
The Heterogeneity problem: Approaches to identify psychiatric 
subtypes

Eric Feczkoa,b,e, Oscar Miranda-Domingueza, Mollie Marra,c, Alice M. Grahama,c, Joel T. 
Nigga,c,d, Damien A. Faira,c,d

aDepartment of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 
97239, USA

bDepartment of Medical Informatics and Clinical Epidemiology Oregon Health & Science 
University, Portland, OR 97239, USA

cDepartment of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA

dAdvanced Imaging Research Center Oregon Health & Science University, Portland, OR 97239, 
USA

eTwitter: @ericfeczko(https://twitter.com/ericfeczko?lang=en) @DrDamienFair (https://twitter.com/
drdamienfair?lang=en)

Abstract

The imprecise nature of psychiatric nosology restricts progress towards characterizing/treating 

mental health disorders. One issue is the ‘heterogeneity problem’: different causal mechanisms 

may relate to the same disorder, and multiple outcomes of interest can occur within one individual. 

Our review tackles this ‘heterogeneity problem’, providing considerations/concepts/approaches for 

investigators examining human cognition and mental health. We highlight the difficulty of pure 

dimensional approaches due to ‘the curse of dimensionality’. Computationally, we consider 

supervised and unsupervised statistical approaches to identify putative subtypes within a 

population. However, we emphasize that subtype identification should be linked to a particular 

outcome or question. We conclude with novel hybrid approaches that can identify subtypes tied to 

outcomes, and may help advance precision diagnostic and treatment tools.
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Mechanisms underlying mental health issues are mostly unknown

For over 100 years[1–3] psychiatrists, psychologists, and mental health providers have 

developed and refined psychiatric nosology via efforts that include a series of revisions of 

the World Health Organization’s International Classification of Disorders (ICD; see: 
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Glossary) [4] and the American Psychiatric Association’s Diagnostic and Statistical Manual 

for Mental Disorders (DSM) [5] (see Box 1 and Box 2). Critically, the validity of this 

approach has relied on using phenotypic data to identify putative ‘clinical types’ [6] which 

are necessary, as of now, for clinical decision making. However, despite the competing 

practical interests that drive the official nosology, the need for more effective tools to 

discover pathophysiology has led some recently to a drive for alternatives [7–12]. The 

primary concerns with the DSM and ICD nosology for psychiatry are well known and 

comprise both over-and under specificity, that is: (a) heavy overlap among the “disorders,” 

and shared biological features, indicating a lack of clear natural boundaries for defining 

disorder presence or absence (many exist on a continuum), and (b) substantial heterogeneity 

within each condition[10,12,13]. This latter point, heterogeneity, includes the issue that 

different mechanisms may drive diagnosis for different subsets of individuals, here called 

“subtypes” (see Box 1). Therefore, biological measures may differ for one subtype, but not 

another. As a result, some biological markers may only be found within a subset of 

individuals for a given diagnosis [14,15]. While the problem is well known, the solution is 

unclear[16]. The present review therefore offers further thoughts on this ‘heterogeneity 

problem’ (see: Box 1) and provides considerations, concepts, and approaches for 

investigators examining typical and atypical cognition and mental health in human 

populations.

The heterogeneity problem challenges studies of mental health research

While the search for environmental influences on, behavioral, physiologic, and biologic 

markers of mental health conditions (and many complex cognitive behaviors) has been 

ongoing for centuries (see: Box 2), progress has been frustratingly slow. In the DSM era, the 

modal study often involves comparing a group of subjects with one of the disorders defined 

by core symptoms (e.g., via DSM criteria) to a group of control subjects without the 

disorder. Statistical group differences based on environmental influences, psychometrics, 

neuroimaging, or genomics are then used to inform models of the (putative) disorder’s 

pathophysiology or etiology. For example, increased functional connectivity between 

posterior cingulate cortex (PCC) and lateral orbitofrontal cortex (OFC) was recently 

suggested to be the mechanism for depression and its amelioration [17]. Indeed, 

“Undifferentiated brain states” observed from functional connectivity magnetic resonance 

imaging (fcMRI) has been suggested as an etiology for autism spectrum disorders (ASD) as 

well [18]. In attention deficit hyperactivity disorder (ADHD) it has been suggested that 

whole-brain immature functional connections may underlie the disorder[19]; others have 

proposed a cognitive and neural “footprint” of ADHD, where differential maturation of task 

control systems differentiate children with ADHD from typically developing children[20]. 

Similarly, polygenic risk scores [8,9,21–24] and large scale genomic studies [25]have been 

used in an effort to elucidate the etiology of various mental health disorders.

By design, such case-control studies are forced to implicitly assume that the given condition 

is a homogenous entity. However, this expectation of homogeneity makes two assumptions 

that are likely incorrect: 1) That a given disorder represents a single, mechanistically 

homogenous patient population, and; 2) That the typical population likewise represents a 

largely homogeneous and presumably more adaptive or optimal state[26].
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Evidence suggests that major psychiatric conditions are heterogeneous

While a plurality of inputs to a given psychiatric presentation has been proposed recently in 

DSM-5[27] and for far longer in the literature [28], accumulating and recent evidence 

documents that this is, in fact, almost certainly the case for most psychiatric domains[29]. To 

give just some examples, heritability and genome wide association studies find profound 

heterogeneity in ASD[30–32]; common variants contribute to the heritability of the 

condition[30,31], while rare variants apparently contribute to symptom type and severity 

[30,32]. In short, the manifestation of ASD symptoms in a given individual may arise from 

fundamentally different mechanisms. Such heterogeneity is consistent with findings from 

predictive models of ASD using structural magnetic resonance imaging (sMRI) and 

functional magnetic resonance imaging (fMRI) data as well [33–37].

As another example, predictive models of future major depressive episodes or treatment 

outcomes in individuals show poor performance on independent datasets collected at 

different sites (e.g., Predicting response to depression treatment (PREDICT)[38], 

collaborative care management (CCM) [39], early medication change (EMC)[40], genome-

based therapeutic drugs for depression (GENDEP) [41], or combining medications to 

enhance depression outcomes (COMED) [42]). However, using external data to reduce 

sample heterogeneity among individuals with a history of MDD may improve the 

generalizability of such predictive models. One study improved the prediction of depression 

treatment outcomes using externally acquired fMRI data. This was done first, by identifying 

computationally distinct MDD subgroups with different fMRI profiles, and then improving 

model performance by treating the subgroups as independent populations [38]. In this case, 

connectivity between the subcallosal cingulate cortex and left insula, dorsal midbrain, and 

left ventromedial prefrontal cortex dissociated reliably between two putative subtypes. One 

subtype showed high (i.e. positive) connectivity and were best treated by cognitive 

behavioral therapy but not medication, the other subtype showed low (i.e. negative) 

connectivity and were best treated by medication but not cognitive behavioral therapy. 

