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Abstract

Motivation: Genotype imputation, though generally accurate, often results in many genotypes

being poorly imputed, particularly in studies where the individuals are not well represented by

standard reference panels. When individuals in the study share regions of the genome identical by

descent (IBD), it is possible to use this information in combination with a study-specific reference

panel (SSRP) to improve the imputation results. Kinpute uses IBD information—due to recent,

familial relatedness or distant, unknown ancestors—in conjunction with the output from linkage

disequilibrium (LD) based imputation methods to compute more accurate genotype probabilities.

Kinpute uses a novel method for IBD imputation, which works even in the absence of a pedigree,

and results in substantially improved imputation quality.

Results: Given initial estimates of average IBD between subjects in the study sample, Kinpute uses

a novel algorithm to select an optimal set of individuals to sequence and use as an SSRP. Kinpute

is designed to use as input both this SSRP and the genotype probabilities output from other

LD-based imputation software, and uses a new method to combine the LD imputed genotype prob-

abilities with IBD configurations to substantially improve imputation. We tested Kinpute on a

human population isolate where 98 individuals have been sequenced. In half of this sample, whose

sequence data was masked, we used Impute2 to perform LD-based imputation and Kinpute was

used to obtain higher accuracy genotype probabilities. Measures of imputation accuracy improved

significantly, particularly for those genotypes that Impute2 imputed with low certainty.

Availability and implementation: Kinpute is an open-source and freely available Cþþ software

package that can be downloaded from.

Contact: abney@uchicago.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genotype imputation methods have been a boon to researchers,

allowing them to maximize available resources by allowing them to

computationally infer the alleles at untyped variants for many indi-

viduals. Although a majority of genotypes may be imputed with

high accuracy using standard reference panels, a substantial fraction

of variants will typically be discarded due to low quality imputation.

For study populations that are not well represented by available ref-

erence panels, this problem is exacerbated (Herzig et al., 2018).

When imputing genotypes in indigenous and founder populations,

or even isolated populations of European ancestry, the results can be

significantly improved when a subset of the sample is sequenced and

included as a study-specific reference panel (SSRP) (Deelen et al.,

2014; Herzig et al., 2018; Hou et al., 2017; Mitt et al., 2017; Pistis

et al., 2015; Sidore et al., 2015; Zhou et al., 2017).

When identical by descent (IBD) segments from close relatives to

an unsequenced individual exists, linkage disequilibrium (LD) based

imputation approaches are expected to have high accuracy

(McCarthy et al., 2016). This is because LD-based approaches will,

in principle, phase and match the haplotype of the unsequenced
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individual with the IBD segment from a sequenced individual. In

practice, this phasing and matching are done imperfectly, allowing

for the possibility that IBD-based imputation methods might be an

alternative. IBD-based imputation methods generally are either ones

that find and use extended IBD regions to both phase and impute

genotypes (Kong et al., 2008; Palin et al., 2011; Uricchio et al.,

2012) or use a pedigree to inform imputations (Burdick et al., 2006;

Chen and Schaid, 2014; Cheung et al., 2013; Livne et al., 2015).

Pedigree-based imputation can outperform LD-based methods, par-

ticularly at variants with low allele frequencies (Ullah et al., 2019),

but it is less clear whether IBD can improve on LD-based imputation

in the absence of a pedigree once an SSRP is included (Herzig et al.,

2018).

Here, we show that our method, Kinpute, which does not use

pedigree data, can use IBD information to obtain substantially

improved imputation accuracy. Kinpute uses a novel approach to

imputation in that genotype probabilities output from LD imput-

ation methods, such as Impute2 (Howie et al., 2012), minimac (Das

et al., 2016; Fuchsberger et al., 2015) and Beagle (Browning et al.,

2018; Browning and Browning, 2016) are used as prior probabilities

in a unified probabilistic model that includes IBD information.

