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Past East Asian monsoon evolution controlled by
paleogeography, not CO2

Alex Farnsworth1,2*, Daniel J. Lunt1,2, Stuart A. Robinson3, Paul J. Valdes1,2,
William H. G. Roberts4, Peter D. Clift5,6, Paul Markwick7, Tao Su8, Neil Wrobel9, Fran Bragg1,2,
Sarah-Jane Kelland9, Richard D. Pancost2,10

The East Asianmonsoon plays an integral role in human society, yet its geological history and controlling processes
are poorly understood. Using a general circulationmodel and geological data, we explore the drivers controlling the
evolution of the monsoon system over the past 150 million years. In contrast to previous work, we find that the
monsoon is controlled primarily by changes in paleogeography, with little influence from atmospheric CO2.
Weassociate increasedprecipitation since the LateCretaceouswith thegradual uplift of theHimalayan-Tibetan region,
transitioning from an ITCZ-dominated monsoon to a sea breeze–dominated monsoon. The rising region acted as a
mechanical barrier to cold anddry continental air advecting into the region, leading to increasing influence ofmoist air
from the Indian Ocean/South China Sea. We show that, apart from a dry period in the middle Cretaceous, a monsoon
system has existed in East Asia since at least the Early Cretaceous.
INTRODUCTION
The East Asianmonsoon (EAM) systemplays a fundamental role in the
transport of energy from the tropics to the extra tropics. The sensitivity
of the EAM to changing future greenhouse gas concentrations has
been the subject of intense research focus [(1) and references therein]
because the EAM influences the lives of more than a billion people.
As themonsoon changes, it may alter the risk of drought or flooding (2)
and necessitate changes to the large-scale agriculture that is needed
to sustain the population. Despite recent progress, considerable un-
certainty remains even as to the sign of change of EAM precipitation
in a warmer world (1).

Climates in the geologic past that were characterized by high atmo-
spheric carbon dioxide concentrations (pCO2) (3) and temperatures
that were warmer than today allow the behavior of key climatic pro-
cesses, including monsoon systems, to be investigated. It is now well
established that East Asia (EA) in the Early Neogene [23 to 16 million
years (Ma)] was monsoonal (4–6) [where a monsoon is defined
throughout this paper as >55% of annual precipitation falling during
local summer (May–September) and local summer-minus-winter
precipitation rate being >2 mm/day (7)], and it has recently been sug-
gested that the Late Eocene (~40Ma)was characterized by amonsoonal
climate (8, 9); both are periods when global temperature was substan-
tially higher than modern (10), challenging the Neogene onset hypoth-
esis. However, the detailed evolution of past monsoonal changes is
uncertain, and the underlying causes are poorly understood. Further-
more, investigation of the sensitivity of the EAM to paleogeography
and CO2 has only focused on the modern or single past time slices,
rather than exploring secular changes.
Both paleogeography (4, 5, 11, 12) and changes in pCO2 (1, 8, 12–17)
have been proposed as key drivers of EAM past, present, and future
evolution; however, there is also uncertainty as to the role of CO2, with
some studies suggesting that increasing CO2 will not have an impact on
the future EAM (18–21). Other future warming projections suggest an
increase in intensity in the EAM (1, 14), butmany uncertainties remain,
with themodern observational record suggesting no clear trends during
the 20th century (14).

Changing paleogeography has had a major influence on the climate
system, especially the hydrologic system (22, 23), by perturbing past
atmospheric and oceanic circulation and energy fluxes. An important
paleogeographic feature thatmay have contributed to a change in the
monsoon is the uplift of theHimalayan-Tibetan region (HTR) (4, 5, 11).
Although the evolving geometry of the HTR is widely debated (24, 25),
the continental collision between India and Eurasia is thought to have
commenced in the Early Eocene, ~50 Ma (26), and likely no later than
40Ma (27). Other paleogeographic features that may have an influence
on EAM development include the Tethys Ocean (28) and the Iranian
plateau (IP) (29). pCO2 affects monsoons by modifying thermal gradi-
ents, atmospheric heating, and water vapor content, which all can have
nonlinear impacts on precipitation. pCO2 changes over geological time
are uncertain (3), although multiple proxies indicate that values were
relatively high during much of the Cretaceous, Paleocene, and Late
Eocene (~145 to ~40Ma) and have declined since that time (Fig. 1C)
(3, 30). Here, we assess the relative importance of these two key proposed
drivers for the origins and intensity of the EAM.

Quantifying the geologic long-term monsoon evolution, excluding
short-term transient events such as the Paleocene-Eocene Thermal
Maximum, is problematic because of the temporal and spatial sparsity
of proxy records and uncertainties in their interpretation. Paleoclimate
modeling can provide important insights by simulating monsoon evo-
lution in response to prescribed changes in environmental drivers and
by carrying out model-data comparison with the available data.