Similarly, genomic[43], behavioral[44], and fMRI [45] data may be promisingly used with 

newer computational methods to identify and/or help validate ADHD subgroups, although 

this work is still in its infancy[46]. Furthermore, such identified subtypes (e.g. as in [38], see 

also [47]) may not generalize to independent datasets across different sites[48], and 

therefore require additional independent validation (see Box: 3).

Evidence suggests that typical populations are heterogeneous

While heterogeneity within psychiatric syndromes is generally acknowledged, at least in 

theory, heterogeneity within the control group is rarely considered in the psychiatric 

literature (although it is well known in other fields such as personality and social 

psychology). Thus, the heterogeneity problem almost certainly applies to typical populations 

as well. When comparing typically developing individuals to individuals diagnosed with a 

given condition, researchers are often obliged to implicitly assume the Myth of 

Optimality[49] - the assumption that the typical population represents one homogenous and 

optimal state. However, typical samples vary widely in cognitive ability and intelligence[50]; 

emotional coping style [51,52]; genetic make-up;[53] and social niche[54–56], not to 
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mention psychological adaptation or health. For example, individuals with similar overall IQ 
may cluster into different cognitive subgroups, where one such subgroup scores higher in 

verbal comprehension than another. However, both are associated with differences in 

temporal lobe morphology compared to a third group [50] and without evidence of 

maladaptation. In the case of working memory it is becoming clear that individuals can 

optimize this well studied cognitive function despite adopting different strategies, which are 

likely associated with different neural pathways [57]. Such variability in the typical 

population found in executive function measures may be critically important context for 

understanding mental health conditions, like ADHD [58]. In other words, these typical 

variations, may underlie or present distinct contexts for the presentation of a psychiatric 

condition—that is, the psychiatric conditions may be nested within typical heterogeneity 

[26,59].

Such implicit design assumptions related to typical and atypical populations may contribute 

to the frequently small effect sizes in psychopathology research. Clinically, these same 

assumptions may account for why treatment studies may show weak effects or have limited 

reproducibility. In short, assumptions of homogeneity within psychiatric conditions and 

among comparison groups have likely limited discovery with regard to identifying etiology, 

biological markers, and effective treatment options. There are several challenges which have 

made it difficult to overcome these assumptions in practice, even if they are understood to be 

incorrect in theory.

The ‘Curse of Dimensionality’ and the heterogeneity problem

Dating back many decades, one approach to overcome the heterogeneity problem in 

psychiatry has emphasized a dimensional logic to nosology[60–67], where extreme tails of a 

multi-dimensional continuous distribution (i.e. outliers) may indicate individuals that would 

benefit from treatment. Dimensions in this case would measure any combination of 

continuous or categorical variables that might include behavioral (i.e., performance on one 

or multiple tasks), biological (e.g. one or multiple genetic markers or brain features), 

environmental (i.e., one or more exposures), or other features. Unfortunately, while this 

approach might potentially reflect natural trait variation related to psychiatric nosology, it 

has major limitations in relation to actual clinical application. To detect outliers in such a 

scenario, one must first generate a representation of the population across the multi-

dimensional space. While one can procure a sufficient sample size to measure a single 

dimension[68], it is a challenge to represent a population across multiple dimensions without 

considering subtypes. The reason relates to the “curse of dimensionality[69].”

To explain, if we were to measure the continuity of a dimension within the human 

population, say for example height (see: Figure 1a), one must decide to adopt some basic 

requirements for this distribution. Let us assume that the true distribution of height is 

Gaussian; the distribution is bell-shaped with a mean of 100 and a standard deviation of 5. 

To properly identify a population outlier in this simple case, an estimate of the distribution 

must first be generated. That estimate is based on your study sample. As the number of cases 

sampled in your study (i.e., from the distribution; illustrated in Figure 1a on the leftmost 

panels) increases from 10 to 300 (Figure 1a; top row), our estimate of the distribution better 
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reflects the true distribution (blue arrows). Not surprisingly, the better that your sample 

reflects the true distribution, the better you are at identifying true population outliers. In this 

example, at 50 cases, more than 70 percent of true population outliers can be correctly 

detected (Figure 1b: left panel). However, if we want to identify outliers across two 

dimensions, let’s say height and weight, the intersection of the two dimensions generates a 

much larger search space than the 1-dimension example (Figure 1a; bottom row). Here, 

sampling 50 participants is insufficient (red arrow) to represent the true distribution (Figure 

1a; “50 samples” bottom panel), and would be a poor sample to be able to accurately 

identify outliers. With that said, sampling 300 cases creates a better representation (blue 

arrow) of the population (Figure 1a; “300 samples” bottom panel). In this scenario, while 

correct outlier detection remains highly variable, true population outliers can still be 

detected better than 70 percent of the time on average (Figure 1b; middle panel). However, 

with three dimensions, let’s say height, weight, and education level, the search space grows 

exponentially. The true distribution cannot be modeled properly even with a large number of 

participants. Indeed, correct identification of population outliers is lower than the 2-

dimension case even when 1000 individuals are sampled (Figure 1b; right panel).

When applying our example use-case and attempting to detect outliers accurately (Figure 

1b), our performance decreases exponentially with increasing dimensionality. To become 

more accurate with increasing dimensional space requires exponentially more cases (i.e., 

subjects) to accurately detect outliers. By way of comparison, the Research Domain Criteria 

(RDOC) in its current iteration contains 22 categories measuring 44 dimensions [70]. The 

brain, of course, is likely to have even more signals or dimensions than this. Admittedly, 

other models of psychology make do with only a handful of dimensions [71], but the 

difficulty remains.

On the other hand, if one assumes that the population is comprised of multiple subtypes with 

different underlying distributions[69,72], then instead of detecting outliers one aims to 

distinguish boundaries between subtypes. In order to delineate such boundaries, one would 

need to define margins that separate the subtypes by measuring the overlapping space 

between them. Therefore, incorporating subtypes constrains the space that needs to be 

measured[73] - reducing the number of cases needed to identify generalizable boundaries. 

Here, relevant dimensions can help to identify and refine subgroups. Because subtypes may 

only be associated with a few relevant dimensions, it enables one to reduce the 

dimensionality, and the required sample size needed for delineation and analyses.