Other approaches to combine IBD and LD-based imputation include

(i) selecting either the pedigree imputed genotype, if a pedigree-

based method can be used, or the LD imputed genotype according

to some criterion (Blue et al., 2014; Livne et al., 2015; Saad and

Wijsman, 2014) or (ii) by taking a linear combination of the two

sets of imputed genotypes (Chen and Schaid, 2014). By using the LD

imputed genotypes as prior probabilities, Kinpute provides a nat-

ural, probabilistic model to integrate the two sources of imputation

information while allowing for a wide range of study designs (e.g.

presence or absence of pedigree data). In addition, Kinpute does not

require phase information, making it robust to phasing errors, but

does require an SSRP, which may also be used when performing

LD-based imputation, and implements a novel algorithm to select

an optimal SSRP.

2 Materials and methods

The software consists of two components, both of which require

prior estimates of IBD sharing. The first component selects an opti-

mal set of individuals to use as an SSRP while leaving the rest as the

imputation panel. The second component performs genotype imput-

ation on the imputation panel given sequence data on the SSRP,

prior genotype probabilities and the previously computed IBD

information.

2.1 Optimal SSRP
To select an optimal SSRP we assume knowledge of kinship coeffi-

cients, computed from a pedigree or from a genetic relationship ma-

trix estimated from genotype data, for every pair of individuals in

the study. These coefficients measure the probability of a pair of

individuals being IBD at an arbitrary locus.

We seek a set of individuals of a prespecified size from the study

sample that, when sequenced, will provide the most informative sub-

sample (i.e. the SSRP) to impute the sequence data into the remain-

ing individuals (i.e. the imputation sample). We use IBD sharing as

the measure of informativeness for imputation. Consider a locus

where IBD probabilities have been computed between all pairs in

the sample. Let f/ijg be the set such that /ij is the probability that,

at that locus, an allele drawn randomly from individual i is IBD

with a randomly drawn allele from individual j. When computed

from a pedigree in the absence of marker data, this definition is for-

mally equivalent to the kinship coefficient. Also, let R be the set of

sequenced individuals and U the set of genotyped but not sequenced

individuals and let r 2 R and u 2 U. The quantity /ru, then, is a

measure of how informative r is with respect to imputing u’s geno-

type at that locus. For two sequenced individuals r1, r2 our informa-

tion for imputing u’s genotype is measured by 1� ð1� /r1uÞ
ð1� /r2uÞ. This is the probability that at least one of the randomly

drawn alleles from the sequenced individuals will be IBD with a ran-

dom allele from u at the locus. As this probability approaches one

we become increasingly certain that at least one of the sequenced in-

dividual will be IBD with u. We extend this pattern to form a score

by taking the product over each r 2 R and summing over each u 2
U for a given division of subjects into R and U. The optimal set of

individuals to sequence at this locus is obtained by minimizing the

loss function L ¼
P

u2U

Q
r2Rð1� /ruÞ over all divisions of subjects

for a given number of subjects in R. To obtain a genomewide score

we let /ij be either the kinship coefficient or the ijth component of

the genetic relatedness matrix computed from known genotype

data. Alternatively, one may define a value Lm at each marker m

and set L ¼
P

m Lm, though we do not implement this latter

approach.

We use a simple greedy algorithm to select which individuals in

the sample to include in R. That is, the first individual from the sam-

ple is chosen such that L is minimized for that person in R and

everyone else in U. Subsequent individuals are added to R by keep-

ing the individuals already in R and finding which one of the

remaining individuals in U minimizes L. This procedure is continued

until the desired size of R is met. Note that this algorithm will not,

in general, result in the globally optimal solution for R. It does, how-

ever, provide a computationally tractable approach to obtaining a

good, if not the best, solution.

Note that under the case where we are perfectly informed with

respect to IBD sharing, the method proposed in Gusev et al. (2012)

is a special case of our more general algorithm. In their approach,

rather than basing the loss function on IBD probabilities it is based

on hard calls of segments being IBD or not. IBD segment calling,

however, is in practice far from perfect and can have significant false

positive and/or false negative error rates. Using probabilities has the

advantage of taking uncertainty into account and allowing moderate

probabilities to combine for greater information. This is not possible

if the probabilities are thresholded to a binary classification of IBD

or not.

2.2 Imputation
The imputation method is designed to work in conjunction with the

output of other genotype imputation methods, e.g. Impute2 (Howie

et al., 2012), minimac (Fuchsberger et al., 2015) or Beagle

(Browning and Browning, 2016), that output genotype probabilities

at specific markers. These genotype probabilities are used as prior

probabilities for our method. In the absence of genotype probabil-

ities from other methods, Kinpute will compute prior probabilities

from the allele frequencies in the SSRP.