Previous attempts to understand the mechanisms behind EAM
evolution have focused on specific time periods (8, 11–13) and often
used a limited range of proxies over a localized area.While some studies
(8, 12) have attempted to disentangle the impact of perturbing pCO2

and paleogeography on monsoons for singular time slices, no attempt
has been made to quantify their relative roles through geologic time.
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Fig. 1. Data-model precipitation, pCO2, and HTR trend through time. (A) Normalized quantitative precipitation proxy data trend (solid black line) is shown in
conjunction with two qualitative proxy data compilations for the Cretaceous (31) and for the Paleogene and Neogene (4, 6) within 16°N to 41°N, 75°E to 130°E. Both
colored panels in (A) are independent of either of the left y axis and indicate the intensity of the hydrologic cycle. The dashed red line (32) is a compilation of proxies
from ocean drilling program sites 1146 and 1148 indicating monsoonal conditions. See the Supplementary Materials for details. (B) EA modeled mean annual precip-
itation (mm) for each geologic stage (region: fig. S4) at idealized CO2 (closed blue circle), sensitivity CO2 (open blue circle) concentrations, and alternative paleogeo-
graphy (red square). The mean annual precipitation minus evaporation (mm) for each geologic stage at idealized CO2 (closed green star) and sensitivity CO2 (open
green star) concentrations is shown. Black horizontal bar represents model-derived monsoonal conditions present. Orange triangle represents the mean annual (1979–2011)
precipitation for the monsoon region from CMAP observations. (C) Mean orographic height (m) between 27.5°N and 45°N, 71.25°E and 101.25°E for each geologic stage
(diamonds) and CO2 concentrations (circle/square) for each simulation. Shaded blue band signifies range in proxy CO2 uncertainty (3). Red vertical boxes (B and C)
represent the three synthesized key periods investigated in this study. PALEAOC, Paleocene epoch; OLIG, Oligocene epoch; and PLE, Pleistocene epoch.
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Here, we take a more complete approach, exploring the evolution of
the EAM throughout the past 145 Ma using a suite of high temporal
resolution snapshot climate model simulations to understand the in-
terplay between different forcing mechanisms during different time
periods.We present a synthesis of existing paleohydrological proxies
over the duration covering the regional scale where available, com-
pare this with the series of new model simulations, and investigate
the drivers and mechanisms influencing EAM evolution.
RESULTS
Geological evidence of EA hydrology evolution
We first analyze multiple different proxies within the EAM region,
taking account of plate tectonicmovements (fig. S4) through a synthesis
and reanalysis of existing qualitative and quantitative proxydata records
of EA hydrological cycle evolution. The use of multiple proxies can
reduce uncertainty because (i) a single site cannot record the spatial
extent of the monsoon or distinguish between a change in the move-
ment of themonsoon from that of an overall change in intensity, and
(ii) multiple proxies reporting the same trends make for a more robust
signal. The qualitative data record (Fig. 1A, horizontal bars and red
dashed lines) is based on previous sedimentological studies (4, 31–34).
The quantitative data record (Fig. 1A, black solid lines) is calculated
from precipitation estimates (table S1) derived from the fossil record,
averaged over the sites available for each geological stage in our defined
EAM region.

Qualitative proxies of Cretaceous climates (Fig. 1A) (31) generally
indicate humid conditions in EA during the earliest Cretaceous (evidenced
by coal-bearing sediments and lacustrine and fluvial deposits), drying
through the mid-Cretaceous, with relatively humid conditions ceasing
by the earliest Late Cretaceous (~100 Ma; as indicated by arid and
semiarid conditions suggested by evaporites, aeolian dunes, and red
beds bearing calcretes). Dry conditions persist in the record until
the end of the Cretaceous. Similar quantitative and qualitative paleo-
botanical and lithological proxies (Fig. 1A) (4, 6) suggest that the
environment became more humid through the Paleocene, Eocene,
and Oligocene to the Miocene (signified by a shift from evaporitic
deposits and pollen indicative of arid conditions such as Ephedripites
tomudstones and pollen produced bymoremoisture-demanding taxa
such as Taxodiaceaepollenites). Other qualitative evidence (Fig. 1A,
red dashed lines) (5) indicates that the local hydrological cycle intensity
peaked in the Early to Middle Miocene (~20 Ma) and then declined
during the Late Miocene and Pliocene.

Quantitative proxies (Fig. 1A, black lines) (34–36) are lacking for EA
in theCretaceous but show a relatively stable hydrological cycle through
the Late Paleocene and Eocene. Following a hiatus in the Oligocene,
there is evidence for a maximum hydrological intensity in the Early
Miocene, decreasing toward the preindustrial.

Modeled evolution of the EA monsoon
Using theHadCM3L coupled atmosphere-ocean climatemodel (see the
“Model simulations of monsoon evolution” section in the Supplemen-
tary Materials), we carry out a set of 38 simulations covering the Creta-
ceous to the preindustrial, one for each stratigraphic stage, with varying
paleogeography, pCO2, and solar constant. The prescribed paleogeo-
graphies (fig. S1) are consistent with paleoaltimetry data (table S3 and
fig. S2; see the “Qualitative records” section in the Supplementary
Materials). Atmospheric CO2 concentrations in themodel are held con-
stant [1120 parts permillion by volume (ppmv)] through theCretaceous,
Farnsworth et al., Sci. Adv. 2019;5 : eaax1697 30 October 2019
Paleocene, and Eocene and then decrease through the remainder of
the Cenozoic, toward preindustrial values of 280 ppmv (Fig. 1C, closed
circles), as very broadly indicated by CO2 proxies (3). In addition, for
14 stages, we carry out sensitivity tests with different CO2 concentrations
(Fig. 1C, open circles). Furthermore, for six stages, we carry out addi-
tional simulations with alternative paleogeographic reconstructions
(Fig. 1C, red squares; see the Supplementary Materials). Initially, we
evaluate the modeled preindustrial monsoon region (fig. S4) against
observed data, which demonstrates that our model can simulate the
broad-scale features of the monsoon system sufficiently well (see the
“Model simulations of monsoon evolution” section in the Supplemen-
taryMaterials). This finding is also supported by Dabang et al. (37) and
Sperber et al. (38) who showed that HadCM3 simulates the climate of
the monsoon region better than other contemporary models (38).