Several approaches can now identify subtypes in research

While the 20th century saw heavy application of factor analysis to the issue of heterogeneity, 

more recent 21st century developments in computational sciences and mathematics, have 

enabled the implementation of models that may be sufficiently complex to better address the 

aforementioned situation regarding subtypes. These approaches can be classically split into 

‘Supervised’ and ‘Unsupervised’ methods.
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Supervised approaches.

Supervised approaches (whether in statistics or in machine learning) make explicit 

assumptions about subtypes and then forces the data to fit these assumptions. In this case, if 

we know what dimensions may delineate subtypes we can develop a model to fit indicators 

of the given dimensions and predict subtypes. Such approaches are top-down and 

theoretically motivated[74]. One such approach extends from dynamic causal modelling 

(DCM), and is similar to popular methods such as latent class analysis or finite fixture 

models (noted below). In this approach, the number and shape of subtypes must be specified 

for each model. Other examples include mixture models, such as latent trajectory growth 

mixture models to identify ADHD trajectory subtypes [75] and latent class analysis to 

examine ASD subtypes[76–78]. These models have important strengths; in particular, they 

are helpful for confirming hypothesis driven nosology, analogous to confirmatory factor 

models. They have shown some promise in predicting diagnosis. The assumptions make it is 

easy to draw inferences from supervised models and test hypothesis regarding psychiatric 

nosology. Such approaches have been well-established outside of psychiatry[79].

On the other hand, supervised approaches make assumptions regarding the answer. 

Supervised models are biased towards the assumptions made, and therefore are limited by 

how much the assumptions are informed by prior knowledge. To take a real world example, 

if we were to try to identify the dialect for “carbonated beverage” across the United States, 

assuming two dialects (“soda” and “pop”), we would likely ignore the fact that most of the 

southeast says “coke” (see Key Figure, Figure 2a). An analogous clinical example is 

discussed below (see: Human population is profoundly heterogeneous across multiple 

dimensions).

Unsupervised approaches.

Unsupervised approaches identify clusters from the structure or shape of the data itself. They 

may be thought of as “bottom up”. For example, hierarchical taxonomy of psychopathology 

(HiTOP) is a recently proposed a new taxonomy for psychiatric nosology, [64]. This 

taxonomy is constructed bottom-up, empirically driven by relationships between biological 

and symptom features. It makes few assumptions regarding the data or the nature of the 

subtypes. Instead, subtypes are defined based on the data included in the model. A 

community detection approach [80] uses a similar bottom up approach to identify novel 

executive function [80], temperament [81], and neural [82,83] subtypes in an ADHD 

population. Similar approaches were used to uncover personality subtypes via temporal 

patterns from daily living data[84,85]. Frequency pattern mining is a similar approach and 

has been used to identify ASD subtypes from genomic data[86]. Such approaches are ideal 

for refining psychiatric nosology and identifying new subtypes because few assumptions 

regarding said subtypes are made. In other words, links or considerations one would not 

previously consider can be made, leading to new insights regarding psychiatric nosology.

With that said, while some unsupervised approaches have measurements to test the strength 

of sub-grouping (i.e., statistics with regard to whether the subgroups are real or not, for 

example see[87]), their utility is only meaningful in relation to some context[88]. If the 

wrong or incomplete data are used, one may get unusual groupings. Consider a real world 
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example, if one used 2016 polling data as input to an algorithm, “rural” and “urban” clusters 

similar to a United States 2016 presidential election map would likely result (Figure 2b). 

However, if the question trying to be answered was aimed at identifying “carbonated 

beverage” dialects, this clustering, albeit valid, would be of little utility. It would look 

nothing like a useful dialect map (Figure 2a). An analogous clinical example is described in 

the next section. Indeed, while both supervised and unsupervised approaches have shown 

varying success, neither typically discover novel subtypes tied to the investigator’s questions 

of interest.

Human population is profoundly heterogeneous across multiple 

dimensions

Conceptually, as noted above, a central limitation to all of the studies mentioned is the lack 

of consideration of the question of interest. In other words, due to the vast dimensionality of 

the human population (based on environment, behavior, biology/physiology, etc.) there are 

multiple ways that the populace might be subcategorized that are valid and ‘real’; however, 

any given subgrouping might not be important for the question we care about. For example, 

consider each of the maps presented in Figure 2. Each map depicts a different way the 

United States population clusters by language (Figure 2a), politics (Figure 2b), and health 

(Figure 2c). Regional dialects along the coasts, northern, and southern United States have 

different terms for carbonated beverages (Figure 2a). Rural and urban counties show 

different voting patterns in the 2016 presidential elections (Figure 2b). The southeast United 

States show elevated adult mortality rates due to stroke compared to the rest of the country 

(Figure 2c). Despite being matched with respect to ‘validity,’ each of these maps asks and 

answers different questions. Factors underlying regional dialects may be important for 

understanding migration patterns and could be measured through media and public 

advertisements. Political preferences likely influence voting patterns which could be 

predicted from polling, and don’t necessarily follow state lines. Variation in health care 

access, genetics, or lifestyle may affect mortality rates, which could be predicted from 

biological and/or socioeconomic data. In other words, there are many different ways that the 

population can be divided depending on the number and nature of the features used in the 

model. The validity or the importance of that division largely depends on the question of 

interest (see Box 3: On the interpretability and validity of predictive models). One would not 

use polling patterns to predict adult stroke mortality rates, for example. The same is likely 

true when examining cognition or mental health. There might be several ways to subdivide 

individuals with ADHD, ASD, or Major Depression for example, but the validity or 

importance of any given possibility is going to be dependent on the question of interest.

To provide a real world example that highlights the importance of such distinctions we take 

the common cerebro-vascular ailment of stroke. Stroke diagnosis is an excellent example of 

a patient population that is known to suffer from the heterogeneity problem (Figure 3), 

where subtypes depend on the outcome or ‘questions’ of interest. In stroke, multiple types of 

symptoms can be observed, ranging from facial paralysis to impaired gait (Figure 3b; Top), 

which are relatively consistent across two forms of stroke – hemorrhagic and ischemic. 

Indeed, on arrival to the emergency room, two individuals may have the identical clinical 
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stroke symptoms, but computerized tomography (CT) scans may reveal that one patient has 

a hemorrhagic stroke while the other patient’s stroke is ischemic (Figure 3b; Bottom). This 

information is critically important because despite the symptoms (akin to current psychiatric 

nosology) being identical, the mechanisms are polar opposite. ‘Subgrouping’ by CT scans 

places the patients into distinct treatment regimens (Figure 3b and c), where one group of 

patients might receive an anticoagulant like aspirin for secondary stroke prevention, where in 

the other group this same treatment would make their condition significantly more severe. 

