Proof of Corollary 3.2. Notice that

P 𝒮WBC = 𝒮WBC ∩ 𝒮2 * = 𝒮2 * ∩ 𝒮1 = 𝒮1
= P 𝒮2 * = 𝒮2 * 𝒮WBC = 𝒮WBC ∩ 𝒮1 = 𝒮1 P

𝒮WBC = 𝒮WBC ∩ 𝒮1 = 𝒮1
= P 𝒮2 * = 𝒮2 * 𝒮1WBC = 𝒮1WBC P 𝒮WBC = 𝒮WBC 𝒮1 = 𝒮1 P 𝒮1 = 𝒮1 .

(26)
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Under the SRC in (A4), by Lemma 1 in Gao et al. (2017) or Theorem 2 in Zhang and Huang 

(2008),

lim
n ∞

P 𝒮1 = 𝒮1 = 1. (27)

From Theorem 3.1,

lim
n ∞

P 𝒮WBC = 𝒮WBC 𝒮1 = 𝒮1 = 1. (28)

Equations (27) and (28) together give limn ∞P 𝒮WBC = 𝒮WBC = 1. This further gives that 

P 𝒮1 ⊂ 𝒮1WBC ⊂ 𝒮1WBC ∪ 𝒮2 1. Then by Corollary 2 in Gao et al. (2017), we also 

have

lim
n ∞

P 𝒮2 * = 𝒮2 * 𝒮1WBC = 𝒮1WBC = 1. (29)

Combining (27), (28), (29) and (26) completes the proof. ◻

The following Tables 5–6 and Figures 5–6 give the selection, estimation and prediction 

results under Examples 1 and 2 when 𝒮1 is selected by adaptive Lasso.

Figure 7 shows the averaged sum of squared prediction error (SSPE) on the validation 

datasets across 500 independent experiments for different α’s.
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Figure 1: 
An illustrative example of marginally strong signals and their connected components in 

𝒢(𝒱, ℰ; Ω) . Left panel: structure of Ω; Middle panel: structure of Ω after properly reordering 

the row and column indices of Ω; Right panel: the corresponding graph structure and 

connected components of the strong signals. Signals in 𝒮1 are colored red. Signals in 𝒮2 *
are colored orange. WBC signals in 𝒮WBC are colored yellow.
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Figure 2: 
The mean squared error (MSE) of β𝒮WBC

 for different p’s under Example 1 (Left panel) and 

Example 2 (Right panel). Solid lines represent CIS-PSE, dashed lines are for PSE, and 

dotted lines indicate Lasso.

Li et al. Page 25

Appl Stoch Models Bus Ind. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Li et al. Page 26

Appl Stoch Models Bus Ind. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
The mean squared error (MSE) of β𝒮1

 for different p’s under Example 1 (Left panel) and 

Example 2 (Right panel). Solid lines represent CIS-PSE, dashed lines are for PSE, dotted 

lines indicate Lasso RE defined as β𝒮1
RE = Σ𝒮1

−1 cov  x𝒮1
, y , dot-dashed lines represent Lasso, 

and long-dashed lines are for WR in (9).
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Figure 4: 
Prediction errors from post-selection shrinkage estimators: CIS-PSE, PSE and two penalized 

estimators (Lasso and adaptive Lasso). 𝒮1 is detected by Lasso in the left panel and by 

adaptive Lasso in the right panel.
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Figure 5: 
The mean squared error (MSE) of β𝒮WBC

 for different p’s when 𝒮1 is selected by adaptive 

Lasso under Example 1 (Left panel) and Example 2 (Right panel). Solid lines represent CIS-

PSE, dashed lines are for PSE, and dotted lines indicate adaptive Lasso.
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Figure 6: 
The mean squared error (MSE) of β𝒮1

 for different p’s when 𝒮1 is selected by adaptive 

Lasso under Example 1 (Left panel) and Example 2 (Right panel). Solid lines represent CIS-

PSE, dashed lines are for PSE, dotted lines indicate adaptive Lasso RE defined as 

β𝒮1
RE = Σ𝒮1

−1 cov  x𝒮1
, y  dot-dashed lines represent adaptive Lasso, and long-dashed lines are 

for WR in (9).
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Figure 7: 
Sum of squared prediction error (SSPE) corresponding to different α’s.
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Table 1:

The performance of variable selection on 𝒮0

p = 200 p = 300 p = 400 p = 500

Example 1

TP
CIS-PSE 59.6 (1.9) 58.7 (2.1) 57.9 (2.3) 57.7 (2.4)

PSE 41.2 (4.9) 34.4 (5.1) 25.7 (6.0) 22.6 (5.8)

FP
CIS-PSE 3.7 (2.4) 5.1 (2.7) 6.9 (3.1) 8.8 (3.3)

PSE 13.3 (4.6) 18.9 (5.2) 21.7 (5.9) 26.1 (6.0)

Example 2

TP
CIS-PSE 63.0 (0) 62.9 (0.1) 62.9 (0.1) 62.9 (0.1)

PSE 43.9 (3.9) 37.0 (4.2) 32.8 (5.0) 31.5 (4.3)

FP
CIS-PSE 3.5 (2.4) 5.0 (2.7) 6.3 (3.3) 8.1 (3.1)