Modeled precipitation is relatively stable in the first 30 Ma of the
Cretaceous (Berriasian to Barremian; Fig. 1B), with regional annual
mean monsoonal precipitation of ~1300 mm/year (Fig. 1B, orange
triangle) [similar to observed modern values (39)]. Seasonal precip-
itation [supported by proxy evidence (40)] has a unimodal distri-
bution, similar to that of the modern (fig. S3). Furthermore, the modeled
precipitation-evaporation, whichmay better represent the controls on
the various proxy records, shows similar trends to those of the precip-
itation (this comment applies for all modeled time periods; Fig. 1B). A
clear wet-dry-wet-dry latitudinally banded precipitation signal is also
simulated, which shows good agreement with geologic and phyto-
geographical evidence (Fig. 1A) (31).

In the latter part of the Early Cretaceous, modeled precipitation
decreased (and is no longermonsoonal). By the LateCretaceous, EAhad
become arid (Fig. 1B), and this dry climate dominated the region except
for Pacific coastal areas. There is an increase in precipitation from the
end of the Cretaceous to the end of the Eocene when values are again
similar to the preindustrial. Reemergence of the simulatedmonsoonoccurs
during the Paleocene (fig. S4). A reduction in the length of the mon-
soon season is simulated for the Paleocene in southern EA, withmost
of the Eocene showing weakened monsoonal conditions (fig. S3), in
agreement with seasonal proxies (9). Precipitation remained constant
from the mid-Late Eocene until the Early Miocene at values exceeding
1700mm/year. A shift in seasonality is simulated during the Paleocene-
Oligocene together with an extended monsoon season (Priabonian-
Chattian; 37.8 to 23.0 Ma).

From the Middle Miocene (~13 Ma), a distinct increase in annual
precipitation is simulated. A period (~4 to ~12Ma) of “supermonsoon”
is established. (We use a simple measure, in which a super monsoon
is when the annual mean precipitation is >P + P2s, where P is the
preindustrial 30-year mean of precipitation and P2s is two standard
deviations of the interannual variability of the preindustrial precipita-
tion.) Last, there is a decrease in precipitation from the Piacenzian
(3.6 to2.6Ma) to thepreindustrial.During theNeogene (23Ma toModern),
there is considerable variability in the distribution of seasonal, peak
month (May–August), and monsoon onset precipitation (March–May).
During theMiocene, the wet season is modeled to be more persistent
through the year (an extension of themonsoon season earlier in the year
by 1 to 2 months; fig. S3).

Although comparison of the various qualitative and quantitative
proxy records with the modeled precipitation and precipitation minus
evaporation (P − E) results is challenging, there is broad agreement
between themwith respect to the general trends. The proxies andmodel
indicate a drying through the Cretaceous, followed by increasing
precipitation through the Paleogene, a precipitation peak in theMiddle
3 of 13



SC I ENCE ADVANCES | R E S EARCH ART I C L E
Miocene, and thendrying toward thepreindustrial. Inaddition to theproxy
data used to characterize trends, we also compile proxy data from ad-
ditional siteswhere precipitation data exist only for a single stratigraphic
stage (table S1), with model data showing generally a good fit to the
proxy data.

Drivers of monsoon evolution: Paleogeography versus pCO2

First, we assess the relative role of paleogeography versus pCO2 in de-
termining the monsoon evolution. To this end, we carried out 14 sen-
sitivity studies in which pCO2 was prescribed as half or double the
default values (Fig. 1, B and C, open circles). This shows that the
pCO2 concentration has a much weaker control on monsoon evolu-
tion than paleogeography (Fig. 1, B and C). In the sensitivity studies, a
pCO2 doubling onlymarginally affects EAMprecipitation (−1 to +13%;
Fig. 1B), which is a small effect compared with changes in paleogeogra-
phy. In particular, the subsidiary role for pCO2 in comparison to pa-
leogeography is highlighted by the constant modeled monsoon
intensity from the Eocene to the Oligocene, a period when the pre-
scribed pCO2 markedly declines at the Eocene (1120 ppm)–Oligocene
(560 ppm) transition. The robustness of our results to the paleogeo-
graphic reconstruction is illustrated by our simulations with alternative
paleogeographies (Fig. 1B, red squares). These alternative simulations
indicate a similar trend to our standard simulations, showing that
the modeled precipitation is not generally sensitive to the details of
the paleogeographic reconstruction. However, the small differences
in the regional topography may have an impact on the precipitation
signal in the Valanginian (Fig. 1B; contrast paleogeographies in fig.
S1xxix with fig. S10).