Imagine how long it would take to determine that anticoagulants are important medications 

for secondary stroke prevention if everyone with stroke symptoms were treated with the 

intervention. With that said, if the question we were interested in this case was related to 

who might respond to exercise treatment for rehabilitation, then the categories of who had an 

ischemic or hemorrhagic stroke might be less important (Figure 3d and e). Rather, exercise 

therapy might benefit patients with impaired gait, but not impaired speech production. Thus, 

to identify subtypes tied to this particular question, different clusters or subgroupings are 

required. If major psychiatric disorders suffer from the heterogeneity problem, then how 

individuals might cluster is largely going to depend on the outcome or question of interest 

(i.e., mechanism, treatment response, environmental influences, etc.).

Ensemble hybrid approaches may overcome these limitations

Hybrid approaches, such as the functional random forest (FRF) [59], and surrogate variable 

analysis (SVA) [89] may overcome these limitations by combining the advantages of 

supervised and unsupervised approaches. The FRF combines a supervised random forest 

(RF)[90] with an unsupervised community detection algorithm, Infomap[91], to characterize 

heterogeneity tied to one’s question of interest. SVA combines an unsupervised principal 

component analysis (PCA) with a supervised learning approach to characterize 

heterogeneity untied to one’s question of interest. These approaches will be discussed in 

more detail below.

FRF characterizes biologically relevant heterogeneity and identifies 

subtypes

The FRF combines machine learning, in this case the RF [90], and graph theoretic analyses, 

here community detection [92], to characterize relevant heterogeneity and subtypes within 

populations [59]. The FRF characterizes unknown heterogeneity with respect to a question, 

combining supervised and unsupervised approaches. The FRF identifies subtypes that are 

tied to a clinical or cognitive outcome (Figure 4). First, data (called features; Figure 4: red 

box) are fit to an outcome via a RF model (Figure 4: green box), using cross-validation to 

assess model performance. A RF model comprises a collection of decision trees (Figure 4: 

red box). A decision tree is a model that splits cases (nodes) via paths comprising a series of 

binary rules (paired branches). Cases flow left or right depending on the rule, and multiple 

paths may lead to the same outcome. The input features can include unstructured clinical 

notes, clinical assessment or task measures, and even high-dimensional biological data. For 

example, a decision tree may be formed to determine whether a child may need educational 

support in school. One branch might split children by IQ, with those less than 70 requiring 
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support. Another might split children by autism diagnosis, with those diagnosed positively 

requiring support. Critically, each tree is developed randomly. A random subset of the data is 

used to generate pseudo-random datasets to train each tree. Within each tree, each rule is 

determined by selecting the rule with the best split from a randomly chosen subset of 

features. Such random ensembles will ignore features that are noise (with regard to the 

outcome), unlike the unsupervised approaches above.

The RF algorithm produces a similarity/proximity matrix (Figure 4: similarity matrix box), 

which represents the similarity between pairs of individuals, and a score, which represents 

the probability of the predicted outcome. The proximity matrix from a given RF is then 

recast as a graph, where nodes reflect participants and edges are weighted by participant-

participant proximity. Community Detection, a graph theory approach (Figure 4: light blue 

box), is used iteratively to identify subgroups (Figure 4: bottom box). The community 

detection algorithm used currently is Infomap [93]. Infomap uses a random walker that 

traverses the constructed graph to identify communities, where a subset of individuals (i.e. 

nodes) contain more edges that connect each other than edges that do not. The technique is 

robust to many case scenarios[87]. Because Infomap makes few assumptions regarding the 

number of groups or their composition, the user does not need to specify how many groups 

are present, unlike the supervised approaches above. Together these tools represent the FRF.

The outcome for the FRF reflects the question asked by the analysis. In other words, the 

proximity matrix used to identify whether subtypes exist is built specifically for the 

predicted outcome variable. If the model performs well, then identified subtypes are likely to 

be tied to the outcome. For example, an investigator, using the identical data, might define 

diagnostic subtypes from several clinical variables and demographic variables. Using the 

same input features distinct subtypes might be drawn from an outcome related to future 

academic performance, which would weight these features differently. Critically, the FRF 

makes few assumptions regarding data inputs, and can implicitly handle categorical and 

continuous data in the same model.

The potential usage of such an approach might be applied to our example on stroke noted in 

figure 3. Let’s say for example a group of investigators were interested in generating a 

model that could predict who will benefit from Warfarin for secondary prevention of a 

subsequent stroke. In this hypothetical example the investigators are unaware of the true 

mechanisms of the behavioral sequela of stroke, but do know that there is variability with 

regard to demographics, health history, environmental exposures, symptoms, and CT 

findings (i.e. hyperintensities, null findings, and hypointesities on the scan) at the time of 

presentation. They also know that not everyone with stroke benefits from anti-coagulation. 

At their disposal is a large population of stroke patients with all of their models input 

features (i.e., demographics, symptoms, etc.) and their long-term outcomes (i.e. prevention 

of a new stroke or not). This scenario is similar to the current state of affairs of clinical 

research with regard to mental health conditions. If the investigators used current supervised 

or unsupervised approaches that do not utilize the outcome of interest (i.e. secondary 

prevention) to parse the variability across all of the features they would likely identify 

different types of clusters depending on the restraints and bias of a given method. For 

example, a supervised approach that was set to force the data into two groups might fit the 
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data primarily into males and females because of the precision of this feature in the data set. 

This subgrouping is valid, but has limited impact on the outcome of interest. Of course, there 

are nearly an unlimited number of outcomes depending on the actual type of model used and 

the specified model parameters; however, such supervised approaches limit the chance that 

the we identify the model specific to our outcome of interest. Unsupervised models, while 

not requiring such explicit parameters like the number of groups, is also not guaranteed to 

give an optimal grouping decision that is important for our question or outcome (i.e. 

prevention or not when on warfarin).

Under these circumstances, methods like the FRF have an advantage. The investigators using 

the FRF would utilize all of the same features to generate the model; however, the first stage 

of the modeling would initially identify whether the features input are capable of predicting 

the outcome of interest, and then determine which features are important for that prediction 

(i.e., it would filter out the features of ‘no interest’ related to secondary prevention). For our 

case, demographic and environmental measures are not associated with secondary 

prevention and the use of warfarin. Therefore, they would have limited contributions to the 

predictions and thus would not be highly weighted when identifying sub-populations (i.e. 

the proximity matrix and community detection sub-grouping would be driven by the CT 

scan because CT measures contribute most to predicting the outcome of interest; see Figure 

3b and c). Importantly, simply changing the outcome of interest (e.g. to exercise therapy 

effectiveness) would cause the model to weight input features differently (Figure 3d and e). 