Consider a study where the entire sample has been genotyped at

a set of markers (i.e. the framework markers) and in which a subset

of the sample of individuals have been sequenced. The sequenced

individuals are the SSRP R ¼ frig, where ri is the ith reference panel

individual, i ¼ 1; . . . ;N. Let Gm
i be the true, unphased sequence

data at marker m, m ¼ 1; . . . ;M in the SSRP with i ¼ 1; . . . ;N, and

Om
i be the corresponding observed, unphased sequence data. The

imputation problem is to find PrðGm
u jO�1; . . . ;O�N ; FuÞ, where Fu is
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the framework genotype data of u, Gm
u is the unknown sequence at

marker m of sample individual u who has not been sequenced and

the superscript asterisk indicates the set over all markers. In add-

ition, we assume that from the framework genotype data we have

estimates Ŝ
�
ab on the IBD condensed identity states Sl

ab ¼ k where

k 2 f1; . . . ;9g indexes the identity state at framework marker l,

l ¼ 1; . . . ;L < M, and a; b 2 fu; r1; . . . ; rNg (Supplementary Fig. S1

displays the nine condensed identity states).

Standard imputation methods typically use LD information to first

phase the observed genotype and sequence data then compute the

probability PrðGm
u jO�1; . . . ;O�N ; FuÞ. That is, a primary component of

the imputed genotype at a marker is the phased observed alleles of u

at nearby markers. Errors in phasing, or in the observed genotypes or

sequences, can reduce the accuracy of the imputation. Kinpute on the

other hand, uses IBD, which extends over a longer range than LD.

Given this IBD information Kinpute seeks to compute the probability

PrðGm
u jOm

1 ; . . . ;Om
N ; fŜ

m

abgÞ. Note that in LD-based imputation the

probability is computed given the genomewide sequence data of the

reference panel and genomewide framework genotype data, while the

conditional probability used by Kinpute apparently conditions only

on the reference panel sequence data and IBD estimates at marker m.

In fact, Kinpute implicitly conditions on the genomewide framework

data because this is used in the computation of the IBD estimates Ŝ
m

ab

and on the reference panel genomewide sequence through the use of a

prior genotype probability that depends on this, as described below.

Note also that though the probabilities are conditioned on genome-

wide data, in practice information local to m is most influential.

Rather than compute this conditional probability directly under some

probability model (often some form of a hidden Markov model), as is

done with LD-based imputation, we instead use Bayes’ law,

PrðGujO1; . . . ;ON ; fŜabgÞ

¼ PrðO1; . . . ;ON jGu; fŜabgÞPrðGujfŜabgÞP2
g¼0 PrðO1; . . . ;ON jGu ¼ g; fŜabgÞPrðGu ¼ gjfŜabgÞ

� PrðO1; . . . ;ONjGu; fŜabgÞPrðGuÞP2
g¼0 PrðO1; . . . ;ON jGu ¼ g; fŜabgÞPrðGu ¼ gÞ

;

(1)

where we have dropped the marker m superscript for notational simpli-

city. We have used PrðGu ¼ gjfŜabgÞ � PrðGu ¼ gÞ, which is an ap-

proximation because, for instance, the presence of inbreeding can affect

the probabilities of u’s genotypes. Unless inbreeding is substantial, how-

ever, the approximation is highly accurate. Furthermore, this formula-

tion allows us to choose prior probabilities PrðGuÞ based on other

sources of information. In particular, we use the imputed genotype prob-

abilities of standard LD-based imputation as prior probabilities. Below,

we focus on our approach to compute PrðO1; . . . ;ONjGu; fŜabgÞ.