Paleogeographic control on monsoon evolution
Over the past ~150Ma, there have been changes to numerous paleogeo-
graphic features that could be responsible for the modeled monsoon
evolution. Isolating these regional features, the associated mechanisms,
and the interplay between themwould requiremanyhundreds ofmodel
sensitivity studies, beyond the computational resource of this study.
However, by examining themodeled response over time, we can suggest
plausible mechanisms that are consistent with the broadest features of
the modeled EA precipitation over this period (Fig. 1B).

The decreasing trend in precipitation from the mid-Early Creta-
ceous to the Late Cretaceous, during which pCO2 was held constant in
our simulations, can be attributed to a number of phenomena related
to paleogeography. First, the progressive decrease in continental area
between 30°N and 50°N and the increase between 70°N and 80°N
changes the latitudinal gradient of continental area to create a decrease
in the summer temperature gradient between themid- and high latitudes
(fig. S5B). This is associated with a weakening and equatorward shift in
theHadley circulation (Fig. 2, A andB, and table S3). Second, convective
(parameterized) processes are increasingly inhibited by amid-tropospheric
anticyclone centered at ~30°N, 90°E (Fig. 2, A and B), which is likely
a response to early surface uplift in the region (see Fig. 1C). This anti-
cyclone, whose formation and location are associated with large-scale
thermal forcing (41), inhibits the EAM by capping organized moisture
penetration below 500 hPa, advecting dry continental northwest (NW)
air into the EAM region. There is a progressive strengthening of this
anticyclone through the Cretaceous; it reaches its strongest in the
Santonian (~84 Ma), the driest period during the EAM evolution
(Fig. 1. A and B). Third, there is a shift in the Pacific warm pool from
the West Pacific toward the mid-Pacific with an associated decrease in
moisture transport in the EAM region via the Walker circulation.
Farnsworth et al., Sci. Adv. 2019;5 : eaax1697 30 October 2019
During the Late Paleocene, the EAM reemerged and progressively
strengthened through the Cenozoic based on the amount of seasonal
precipitation (June–September) and its seasonal range (table S3).
This is associated with the Pacific warm pool migrating back toward
Asia, and the continuing topographic evolution of the HTR caused
by the collision of the Indian and Asian continental plates. A proto-
SiberianHigh is present throughmost of the year, withmodeled central
Asian surface circulation in agreement with paleo-wind reconstruc-
tions (42). The strengthening of the monsoon coincides with themax-
imum extent of the Hadley circulation migrating poleward from
near the equator at the end-Cretaceous to 20°N in the Paleocene
and 30°N in the late Eocene. From the Eocene to the middle Miocene,
themonsoon continued to strengthen and expand.During the Eocene,
a weak “sea-breeze”monsoon circulation, similar to, butmuchweaker
than, that which dominates EA today, is present in the simulations
(Fig. 3). The strength of this sea-breeze circulation increases through
the Eocene to the Pliocene and then decreases toward the pre-
industrial. These results suggest that, during the Eocene, the mon-
soon was dominated by the seasonal latitudinal migration and
strengthening of the Hadley circulation [i.e., an intertropical conver-
gence zone (ITCZ)–type monsoon], also suggested by proxy evidence
(43), rather than a sea-breeze circulation (Fig. 3 and table S3).
Nonetheless, by the Miocene, the sea-breeze circulation dominates,
driven by strengthening thermal gradients associated with evolving
paleogeography.

The modeled onset of monsoon conditions and increasing precipi-
tation during the Paleocene is synchronous with an uplift in orography
in the region of the HTR, and the maximum intensity of the monsoon
in the Miocene coincides with the maximum in HTR topography,
following break-off of the subducting Indian lithosphere (44). From
the Danian (~63 Ma), there is a progressive weakening and westward
propagation of the thermal low and associated anticyclone, toward the
western portion of the HTR away from the EAM region, no longer
being an inhibitor to large-scale precipitation formation. In the model
topography, once the HTR region reaches a mean height of between
2300 and 2400 m, the anticyclone is lifted further into the troposphere to
~200 hPa. The relationship between the mean HTR topographic
height and modeled precipitation is supported by a strong positive
correlation (r2 = 0.87) from the mid-Cretaceous to the preindustrial
(Fig. 1C, black line). This strongly highlights the importance of topo-
graphic height and breadth in strengthening monsoon systems in
EA. Outside of the EAM region, persistent dry central Asian conditions
over the past 42 Ma suggest that the evolution of the Paratethys Sea
may have had little impact on atmospheric circulation, consistent
with the proxy data reconstructions by Licht et al. (42), suggesting
that the large-scale model atmospheric circulation is consistent with
proxy observations.