In turn, these differences would inform distinct sub-populations based on the new outcome 

measure.

The FRF has recently been used in a proof of principal study to identify putative ASD and 

typical subtypes relevant to an ASD diagnosis[59]. Behavioral data derived from tasks 

reflecting multiple cognitive domains were used to predict ASD diagnosis in ASD and 

typical samples. The FRF identified three putative ASD and four putative typical subgroups. 

Both sets of subgroups showed similar variation in cognitive profiles, suggesting that ASD 

heterogeneity may be nested within typical heterogeneity. Variation in functional brain 

organization between the ASD subgroups overlapped with differences between ASD and 

typical samples, suggesting that these subgroups had biological relevance (Figure 5).

SVA characterizes biologically irrelevant heterogeneity to uncover 

subtypes

SVA is a hybrid ensemble approach to heterogeneity that was originally developed to 

eliminate batch effects in genomics data. The approach is distinct from but analogous to the 

FRF, which will be described in more detail below. In short, data procured in genomic 

studies often group or cluster secondary to differences in sample collection methods, 

sequencing dates, and other reasons not related to true genomic variation [94]. Batch effects 

are analogous to the heterogeneity problem (see: Box 1), where subtypes that might be 

identified in samples may be driven by multiple mechanisms; however, in this case the 

drivers of the subgrouping are irrelevant or unrelated to the specific question being asked. 

Rather clusters are driven by features that reflect sequence artifacts or dates. The specifics 
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with regard to what is the cause of a given batch effect may be unknown and unable to be 

modeled by an investigator for removal. SVA solves this problem by first generating a model 

tied to the question asked in the study. In other words, the model selected depends on the 

question asked by the user. Residuals from the fitted data are then extracted, which are 

unrelated to the question or outcome. Therefore, any potential clusters that can be identified 

in the residuals are highly likely to be batch effects. SVA does not attempt to measure such 

clusters directly [89]; instead, latent variables representing surrogates of such subgroups are 

identified in the residuals from the data using PCA, where the combination of these variables 

is equivalent to the combination of batch effects in aggregate. The residual data is now 

decomposed into a series of independent linear components, where each component 

comprises a weighted sum of the data’s features. These components can be controlled for 

when modeling the data, enabling one to avoid heterogeneity in the samples unrelated to the 

question of interest. Critically, because the batch effects are not explicitly modeled, SVA can 

reveal and control for unknown heterogeneity that is not tied to the question of interest [95].

Using the same stroke example above, SVA would first model all of the features as a 

function of the question of interest – again, secondary prevention of stroke after the use of 

warfarin. In this case, the original model would obtain a strong correspondence with results 

related to the CT scan. Residuals from the fitted data would then be extracted, which again, 

are unrelated to the question or outcome. Latent variables identified in the residuals data 

using PCA would represent grouping variables in the data that are unrelated to the specific 

outcome here (e.g. gender, socio-econmic status, behavioral symptoms, etc). These 

components would then be controlled for when modeling the data, enabling one to avoid 

heterogeneity in the samples that is unrelated to stroke prevention after Warfarin 

administration.

Because SVA characterizes heterogeneity unrelated to the question, the approach alone 

cannot identify meaningful subgroups itself. However, by removing batch effects, SVA 

combined with subsequent unsupervised approaches better identify subgroups tied to clinical 

outcomes. For example, in the context of myeloid leukemia[96], SVA enabled subsequent 

subtyping approaches to correctly identify previously validated subtypes. Removing batch 

effects via SVA has also helped subsequent unsupervised approaches to uncover overlap 

between inflammatory markers and common pathways implicated in many diseases[97,98], 

and identify functional components of tumor causing pathways[99].

There are some limitations for SVA. Unfortunately, because SVA attempts to remove 

unwanted heterogeneity, the approach cannot identify subtypes without the aid of other 

approaches[95]. Furthermore, SVA can be potentially misleading if the wrong or incomplete 

biological variables are modeled with respect to the question. Biological heterogeneity may 

be removed leading to null or even artefactual results. Despite these limitations, SVA is a 

powerful tool in characterizing unknown heterogeneity within a dataset because it attempts 

to characterize heterogeneity with respect to the question of interest.
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Heterogeneity problem requires future study on hybrid approaches

Though the heterogeneity problem is not new; the development of ensemble hybrid 

approaches to overcome the heterogeneity problem are few. The approaches presented above 

are cross-sectional and exploratory, not longitudinal nor confirmatory (see: Box 4 for how 

the FRF can be applied to longitudinal data and an approach to confirm subgroups). 

Furthermore, both of the ensemble techniques shown here have limitations. The SVA may 

not be suitable for longitudinal data, and may remove biological heterogeneity if the wrong 

variables are considered. Batch effects tied to a question may contaminate identified 

subtypes via the FRF, and methods to remove batch effects may actually confound the FRF. 

In addition, methods to handling missing data are still in development.

Concluding Remarks

The heterogeneity problem is an acute challenge for investigators trying to understand 

physiologic and biologic correlates to typical cognition and mental health. The hybrid 

approaches highlighted here represent early but critical progress in characterizing 

heterogeneity in large-scale basic science and clinical studies of complex human behavior.

The work with this regard is still in the early stages, and future development and 

comparisons across methods are needed amidst various data types used for study of brain 

and cognition (see: Outstanding Questions). Yet, as we continue to embark on massive 

endeavors to map the human brain across development and aging, both structurally and 

functionally[100–103], we feel that characterizing the heterogeneity in typical and atypical 

populations is likely going to be a major component of these efforts that will have to be 

improved before we are able to reveal their full potential.
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GLOSSARY

ADHD attention deficit hyperactive disorder. A prevalent developmental 

disorder characterized by inattentive and/or hyperactive symptoms.

ASD autism spectrum disorder. A prevalent developmental disorder 

characterized by altered social communication and restricted 

interests/repetitive behaviors.

CCM collaborative care management. A depression study that measured 

the effects of collaborative care on depression outcomes.
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COMED combining medications to enhance depression outcomes. A 

depression study that measured the effects of multi-drug treatments 

on depression outcomes.