2.2.1 Error model

Throughout, we allow for errors to exist between the true genotype

Gi and the observed genotype Oi. We further assume that the

observed genotypes are conditionally independent of all other ran-

dom variables given the true genotypes so that, for instance,

PrðO1;O2jG1;G2Þ ¼ PrðO1jG1ÞPrðO2jG2Þ. We assume an allelic

error rate of � with errors of the two alleles in a genotype being inde-

pendent and the probability of error at different markers also inde-

pendent (see Supplementary Table S1). This error model is certainly

a simplification; however, it does not play a strong role in the final

imputed genotype probabilities. Primarily, the error model prevents

numerical failure of the algorithm that can occur from inconsistent

observations, for instance, when the observed genotypes are incon-

sistent with the IBD state. In our tests small non-zero error rates, up

to at least 5%, had only minor impact on the imputed probabilities.

In the Kinpute software package we set � ¼ 0:005.

2.2.2 Independence within the reference panel

At times, one simplifying assumption we use is that the genotypes of

the reference panel individuals are conditionally independent given

Gu. In this case we have

PrðO1; . . . ;ON jGu; fŜabgÞ ¼
YN

i¼1

PrðOijGu; ŜiuÞ

¼
YN

i¼1

X

Gi

PrðOijGiÞPrðGijGu; ŜiuÞ
: (2)

The estimated IBD information Ŝiu consists of probabilities of

each identity state given the framework set of markers,

PrðSiu ¼ kjFÞ ¼ D̂
iu

k , where k ¼ 1; . . . ; 9 indexes the identity state.

That is, D̂
iu

k is the estimated locus-specific probability of the identity

state given the genotype data, and we assume this is already known.

In practice, we compute these probabilities using the IBDLD (Han

and Abney, 2011, 2013) software package. Furthermore, we have

PrðGijGu; ŜiuÞ ¼
X9

k¼1

PrðGijGu; Siu ¼ kÞPrðSiu ¼ kjGu; ŜiuÞ

¼
X9

k¼1

PrðGijGu; Siu ¼ kÞ PrðGujSiu ¼ kÞD̂ iu

k

PrðGujŜiuÞ
:

(3)

In the above we use

PrðGu ¼ 0jŜiuÞ ¼ f̂ uð1� pÞ þ ð1� f̂ uÞð1� pÞ2

PrðGu ¼ 1jŜiuÞ ¼ ð1� f̂ uÞ2pð1� pÞ
PrðGu ¼ 2jŜiuÞ ¼ f̂ upþ ð1� f̂ uÞp2

(4)

where f̂ u is the estimated inbreeding coefficient of individual u at

the current marker, and p is the frequency of the 1 allele. The proba-

bilities PrðGujSiu ¼ kÞ are given in Supplementary Table S2, and the

probabilities PrðGijGu; Siu ¼ kÞ are given in Supplementary Table

S3. The quantities in these two tables together with Equation (3)

allow us to compute the probability in Equation (2).

2.2.3 IBD within the reference panel

It may often be the case that IBD exists between members of the ref-

erence panel at some markers. We can leverage this IBD to obtain

more accurate estimates of the genotype probability of individual u

at that marker. We do this by altering the factoring that occurs in

Equation (2) to reflect this dependence. For instance, let the refer-

ence panel be composed of three individuals 1, 2, 3 and there is an

individual u in whom we are imputing the genotypes at a single nu-

cleotide polymorphism (SNP). Assume that individuals u;1; 2 are in

an informative 3-way IBD state Su12 with some probability Wu12,

while individual 3 is not IBD with either 1 or 2. We get,

PrðG1;G2;G3jGu; fŜabgÞ
¼
X

Su12 ;Su3

PrðG1;G2jGu; Su12ÞPrðSu12jGu; fŜiugÞ

� PrðG3jGu; Su3ÞPrðSu3jGu; Ŝu3Þ

¼
X

Su12

PrðG1;G2jGu; Su12Þ
PrðGujSu12ÞŴu12

PrðGujfŜiugÞ

�
X

Su3

PrðG3jGu; Su3Þ
PrðGujSu3ÞD̂

3u

Su3

PrðGujŜu3Þ
: (5)

The probabilities PrðGujŜiuÞ are given by Equation (4). There are

many possible 3-way IBD states at a locus (Thompson, 1974), and
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computing them would be challenging. Instead, we use an approxi-

mation based on the pairwise IBD states at the locus and define

Su12 ¼ ðSu1; Su2; S12Þ. Then, letting s ¼ ðSu1 ¼ k; Su2 ¼ l; S12 ¼ mÞ
such that (k, l, m) define a legal 3-way IBD state, we define the prob-

ability of the 3-way IBD configuration as,

Ŵu12 ¼ PrðSu12 ¼ sjFÞ

¼ PrðSu1 ¼ kjFÞPrðSu2 ¼ ljFÞPrðS12 ¼ mjFÞP
s2S PrðSu1 ¼ kjFÞPrðSu2 ¼ ljFÞPrðS12 ¼ mjFÞ ;

(6)

where S is the set of only the eight most probable values of s, for

computational expediency.