The decrease in precipitation from the Pliocene is likely associated
with the decrease in the height of the Iranian Plateau (IP) (fig. S1, i to iii) due
to a reduction innear-surface southerlies andvertical advectionof tropical air
masses whose transport pathway is aided by a high IP into the EAM
region. This suggests that there is a reduction in circulation coupling
between the tropics to subtropics and themid- to upper troposphere.
This reduces the flux of moisture to higher latitudes and results in a
southerly shift in the rainbelt in EA. Wu et al. (29) also see a similar
response in a more idealized study in which the IP was removed. The
Meiyu-Baiu front also weakens in response to a weakened low-level
jet on the equatorward side of the front. Advection ofmoisture from the
South China Sea/Indian Ocean and northward monsoon flow weakens
4 of 13
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from a reduction in the coupling strength between the tropics and the
subtropics associated to a decrease in the IP height.

In summary, we suggest that the decrease in precipitation from
the Early Cretaceous to Late Cretaceous is due to a combination of
changes in gradient in continental area and local uplift, the pole-to-
equator thermal gradient, and the location of the Pacific warm pool.
The increase in precipitation toward the super monsoon of the Mid-
dle Miocene is caused by uplift of the HTR, and the decrease from the
Pliocene toward the preindustrial is caused by the decrease in height of
the IP.

Paleogeographic dynamical controls on monsoon evolution
Here, we concentrate on three key intervals over the past 145 Ma and
focus on the influence of paleogeographic forcing and the dynamical
mechanisms that it invokes.
Farnsworth et al., Sci. Adv. 2019;5 : eaax1697 30 October 2019
i) Early Cretaceous monsoon
The Hauterivian (~131 Ma) is characteristic of the dynamics of the
Early Cretaceous monsoon period (conceptualized in Fig. 4A). The
model simulates annual precipitation of ~1250 mm/year in the EAM
region. The seasonal maximum in precipitation lasts from July to
September (compared with June–September in the Modern; fig.
S3). The EAM is likely dominated by the northerly branch (~10°N to
20°N 120°E) of the main westerly flow into the EA region at 850 hPa
(Fig. 4A and fig. S7G, green circle), which is similar in structure to the
preindustrial Somali low-level jet (SLLJ). In addition, a southern arm of
the SLLJ circles back through the SouthChina Sea and into EA from the
east, entraining additional moisture (Fig. 4A and fig. S7G, red circle).
Furthermore, the ascending branch of theHadley circulation is centered
directly over the southEAMregion in theHauterivian (Fig. 2D).Convective
processes are enhanced by stable outflow (10°N to 25°N) high in the
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Fig. 2. Atmosphere-ocean dynamics of three key periods. Wettest month 500-mbar geopotential height (isolines), wind field (black arrows), and precipitation in the
Hauterivian (A), Santonian (B), and Zanclean (C) (paleo-rotated region in blue line). Wettest month zonal cross-sectional (0°N to 60°N, 105°E to 112.5°E) vertical velocity
in the Hauterivian (D), Santonian (E), and Zanclean (F) depicting the position of the Hadley circulation; negative values indicate vertical ascent, positive values indicate
vertical descent, and vertical black lines depict maximum and minimum latitudinal extent of rotated EAM region. Mean annual meridional (10°S to 10°N) depth profile
ocean temperature (°C) for the Hauterivian (G), Santonian (H), and Zanclean (I) depicting the location of the Pacific warm pool. Red circles denote region of interest
highlighted in the main text.
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A  Hauterivian (~133 Ma) 

B  Santonian (~84 Ma) 

C  Zanclean (~4 Ma) 

Fig. 4. Conceptualizedmodel of each key period. Schematic of the key processes leading to the weak monsoon in the Hauterivian (A), dry period of the Santonian (B), and
super monsoonal conditions in the Zanclean (C) in the EAM region depicting a collation and synergy of model data. The wettest month of the monsoon season sea surface
temperatures (SSTs) (°C) and zonal wind cross section (m/s; mean, 105°E to 112.5°E) is depicted. Arrow thickness represents the intensity of the process. Blue arrows indicate
advection of air masses. WWC, western Walker cell; EWC, eastern Walker cell; STJ, subtropical jet; TEJ, tropical easterly jet with both its entrance and exit zone shown. The white
“cloud” represents the region of deep organized convection, where the atmospheric dynamics highlighted in these schematic produces conditions for intense rainfall. PWP
indicates the position of the Pacific warm pool. The white landmass with red outline represents the paleo-rotated location of EAM. The vertical axis on the left-hand indicates
both atmospheric pressure (hPa) and height (m). The height of the HTR is also indicated on the cross section between the left-hand y axis and latitudinal x axis.
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atmosphere (200 hPa), present in the south/southwest of the EA
region. This stable outflow is itself enhanced by an apparent tropical
easterly jet (TEJ) that further ventilates the system (fig. S7J, green
circle). The entrance zone of the TEJ is found to the south of the region
(fig. S7J, red circle)—this promotes surface convergence to the north of
the entrance zone (45) in the EAM region.
ii) Late Cretaceous arid period
The Santonian EA climate (conceptualized in Fig. 4B) is simulated as
a very dry environment with precipitation of ~310 mm/year, a ~75%
reduction compared to modern observations. Seasonal precipitation
peaks during June–September (fig. S3). Only a weak proto-SLLJ is
formed to the west of the region (Fig. 4B and fig. S7H, green circle).
However, a strong cross-equatorial flow [here called the low-level
Pacific jet (LLPJ)] crosses the equator at 120°E (fig. S7H, red circle),
forming strong westerly flow away from EA. The weakened SLLJ,
which features in all simulations of the arid Late Cretaceous (fig. S8),
substantially reduces the supply of moisture into the region. The
modeled EA surface circulation is in agreement with paleocurrent re-
constructions (46), with westerlies dominating and weak penetration of
onshore flow from the South China Sea (fig. S7H).