CT Computerized tomography. An imaging approach that uses X-rays to 

create detailed views of different organs and/or tissues. CT is 

commonly used to diagnose the cause of strokes.

DCM dynamic causal modelling. A mixture modelling approach developed 

to link BOLD activity to neural activity. Modified to identify 

subtypes within a multi-dimensional space (e.g. RDOC), and help 

overcome the curse of dimensionality.

DSM Diagnostic and Statistical Manual for Mental Disorders. A taxonomy 

for psychiatric/mental health disorders developed by psychiatrists 

and psychologists within the U.S.

EMC Early medication change. A depression study that measured the 

effects of changing medications on depression outcomes.

fcMRI functional connectivity Magnetic Resonance Imaging. An approach 

for estimating functional connections between brain regions. The 

approach involves collecting fMRI data while the participant does not 

engage in a task. The correlation between spontaneously fluctuating 

signals derived from two given brain regions indicates the degree of 

functional connection between them.

fMRI functional magnetic resonance imaging. Refers to biomarkers derived 

from functional magnetic resonance imaging studies. Such 

biomarkers may reflect brain activity in response to a task or stimulus 

type, or functional connections (see: fcMRI).

FRF functional random forest. A set of approaches developed into a 

package to identify subtypes tied to the question of interest. 

Overcomes limitations of both supervised and unsupervised 

approaches.

GENDEP Genome-based therapeutic drugs for depression. A depression study 

that attempted to identify drug targets for depression based on 

genomic screening.

HiTOP Heirarchical Taxonomy of Psychopathology. An unsupervised 

approach developed by Kotov et al. to identify subtypes organized 

hierarchically, which may help overcome the curse of dimensionality. 

Unlike supervised approaches, subtypes are identified based on 

similarities across large datasets.
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ICD International Classification of Disorders. A taxonomy for 

pathophysiology. A subset of classifications are for mental health 

diagnoses.

IQ intelligence quotient. A standardized metric for measuring both fluid 

(i.e. how well you learn something) and crystallized (i.e. how much 

you know) intelligence.

OFC orbitofrontal cortex. A cortical region associated with many 

functions, including emotional regulation. Implicated in depression.

PCA principal component analysis. An approach to decomposing multi-

dimensional data into orthogonal components. A key part of the SVA.

PCC posterior cingulate cortex. A cortical region, which forms part of the 

Default mode network in the brain. Implicated in depression.

PREDICT predicting response to depression treatment. A depression study that 

examined the effects of different treatment regimens on depression 

outcomes.

RDOC Research Domain Criteria. A dimensional approach to nosology that 

characterizes individuals across continuous traits. Developed to help 

refine psychiatric nosology.

RF random forest. An ensemble classification approach comprising 

many decision trees. One of the key parts of the FRF.

sMRI structural magnetic resonance imaging. Refers to biomarkers derived 

from anatomical scans, such as T1s and T2s. Such biomarkers often 

measure shape or size.

SVA Surrogate variable analysis. An approach and package developed by 

Leek et al to identify subtypes unrelated to the question of interest 

(i.e. batch effects). Overcomes limitations of both supervised and 

unsupervised approaches.
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Box 1:

Defining the heterogeneity problem

In the current work we refer to The “Heterogeneity Problem” as a widely recognized and 

bi-faceted issue that some experts believe limits mental health and cognitive neuroscience 

research. Ultimately, an appropriate conceptual model that encompasses the natural 

heterogeneity of human outcomes is needed (see [104], as well as discussion in [105]). 

To that end, we must contend with two inescapable tenets. The first tenet refers to an 

understanding that any human mental health syndrome or outcome, from cognitive 

functions to clinical disorders, will not necessarily be ‘caused’ by a single mechanism; 

rather, because these conditions are multi-determined, they can be ‘caused’ by different 

combinations of inputs (also referred to as “equifinality”[106]). Importantly, such 

possibilities exist not only in clinical populations, but typical populations as well (e.g., 

study of normal trait variation). While this recognition is not new [63,64,104], methods to 

handle and in particular, to mathematically model, this problem continue to be refined 

and developed as we discuss in this article.

The second tenet refers to an understanding that outcomes related to single individual are 

vast and depend on the domain of interest (e.g., mood, education, health), which change 

the relevant heterogeneity parameters for that individual. In other words, when we try to 

identify a ‘mechanism,’ or rather pattern of features, related to a specific disorder or 

symptom, the ‘valid’ patterns depend on the specifics of the questions being asked. For 

example, the brain measures that differentiate a group of individuals with and without 

ADHD might be different than those brain measures that predict individuals who will 

have persistent ADHD symptoms over time, relative to regressive symptoms in later 

years (which would be distinct again from those measures that might differentiate 

individuals who will respond to cognitive therapy from those that will not). This 

particular issue, of course, pertains to any putative pathophysiological feature, not just 

brain imaging. In other words, when trying to understand and parse the variance amongst 

multiple features (brain, environment, demographics, etc.) in typical and atypical 

populations, many distinct sub-populations might emerge from such data. Each way of 

grouping them might be “valid” for a different purpose. Thus, no one ‘valid’ answer 

exists. A given solution depends on A) the features used to generate the model, B) the 

biases of the modeling strategy, and C) the goal or question at hand. As we argue in this 

review, supervised and unsupervised approaches to subtype populations have been 

informative and growing in the field with this regard; however, a weakness that we 

highlight is that most applications of these approaches do not identify subtypes tied to (C) 

the question of interest. As a result, such applications fall prey to this aspect of ‘the 

heterogeneity problem’ - identified subtypes that may be irrelevant to the question or 

outcome of interest. By tying subtype identification to the question of interest, hybrid 

approaches that combine with supervised and unsupervised characteristics may assist in 

modeling or capturing this aspect of the heterogeneity problem.
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Box 2:

Emergence of modern psychiatric nosology

Taxonomies of mental disorder date from ancient times. In the West, they trace through 