In a collection of reference panel individuals, we need an algo-

rithm to place them into 3-way configurations with u. Random, or

arbitrary groupings are unlikely to be generally useful as only some

3-way configurations will be informative for imputation.

The algorithm proceeds by first picking an individual u into

whom we wish to impute genotypes. At each marker, the reference

panel individuals are grouped into three-way configurations (as

listed in Supplementary Table S4), if possible. Reference panel indi-

viduals who do not end up in a three-way configuration are treated

as independent. For purposes of classifying into configurations, the

IBD state for a pair (e.g. Su1) is the IBD state with the highest prob-

ability. If a reference panel individual belongs to more than one con-

figuration, only one of them is chosen. For computational

expediency we do not attempt to optimize the placement into con-

figurations (some configurations may be more informative than

others based on the genotypes of the individuals), and instead simply

place a reference panel individual into the first configuration found.

Once reference panel individuals are placed into configurations the

genotype probabilities are computed as given in Supplementary

Tables S5–S13, individuals who are not in a configuration have

genotype probabilities given by Supplementary Table S3. These

probabilities are combined, as in Equation (5), with three-way con-

figurations weighted according to their probability, as computed by

Equation (6). We further apply our error model to obtain,

PrðO1; . . . ;OnjGu; fŜabgÞ

¼
Y

ij2C

P
Gi ;Gj

PrðOijGiÞPrðOjjGjÞPrðGi;GjjGu; fŜiugÞ

�
Y

k 62C

P
Gk

PrðOkjGkÞPrðGkjGu; ŜkuÞ;

(7)

where C is the set of all reference panel individuals in a three-way

configuration. The final imputed genotype probabilities are, given

by Equation (1).

2.3 Data and analysis
We applied our method to a human founder population. The study

comprised 1415 individuals from the Hutterite kindred. A frame-

work set of markers, consisting of 271 486 SNPs that passed quality

control and had a minor allele frequency of at least 0.05, was

obtained from a combination of three Affymetrix arrays (500 k, 5.0

and 6.0). The framework markers were not pruned for LD. From

these individuals, 98 were sequenced by Complete Genomics, result-

ing in 6 617 627 SNPs that passed quality control. Details of the

genotype and sequence data, including quality control is described

in Livne et al. (2015). Although these individuals are linked by a

known pedigree, all our analyses described below are done without

knowledge of the pedigree.

From the 98 sequenced individuals, 50 were chosen to act as an

SSRP while the other 48 were used as subjects for imputation given

their framework genotypes. The sequence data of the 48 were hid-

den from imputation and used as the ‘ground truth’ against which to

compare the imputed genotypes. To assess the degree to which

Kinpute can use IBD information to improve genotype imputation

we focus on the genotypes on chromosome 22 only. On chromo-

some 22 there are 3059 SNPs in the framework set and 111 369

SNPs in the 98 sequenced individuals. We performed an initial

round of imputation on the 48 subjects using Impute2 (Howie et al.,

2012) with pre-phasing by ShapeIt2 (O’Connell et al., 2014).

We used a reference panel that consisted of the 1000 Genomes panel

(1000 Genomes Project Consortium et al., 2015) merged with the

50 SSRP individuals, with merging performed by Impute2. The

resulting imputed genotype probabilities were used as prior proba-

bilities for our Kinpute method, as described below.