The ascending branch of the Hadley circulation (Fig. 2E) is nearer
the equator and substantially weaker than during both the Hauterivian
andthepreindustrial in themodel (fig. S6D).Verticalvelocitiesover theregion
show shallow convection capped to the mid-troposphere (500 hPa;
Fig. 2E). The ascending branches of theWest PacificWalker circulation
areweaker (defined as the strength in vertical velocities during thewettest
month in the monsoon season in the ascending branch of the Walker
circulation) and shallower than the preindustrial with convection again
capped at 500 hPa (fig. S7E, white circle). The Walker circulation (fig.
S7E) is also located further eastward compared to the Hauterivian and
the preindustrial, with moist convection suppressed in the EAM region and
over the proto–Indian Ocean (fig. S7E, red circle), further reducing moisture
transport into EA. This eastward shift of the ascending branch of the
Walker circulation (fig. S7F, white circle) away from the EAM region
is in response to an eastward shift in the Pacific warm pool to the mid-
Pacific (Fig. 2H), and a similar atmospheric reorganization is seen under
observed modern El Niño–Modoki conditions, which also weakens the
EAM (47). The shift in the warm pool is a result of the weakening of the
northeasterly (NE) trade winds, which is a response to the weakened
Hadley circulation and the opening of the Western Interior Seaway
(WIS), an open oceanic gateway between the western interior of the
North American continental plate between the Arctic Ocean and
Caribbean Sea through the mid-Late Cretaceous. An open WIS in the
model has amarked impact on the atmospheric and oceanic circulation
of the Pacific. With an open WIS, the boreal summer diabatic heating
rates over the seaway and western American continent are weakened.
This reduced heating weakens the western Pacific subtropical high (48).
This is a robust feature of many climate models (49). A weaker sub-
tropical high diminishes equatorward flow, which further weakens
the NE trade wind and the incursion of northerlies down the EA
coastline. These cold and dry winds inhibit the advection of moist air
masses from the South China Sea and only allow shallow convection to
occur, reducing precipitation in EA. Further, a slackening of the NE
trade winds is likely leading to shift in this warm pool to themid-Pacific
and El Niño–Modoki conditions.

In addition, dry continental NW winds in the mid-troposphere
(Fig. 2B, red circle) driven by thermal forcing from elevated topography
further suppress deep convection over inland EA. A stronger and more
southerly extending subtropical jet (fig. S7B, red circle), a consistent fea-
Farnsworth et al., Sci. Adv. 2019;5 : eaax1697 30 October 2019
ture throughout the Late Cretaceous, also inhibits the northerly extent
of the monsoon system. The TEJ entrance zone (mid-Pacific) is east of
the EAM region, potentially linked to the eastward propagation of the
Pacific warm pool, with the exit zone over the south of the region (fig.
S7K, red circle). This causes surface divergence in regions north of this
exit zone, further inhibiting convection. These combinations of factors
lead to the suppression of the EAM during the Cretaceous.
iii) Middle Miocene/Pliocene “super-monsoons”
The Zanclean (~5.3–3.6 Ma; conceptualized in Fig. 4C) during the
Pliocene represents the strongest simulated EAM, with precipitation
of ~2100 mm/year, a ~30% increase compared to preindustrial levels.
Seasonal precipitation is unimodal, with an earlier monsoon season
(May–August) than the preindustrial, and high precipitation simulated
in April and September, which suggests an extended monsoon period.

The SLLJ intensifies during the Neogene (fig. S8) and is near its
maximum strength in the Zanclean (~13 m/s compared with 3 m/s in
the Middle Cretaceous). The intensified SLLJ is a dominant feature
allowing greater moisture flux into the south and west of EA (fig. S7i,
green circle). An intensified ascending branch (Fig. 2F) of the Hadley
circulation, compared to the Hauterivian, Santonian, and preindustrial
(Fig. 2, D and E, and fig. S6D, respectively), is prominent between 15°N
and 35°N (with convection enhanced up to 50°N), increasing precip-
itation recycling in regions far from the original moisture source. The
latitudinal position (10°N to 20°N) of the SLLJ (fig. S7I, green circle) and
the location of the ascending branch of the Hadley circulation provide
conditions for the penetration of sustained mesoscale convective
systems into the usually dry interior of mid-NW China (Fig. 2C). Pre-
cipitation is further enhanced by the ascending branches of the east and
west Walker cells within the longitudinal boundaries of EAM region
(fig. S7F).