Enlightenment and modern era developments in psychology of temperament and 

personality (for a review see [2,107]) and medicine (for reviews see [1,3,105,108]). As 

the cited reviews detail, the enterprise faces perennial epistemological and ontological 

issues [109,110]. Heuristically, one view presumes natural kinds in nature and seeks to 

map them to their hidden, process-based structure. The second camp, ascendant in the 

enlightenment, eschews etiology as speculative and instead emphasizes observable 

features that may cluster together. Cross cutting these views is the ontological question of 

whether nature holds true kinds, or whether the nosology is inevitably an arbitrary but 

useful convention with the “best” structure dependent on the purpose. In modern times, 

competing psychiatric classifications, drawing upon these competing philosophical 

approaches, were formalized in the 19th and 20th centuries and became standardized in 

response to the exigencies of world war II (DSM-II, 1952). The mid-20th century re-

discovery of the kappa statistic and its application in clinical psychology, and 

concomitant realization in psychiatry of the poor inter-clinician agreement on diagnoses 

in the 1960’s, provoked disillusionment with the etiological assumptions of DSM-II. An 

emphasis on descriptive nosology, albeit with a presumed biological theory, heavily 

influenced by the work of Robins & Guze [6], again took precedence and guided creation 

of nomothetic symptom lists for DSM-III (1980). DSM-IIIR (1987), DSM-IV (1994), 

and DSM-5 (2013) did not fundamentally change this approach (although an effort was 

made in DSM-IV and DSM-5 to acknowledge cross-cutting dimensions in 

psychopathology). It also failed and continues to fail to incorporate advances in the 

empirical description of psychopathology dating back over a half century [64,66,67] such 

that a unified approach is still lacking. Fundamentally, however, as has been noted for 

centuries, a purely descriptive nosology inevitably confounds multiple entities from an 

etiological perspective, while an etiological approach remains necessarily speculative in 

psychiatry at present. At present, despite some progress, concerns are salient regarding 

excessive reification of the DSM nosology and evidence that the nosology, whatever its 

practical advantages, does not reflect biological systems. All this has led to a desire for 

alternative proposals [63,111] at least for purposes of discovery pathophysiology, with 

some hope deriving from mathematical and empirical approaches [64,112] as this article 

testifies, although those approaches do not relieve us of philosophical choices and 

assumptions.
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Box 3:

On the interpretability and validity of predictive models

Supervised, unsupervised, and hybrid modelling approaches comprise powerful methods 

to identify subtypes that may better characterize typical and atypical populations. Such 

models depend on approaches that estimate performance, called cross-validation (CV), 

and approaches that select the measures used to build the model, called feature selection 

(FS). In CV, participant datasets are partitioned evenly into folds. Per iteration, each fold 

is separated as a test dataset, and the remaining folds form the training dataset. By 

dividing participants into training and test datasets, testing is kept independent from the 

training process, which prevents overfitting. However, one must determine the number of 

folds to perform cross-validation. One commonly used approach, called LOOCV, is to 

make each subject its own fold. Although routine in neuroimaging[113], LOOCV poorly 

estimates model performance[114–116] compared to using 5 or 10 folds[114–116]. Even 

if modelling approaches adopt good cross-validation strategies, overfitting may still occur 

if improper FS strategies are implemented. FS involves selecting a subset of features to 

use in a given model, which helps overcome the curse of dimensionality. Optimal FS 

strategies determine the appropriate feature subset from the training data and not the 

testing data[117]. Models that use features selected from overlapping training and testing 

datasets often show inflated performance and fail to generalize to independent 

datasets[118]. Finally, inferences from models are limited by sample size. Small samples 

will generate greater variability in model performance, but models that perform well are 

more likely to be published[119–121]. Often, published predictive models of a given 

disorder usually decrease in performance as the reported sample size 

increases[33,35,122]. If good standards and practices are not adopted for CV and FS, 

models may perform poorly on new cases.

However, even if the best standards and practices are adopted, identified subtypes from 

models require independent validation. Independent datasets help verify models and 

improve performance when models do not perform well. Secondary measures help 

validate identified subtypes and refine inferences regarding clinical distinctions or 

biological relevance. These techniques can be combined to better validate putative 

subtypes. For example, assume that ASD subtypes were identified from a sample of 

imaging data using the FRF. To verify that such subtypes are linked to ASD affected 

behaviors, one could construct a predictive model of the subgroups from such behavioral 

data. One could then apply this behavioral predictive model to an independent set of ASD 

cases, to test the generalizability of the subtypes.
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Box 4:

Longitudinal approaches may help refine psychiatric nosology

When characterizing heterogeneity in typical or atypical populations, in many cases one 

should consider the divergence in trajectories (also see Box 2). Future work might 

incorporate longitudinal methods along with supervised and unsupervised approaches for 

such purpose. For example, functional data analysis might be used to extend the FRF and 

characterize heterogeneity from longitudinal trajectories. Functional data analysis (FDA) 

is a recently introduced method that uses a set of basis functions to identify each 

individual’s trajectory [123]. In the first stage, piecewise polynomial functions are used 

to fit the trajectory of each symptom per individual and produce a set of coefficients. In 

the cases below, 4th order B-splines were used to fit the individual trajectory, and 

penalized by 2nd order B-splines. Knots are fitted at each of the measured time points. 

While spline-fitting can handle irregularly collected data, at least 4 timepoints are 

necessary to estimate trajectories.

To characterize heterogeneity of trajectories from longitudinal data, information from the 

individual trajectories from FDA can be utilized. Two methods might be used (Figure 6). 

1) A similarity matrix can be formed from the trajectories (e.g., subject-subject 

correlation), and infomap used iteratively to identify subgroups (Figure 6: blue 

unsupervised pathway), or 2) the parameters of the basis functions for each individual 

might be input into the random forest and community detection performed on the 

subsequent proximity matrix (Figure 6: red hybrid pathway).
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Figure 1. Data simulations showing the ‘curse of dimensionality.’
[69] Examining mental health disorders or cognitive behaviors considering only 1-

continuous distribution using a purely dimensional framework (i.e., without considering 

subtypes) is challenging. (A). Data were simulated for correlated traits from Gaussian 

distributions (i.e., “Pop Dist.”). Trait 1 measure (x-axis) and frequency (y-axis) is plotted in 

the top row. The two dimensional density for traits 1 (x-axis) and 2 (y-axis) are plotted in the 

bottom row. The leftmost panels show the population distributions for the traits. From there 

we randomly sample “subjects” from the distribution. As shown, the number of “subjects” 

needed to approximate the distribution rises from 10 samples to 300 samples as the number 

of dimensions (i.e. traits) increases from one (top) to two (bottom). Good (blue arrows) and 

poor (red arrows) population fits are indicated. (B) Outlier detection was conducted [124] 

for one (left), two (middle), and three dimensions (right). Data were sampled from a 

multivariate normal distribution (means = 0, s.d = 1), to satisfy the method used. Thresholds 

for true outliers were determined from a large sample (N=10,000). To test outlier accuracy, 

smaller samples (N= 10 to N = 1000) were pseudo-randomly generated 1000 times and true 

outliers identified using the known threshold. Correctly identified outliers were calculated as 

the percentage of identified true outliers divided by the total true outliers. As shown, the 
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accuracy of identifying true outliers decreases as the number of dimensions is examined. 