To apply our Kinpute method we first used the IBDLD software

package (Han and Abney, 2011) with the GIBDLD method (Han

and Abney, 2013), which does not use a pedigree, to estimate proba-

bilities of IBD sharing at each SNP in the framework set for every

pair of the 98 individuals. Using these IBD probabilities, the SSRP

and the output from Impute2 as the genotype prior probabilities, we

used Kinpute to obtain posterior probabilities for every genotype on

chromosome 22 in the 48 subjects. We then compared the imputed

genotypes, both those done solely by Impute2 and those done with

the combination of Impute2 and Kinpute, with the sequenced geno-

types in the 48 subjects to assess accuracy.

3 Results

To assess the imputation improvement provided by Kinpute, we

stratify the imputed genotypes by genotype and SNP metrics. SNPs

are stratified by Impute2 Info score (>0.4 or <0.4), minor allele fre-

quency (� 0:02 or >0.02), and whether the SNP was shared (i.e. in

both reference panels), or private (i.e. only in the SSRP). Minor al-

lele frequency was computed from the pooled reference panels for

shared SNPs, or from the SSRP for private SNPs. In addition, each

imputed genotype was stratified based on whether the Impute2

results had high certainty (i.e. the maximum probability for a geno-

type was at least 0.9), or low certainty (i.e. the complement of high

Table 1. Imputed genotype dosage R2 with the true genotypes

Genotype Number of Impute2 &

Info SNP

type

MAF certainty genotypes (%) Impute2 Kinpute

>0.4 Shared >0.02 High 2 911 525 (59.7) 0.90 0.93

>0.4 Shared >0.02 Low 469 987 (9.6) 0.32 0.68

>0.4 Shared �0.02 High 387 932 (7.9) 0.90 0.94

>0.4 Shared �0.02 Low 15 460 (0.3) 0.25 0.70

>0.4 Private >0.02 High 201 672 (4.1) 0.89 0.92

>0.4 Private >0.02 Low 31 896 (0.7) 0.35 0.66

>0.4 Private �0.02 High 54 182 (1.1) 0.53 0.66

>0.4 Private �0.02 Low 3178 (0.1) 0.07 0.47

<0.4 Shared >0.02 High 235 481 (4.8) 0.63 0.80

<0.4 Shared >0.02 Low 106 855 (2.2) 0.28 0.73

<0.4 Shared �0.02 High 284 529 (5.8) 0.61 0.77

<0.4 Shared �0.02 Low 8751 (0.2) 0.13 0.0

<0.4 Private >0.02 High 28 684 (0.6) 0.63 0.82

<0.4 Private >0.02 Low 7988 (0.2) 0.34 0.76

<0.4 Private �0.02 High 123 111 (2.5) 0.45 0.52

<0.4 Private �0.02 Low 5913 (0.1) 0.06 0.36

Note: Bold face indicate larger R2 values.
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certainty). Within each stratification bin, we compute imputation

quality metrics using all genotypes in that bin. In Table 1, we show

the genotype dosage R2 between the true genotype and the imputed

dosages computed from Impute2 and from Kinpute with Impute2

priors. The additional quality metrics, heterozygote sensitivity, het-

erozygote positive predictive value and concordance are given in

Supplementary Tables S14–S16.

In all but one stratification level, where neither method does

well, Kinpute improves the imputation quality of Impute2. For gen-

otypes that are of low certainty, in particular, Kinpute can substan-

tially increase R2, especially for SNPs that have low INFO score.

4 Discussion

We have shown that in the presence of IBD, even when pedigree

data are absent, Kinpute can significantly improve the quality of

imputed sequence data over using LD-based imputation methods

alone. Note that Kinpute should be viewed as a supplement, as

opposed to an alternative, to LD-based imputation methods, such as

Impute2, Beagle or minimac. These LD-based methods provide use-

ful information to Kinpute’s IBD-based approach in the form of

prior genotype probabilities. The IBD approach used by Kinpute is

distinct from pedigree-based approaches, which also use IBD.