PSE 12.7 (4.2) 19.5 (5.1) 22.1 (6.3) 27.4 (6.4)

TP=true positive; FP= false positive.
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Table 2:

Mean squared prediction error (MSPE) of the predicted outcomes

p 200 300 400 500

Example 1

CIS-PSE 3.17 (0.80) 3.19 (0.78) 3.25 (0.77) 3.32 (0.77)

PSE 4.19 (0.83) 4.93 (1.02) 5.28 (1.07) 5.50 (1.16)

Lasso 10.28 (5.68) 10.02 (5.58) 9.77 (4.96) 9.78 (4.54)

Example 2

CIS-PSE 0.65 (0.14) 0.92 (0.19) 1.30 (0.16) 2.43 (0.64)

PSE 2.89 (0.61) 3.55 (0.75) 4.09 (0.68) 4.34 (0.97)

Lasso 4.20 (0.79) 4.50 (0.88) 4.68 (0.90) 4.73 (0.97)
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Table 3:

Comparison of false positives (standard deviations in parentheses) between Examples 1 and 3

p = 200 p = 300 p = 400 p = 500

Example 1 3.7 (2.4) 5.1 (2.7) 6.9 (3.1) 8.8 (3.3)

Example 3 4.6 (3.5) 6.1 (3.4) 7.8 (3.8) 10.9 (4.2)
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Table 4:

Estimation results of 𝒮1 and 𝒮WBC from the growth rate data

When S1 is selected by Lasso

S1 β𝒮1
Lasso β𝒮1

PSE β𝒮1
CIS−PSE 𝒮WBC β𝒮WBC

CIS−PSE corr

TOT 0.06 2.85 3.73 - - -

LFERT 1.66 1.75 2.55 LLIFE 1.88 −.85

NOM60 0.12 0.84

NOF60 −0.10 0.83

LGDPNOM60 −0.02 0.83

PRIF60 −0.001 −0.002 −0.12 LGDPPRIF60 0.02 0.99

LGDPPRIM60 −0.02 0.93

LGDPNOF60 0.02 −0.90

When S1selected by adaptive Lasso

S1 β𝒮1
 Ada‐Lasso  β𝒮1

PSE β𝒮1
CIS−PSE 𝒮WBC β𝒮WBC

CIS−PSE corr

LFERT 1.98 2.04 2.54 LLIFE 1.77 −0.85

NOM60 0.08 0.84

NOF60 −0.07 0.83

LGDPNOM60 −0.01 0.83

*corr stands for the sample correlations between variables in 𝒮1 and 𝒮WBC.

*
TOT=The term of trade shock; LFERT=log of fertility rate (children per woman) averaged over 19601985; LLIFE=log of life expectancy at age 0 

averaged over 1960–1985; NOM60=Percentage of no schooling in the male population in 1960; NOF60=Percentage of no schooling in the female 
population in 1960; LGDP60=log GDP per capita in 1960 (1985 price); PRIF60=Percentage of primary schooling attained in female population in 
1960; PRIM60=Percentage of primary schooling attained in male population in 1960; LGDPNORM60=LGDP60×NOM60; 
LGDPPRIF60=LGDP60×PRIF60; LGDPPRIM60=LGDP60×PRIM60; LGDPNOF60=LGDP60×NOF60.
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Table 5:

The performance of variable selection on 𝒮0 when 𝒮1 is selected by adaptive Lasso

p = 200 p = 300 p = 400 p = 500

Example 1

TP
CIS-PSE 61.4 (2.4) 61.1 (2.5) 61.0 (2.6) 61.1 (2.6)

PSE 41.2 (5.0) 34.4 (5.1) 25.7 (6.1) 22.6 (5.8)

FP
CIS-PSE 2.5 (2.1) 4.6 (2.5) 6.7 (3.2) 8.6 (3.0)

PSE 15.1 (4.9) 19.7 (5.0) 22.3 (5.4) 28.0 (6.2)

Example 2

TP
CIS-PSE 62.5 (0.8) 58.0 (2.2) 54.6 (2.9) 52.0 (3.5)

PSE 43.9 (3.8) 37 (4.2) 32.8 (4.3) 31.5 (4.2)

FP
CIS-PSE 3.4 (2.6) 5.2 (3.0) 6.0 (3.5) 7.7 (4.1)

PSE 13.1 (3.7) 18.6 (4.7) 21.9 (5.5) 28.0 (6.1)
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Table 6:

Mean squared prediction error (MSPE) of the predicted outcomes when 𝒮1 is selected by adaptive Lasso

p 200 300 400 500

Example 1

CIS-PSE 2.16 (0.57) 3.06 (0.63) 3.30 (0.72) 3.60 (0.81)

PSE 3.91 (0.71) 4.85 (0.86) 5.71 (1.02) 6.27 (1.17)

adaptive Lasso 15.02 (4.37) 14.67 (3.90) 14.49 (4.00) 14.74 (4.29)

Example 2

CIS-PSE 2.69 (0.58) 2.96 (0.72) 3.23 (0.81) 3.31 (0.83)

PSE 3.77 (0.77) 4.76 (1.08) 5.50 (1.17) 5.82 (0.18)

adaptive Lasso 4.48 (0.79) 4.81 (0.91) 4.94 (0.97) 4.97 (1.01)
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