An intensified subtropical jet (Zanclean, ~30 m/s; preindustrial,
~15m/s; fig. S6E for comparison) and weak Polar jet configuration (fig.
S7C, red and white circle, respectively) in the Zanclean simulation aids
the intensification of aMeiyu-Baiu front feature (50), a quasi-persistent,
near-stationary, east-west (from Japan toTibet) orientated zone ofweak
baroclinity. This is a persistent quasi-stationary front associated with
high precipitation from convective complexes propagating eastward
along this front formed from the confluence of warmmoist monsoonal
and cold northerly air mass system in modern observations (51).
DISCUSSION
We show that changes in paleogeography are primarily responsible
for the evolution of the EAM over the last ~145 Ma and that CO2 has
little control on the EAM intensity.

We demonstrate that during the Early Cretaceous, monsoonal
conditions were present in the EAM region, albeit weaker than the pre-
industrial corroborated by qualitative proxy data (Fig. 1). Themonsoon
circulation during this period is different to that of the preindustrial, with
low-level advection ofmoisture from the proto–Bay of Bengal and paleo–
SouthChina Sea combinedwith an intensifiedHadley-Walker circulation
over the region. This is controlled by a strong pole-equator temperature
gradient (fig. S5B), which weakened into the Late Cretaceous due to an
increase (decrease) in land surface in higher (mid-) latitudes (tables S3
and S4).

During the Late Cretaceous, a reorganization of large-scale circula-
tion, associated with an easternmigration of the Pacific warm pool (a
result of weakened northeast trade winds; Fig. 2), reduced moisture
supply to the region and shifted the Hadley circulation equatorward
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and the Walker circulation eastward away from EA (fig. S7). This arid
environment, consistent with geological data (Fig. 1A), is enhanced by
incursion of cold, dryNWcontinental air mass in themid-troposphere,
which further weakened organized deep convection. This incursion
is possible because of a westward migration of the Asian continent
toward the center of the anticyclone (fig. S2) and a weakened Western
Pacific subtropical high. Previous modeling work has suggested that
the Late Cretaceous had a monsoon system similar to the Modern
(16). However, those findings are inconsistent with our proxy recon-
struction of the EAM (Fig. 1A).

EAM precipitation is strongly correlated (table S4) with the intensity/
location of the Hadley circulation during the Cretaceous (r2 = −0.72)
and the Paleogene (r2 = −0.91), which, in turn, is strongly correlated
with the latitudinal temperature gradient (r2 = 0.84 and r2 = 0.79,
respectively). In the Neogene, perturbations in the Hadley circulation
have little influence on precipitation; instead, aweakening of theWalker
circulation (tables S3 and 4) associated with a shoaling of the eastern
Pacific thermocline and strengthening of easterlies is coincident with
EAM precipitation increase.

During the Neogene, the regional circulation transitioned from an
ITCZ-dominatedmonsoon and started to develop into its preindustrial
configuration as a response to the uplift of the HTR, as the incursion
of dry NW continental air mass (Fig. 2) reduced and eventually
ceased by the Early-Middle Miocene. The dominant control on the
EAM is again shown to be paleogeography and not pCO2 (Fig. 1B), in
contradiction to Licht et al. (8). Trends in terrestrial carbon isotope data
(17) have also been attributed to a strengthened monsoon circulation
due to high pCO2. However, this technique is not appropriate for regions
withprecipitationof <600mm/year or regions that experience a shift in
vegetation that involves a change inmetabolic pathways (e.g., C4 and
CAMplants) or when there is uncertainty in the pCO2 concentration
(52), all of which occurs in the EAMregion through theCenozoic. Super-
monsoon conditions were established in the Middle to Late Miocene, in
agreement with palynological and paleoclimate records, and were
caused by intensified easterlies from the South China Sea (Fig. 3), SLLJ
and TEJ (figs. S7 and S8) coupled with a strengthened and enlarged
Hadley-Walker circulation over EA. The synchronous uplift of the HTR
and strengthening EAM is potentially also modified (either dampening
or strengthening) by teleconnections arising from paleogeographic
changes further afield, for example, changes in theWIS in North America.
A focus for future research should be to discern their individual impact
on the EAM. Zhang et al. (53) have suggested that the EAM could be
sensitive to the latitudinal position of theHTRdue to nonlinear feedbacks
on precipitation. If the main body of the elevation stays within ~20°N to
~33°N (as it does generally in our simulations), then it will behave
similarly to theModern. Proxy reconstructions suggest that the most
southerly extent of the HTRwas at ~16° ± 4°N in the Early Cenozoic.
This suggests that HTR latitudinal positionmay not be a big driver of
monsoon evolution during its main uplift phase.

From the mid-Pliocene to the preindustrial there was a reduction
in precipitation (Fig. 1), concurrent with a decrease in the height of
the IP and a moderate reduction in the height of the Tibetan plateau
(<1 km) towards present-day levels (<1 km) towards present-day
levels (Fig. 1B), which reduced the northward advection of moisture
deeper into the EAM due to a decrease in the coupling strength be-
tween the tropics-subtropics.

While this is the first comprehensive combined model-proxy data
investigation of the geological history of the EAM system, and the dy-
namics and mechanisms driving it, there are limitations to the inter-
Farnsworth et al., Sci. Adv. 2019;5 : eaax1697 30 October 2019
pretations presented here. Although the model is shown to reproduce
the observed monsoon spatial distribution, seasonality, and intensity,
the geological-scale response indicated here requires further investigation
as well as in other paleoclimate models. This is important to make sure
that the dynamical response and mechanisms highlighted are a robust
feature and not model dependent. HTR reconstructions are an active
arena of ongoing research and will inevitably be further revised. In ad-
dition, the decreasing amount of proxy data further back into the geo-
logic record, in particular in the Cretaceous, needs further work so that
the trends and implications presented in this study can be fully evalu-
ated with other lines of multiproxy evidence to test the robustness
of these results. This is particularly relevant for seasonal proxies in
the deep past.