Pedigree approaches (Burdick et al., 2006; Chen and Schaid, 2014;

Cheung et al., 2013; Livne et al., 2015) require the pedigree to esti-

mate IBD, often via the construction of inheritance vectors. Thus

only sequence data within the pedigree can be used for the IBD-

based imputation. When a pedigree has only one or a few individu-

als who were sequenced, pedigree-based imputation will be of lim-

ited use. For instance, in the Hutterite dataset used here, we were

able to assess the imputation accuracy by holding out 48 sequenced

individuals while using 50 sequenced individuals as an SSRP. Even

though a pedigree is available in the Hutterite population, the subpe-

digrees that would have been needed for the pedigree-based methods

(Burdick et al., 2006; Chen and Schaid, 2014; Cheung et al., 2013)

would have left too few SSRP individuals in any subpedigree for the

methods to have effectively imputed genotypes in the imputation

panel. Kinpute, on the other hand, does not need a pedigree and can

use IBD from all sequenced individuals, including those that are

cryptically related. This is particularly useful in populations where

many individuals may be related, but do not have a recorded

pedigree.

Kinpute is advantageous in that it can use IBD even from distant

or cryptically related individuals to improve LD-based imputation

results. However, like any IBD-based method, its utility is limited by

the amount of IBD that is detectable in the sample. For samples that

come from large, outbred populations, where IBD is sparse, every

IBD-based method will be of limited use. When imputing a genotype

where the information from IBD goes to zero, the genotype proba-

bilities returned from Kinpute will converge to the provided prior

probabilities, typically the LD-based estimates. As samples increase

in IBD, Kinpute’s performance will improve. Samples from popula-

tions such as the Hutterites, where IBD is common, will gain the

most. Similar types of gains in imputation can be expected from

studies on population isolates, indigenous groups and endogenous

populations. Note that having as high a level of IBD as in the

Hutterites is not required to gain from using Kinpute. Much of the

imputation gain results from the novel use of IBD configurations.

For instance, though an IBD value of 1 between an unknown geno-

type and a SSRP genotype provides only limited information for im-

putation, when this IBD occurs within certain configurations, the

information for imputation can be dramatically higher. One in-

stance where this arises is when the SSRP individual’s genotype is

heterozygous [i.e. (0, 1)] and is also IBD ¼ 1 with a homozygous

[e.g. (0, 0)] SSRP genotype. If the unknown genotype has an IBD

value of 0 with this second SSRP genotype, we can immediately con-

clude that the unknown genotype must have at least a 1 allele

(Fig. 1). When the 1 allele is rare, LD-based imputation often has

trouble imputing the presence of this allele in the unknown geno-

type. In this situation, even though the amount of IBD is not high,

IBD provides significant added value and results in both much

higher heterozygote sensitivity (Supplementary Table S14) and het-

erozygote positive predictive value (Supplementary Table S15).

Kinpute relies on the results of other computational tools and, as a

consequence, the final results can be dependent on the tools used and

their accuracy. When selecting an optimal sample to sequence, Kinpute

requires kinship coefficients. These values may differ depending on

whether the coefficients are computed from a pedigree or from geno-

type data, and, when computed from genotype data, what method was

used. Different estimates of the kinship coefficient may lead to different

samples chosen for the SSRP but do not directly affect the imputation.

Insofar as different methods give similar estimates of the kinship coeffi-

cients, we expect the selected SSRPs will be similar and the imputation

results to be largely unaffected. When performing imputation, Kinpute

requires prior probabilities for each genotype. We recommend that the

output of LD-based imputation be used, but any set of prior probabil-

ities are allowed. If no prior probabilities are provided, Kinpute will

use allele frequencies in the SSRP to compute prior genotype probabil-

ities assuming Hardy-Weinberg equilibrium. Depending on how in-

formative the IBD is at a genotype, the posterior imputed probabilities

may be sensitive to the priors used.

As a general rule, the larger the SSRP, the more accurate LD-

based imputation will be. Similarly, when a sample comes from a

population that is close to a population in the standard reference

panels, LD-based imputation will generally be of high accuracy.

However, even in this case, with a reference panel in the tens of

thousands, some genotypes, particularly at SNPs with a rare minor

allele frequency, are not very well imputed (McCarthy et al., 2016).

Approaches that can measurably improve imputation quality, then,

can be of great benefit. This is particularly true when budgets limit

the number of individuals that can be sequenced and the study popu-

lation has drifted significantly from those in standard reference pan-

els. When relatedness exists in the sample, whether close, distant or

cryptic, Kinpute provides an additional useful tool to maximize the

use of the study’s sequence data.
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