Code to reproduce these plots can be found at (http://github.com/dcan-labs).
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Figure 2. Key Figure. U.S. populations maps reveal profound heterogeneity.
Several valid and important ways that a population might be subdivided are shown here. 

Each one of these subdivisions are useful for different types of questions and analogous to 

parsing clinical and cognitive heterogeneity. (A) Subtypes across the United States based on 

dialect preferences for ‘soda’, ‘pop’, or ‘coke’. Counties are colored by the most commonly 

used term. Language preferences were derived from Alan McConchie’s “pop vs. soda” 

survey (http://popvsoda.com/). Three subtypes were identified by the survey. East/West coast 

form one subtype that uses “soda”. Southeast people use “coke”, perhaps reflecting that 

Coca-Cola is headquartered in Atlanta. The northern/upper Midwest uses “pop”. (B) 

Subtypes across the United States based on the 2016 presidential election. Data were from 

Tony McGovern’s repository (https://github.com/tonmcg/

County_Level_Election_Results_12–16). Difference between Democrat (blue) and 

Republican (red) voting percentages are plotted by county. Two subtypes can be seen from 

voting preferences. “Urban” counties centered around cities typically voted more Democrat. 

“Rural” counties typically voted more Republican. (C) Subtypes across the United States 

using data from the National Center for Health Statistics (https://www.cdc.gov/nchs/

data_access/vitalstatsonline.htm). Stroke mortality rates for adults aged 35 years or older are 

plotted by county. One cluster can be seen in the eastern states, excluding the Northeast and 

tip of Florida, and another can be seen on the West coast. Code to reproduce these maps 

(http://github.com/dcan-labs) was written in R with the ggplot2[125] and maps[126] 

package. Color bar was resized and relabeled for visibility in this figure.
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Figure 3. Stroke example shows the heterogeneity problem.
(A) Unlabeled cases (grey) first present with behavioral symptoms like face droop, impaired 

speech production, or impaired gait. Cases then undergo a CT scan to determine the cause of 

the stroke. (B) Four cases are labeled based on clinician identified outcomes such as the use 

of the anti-coagulant, warfarin. Patient are ‘sub-grouped’ into ischemic (blue) or 

hemorrhagic (red) stroke groups as determined from CT scans. (C) Effect of warfarin 

treatment on outcome. The effect of anti-coagulants during acute treatment, where anti-

coagulants may harm cases with hemorrhagic stroke but benefit cases with ischemic stroke. 

In this instance, being able to sub-group individuals outside of signs and symptoms is 

critical for treatment. (D) The same exact cases as in (B); however, cases are now grouped 

by impaired gait (green) or speech (yellow) as determined from stroke symptoms. (E) The 

effect of exercise therapy during rehabilitation, which benefits impaired gait but not 

impaired speech, is also dependent on the distinct sub-grouping (D). Populations, such as 

stroke populations can be sub-divided into subgroups in many different ways. Which 

possibility is the most important depends in large part on the question of interest.
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Figure 4. FRF identifies subtypes relevant to the question of interest.
The FRF attempts to identify subtypes tied to a specific outcome or measure. Input datasets 

(top red panel) are input into a RF algorithm. Input data can comprise measures with any 

distributions, and can even be categorical. Outcomes may be continuous or categorical 

variables. Input data are split into testing and training datasets, preferably by 5- or 10-fold 

cross validation (see Box 1). The RF[90] (green panel) comprises an ensemble of decision 

trees. Per tree, a subset of the training data is bootstrap resampled and used to construct the 

decision tree. Per branch, a random subset of measures is selected. The selected measure that 

best splits the data according to the outcome forms the rule for the given branch. Trees stop 

growing when data are sufficiently divided into appropriate bins, called “terminal nodes”, 

reflecting the same or similar outcome measure. Testing data are evaluated for each tree, 

which votes on the data, and the predicted outcome is calculated by averaging the votes. 

Individuals may take different paths (red lines) that predict the same outcome. By counting 
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these paths, one can form a similarity matrix (lower red panel) for input or independent 

datasets, and the matrix reflects the total number of times participants traverse the same 

paths through the forest. This matrix is recast as a graph and input into an Infomap 

algorithm[92] (light blue panel), which uses a random walker to identify subtypes (bottom 

panel).
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Figure 5. Functional connectivity patterns vary by FRF identified subtype.
This figure was modified from [59] where the FRF was applied to behavioral data. Sufficient 

fcMRI data was obtained for three ASD subgroups (ASD SG1, ASD SG2, ASD SG3) and 

one typical subgroup ( CON SG1 - see legend). A chi-squared analysis was performed, using 

systems identified by Gordon et al[127] to determine within or between network systems 

that were differentially atypical amongst these groups (see brain inset). Briefly, the chi-

squared analysis tests whether the number of significantly varying connections within or 

between two communities are greater than what would be observed by chance. Here, the 

analysis reveals intra- and inter-system effects of subgroup. Seven effects were found that 

showed varying effects relative to the control group with respect to the ASD subgroups. Four 

are displayed here. (AUD-CIP) ASD subgroup 1 shows increased connectivity between 

auditory (AUD) and Cingulo-Parietal (CIP) systems. (CIO-DEF) ASD subgroups 2 and 3 

show increased connectivity between Cingulo-opercular (CiO) and default (DEF) systems. 

(DEF-DEF) All three ASD subgroups show decreased connectivity within the default (DEF) 

system). (DEF-SMH) ASD subgroup 3 shows elevated connectivity between default (DEF) 

and somatomotor-hand (SMH) systems, while ASD subgroup 2 shows decreased 

connectivity. Taken together, these findings highlight differential connectivity patterns that 

do not reflect simple severity, even though the subgroups were identified from behavioral 

data.
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Figure 6. FRF can identify subtypes from longitudinal trajectories.
Input dataset (center red panel) comprise at least 4 time points per case. Preferably, the first 

and last time point occur at the same time across the cases. B-spline basis functions[123] are 

fit to each case’s time series. (hybrid red panel) Per case, parameters are extracted from the 

fit functions and entered into the FRF (see: Figure 4). Model-based subtypes identified 

through this approach can be tied to a question. Subtypes can also be identified through an 

unsupervised approach (unsupervised blue panel). First, a correlation matrix is produce by 

calculating the correlation between each case’s predicted trajectory. The correlation matrix 

is then entered into Infomap, which identifies the correlation based subtypes.
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