Orbital bias on proxy records and interpretation is also a poorly
constrained source of uncertainty (54). The location of Northern
Hemisphere summer insolationmaxima could have an impact on atmo-
spheric circulation and monsoon intensity. If a particular set of proxies
fromone time slice is biased toward insolationmaxima and is compared
to a set of proxies in another time slice biased to insolation minima, it
could produce strong disparities in the spatiotemporal distribution of
precipitation. This would potentially bias the interpretation of change
in monsoon intensity and should be a focus for future research.

There are also large uncertainties in the height and extent of HTR
topography through time. We have tried to constrain this using recon-
structions based on proxy paleoaltimetry data (see the Supplementary
Materials for further information). Botsyun et al. (55) have suggested
that the Tibetan Plateau was substantially lower than 3000 m in the
Eocene using an isotope-enabled general circulation model (GCM),
considerably lower than proxy-based estimates of >4000 m (table S2).
Isotope-enabled GCMs have the ability to constrain proxy-based un-
certainties and assumptions such as d18Omoisture source(s), air parcel
trajectories, and moisture recycling. However, isotope-enabled GCMs
also have an inherent set of uncertainties and assumptions. For exam-
ple, oceanic and atmospheric circulation will have a large impact on
d18O source water values and distillation along a trajectory, which is,
in part, determined by boundary conditions (e.g., paleogeography,
atmospheric composition, ice sheets, and solar luminosity) supplied
to the GCM. This makes it difficult to evaluate and compare model-
based d18O values with proxy-based d18O observations. Although we
have shown that paleogeography is the dominant driver of the mon-
soon, the slope of the precipitation trend highlighted in this study is
influenced by our current knowledge of the local and regional topogra-
phy. Hence, additional model simulations could be run following any
significant advances in our understanding of Tibetan uplift. Likewise,
model resolution is another important consideration. Atmospheric
circulation and the precipitation response can be dependent on resolu-
tion for certain regions such as the Indian monsoon (56). The impact of
model resolutionon geological-scale monsoon evolution, and whether
better-resolved local-scale features fundamentally change the regional-
scale climatological response, is uncertain. However, computational
cost makes the use of higher-resolution models challenging for simula-
tions of the geologic past. A comparison of different time slices with
different model resolutions to constrain this uncertainty should also
be a focus of further investigation.

Last, there are uncertainties associated with the model itself. For
example, it is known that most climate models of this generation,
including HadCM3L, struggle to reproduce proxy estimates of high-
latitude warming in greenhouse climates at appropriate CO2 concentra-
tions (57). When equator-to-pole temperature gradients are reduced,
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the ITCZ component of a monsoon is likely to weaken (58). How-
ever, this effect is not as large as might be expected in the EAM region.
Hawcroft et al. (59) show that with a reduction in latitudinal tempera-
ture gradient, although there are significant changes in precipitation
over oceans, the EAM region is only marginally affected.
MATERIALS AND METHODS
Experimental design
The objectives of this study are twofold: (i) to quantitatively reconstruct
the geological-scale onset and evolution of the EAM and (ii) to explore
the potential main processes and driving mechanisms that force the
observed signal.
Proxy-based reconstruction of monsoon evolution
The proxy data (Fig. 1A) used are a combination of studies from plant
flora and fauna (table S1) and other indirect terrestrial and marine
proxies used to derive precipitation estimates. An issue with recon-
structingmonsoon precipitation history in EA is that themonsoon is
highly spatially variable, being wetter, warmer, colder, or windier from
one location to the next, due to local processes associated with, for
example, topographic height and steepness. Hence, individual proxies
should not be taken as indicative of awider regional signal alone. There-
fore, we only present data that are made up of a large number of
underlying sites, covering a relatively large area. The use ofmultiproxies
can alleviate the problem of low spatial and temporal resolution given
enough data sites. Both qualitative (indirect terrestrial and marine
proxies, e.g., pollen, climatically sensitive sediments) and quantitative
precipitation records derived from nearest living relative (NLR) or
climate leaf analysis multivariate program (CLAMP) are used.

The average values (table S1) from the various proxies are binned
into their appropriate geologic stage (i.e., Albian stage mid-point,
~105 Ma). Only data that span at least three geologic-stage boundaries
are used in the analysis.

The average of the proxy data points are then scaled between 0 and
1 (Eq. 1) to form a normalized precipitation for stage j, NPj

NPj ¼
�pj � 350

1400� 350
ð1Þ

where themean precipitation (mm/day) in the EA region for stage j,�pj,
is given by

�pj ¼
1
n
∑mi¼0Pi ð2Þ

wherePi (mm/day) is the precipitation value from site i, froma total ofn
sites for stage j. The NP for the various stages then forms the trends in
Fig. 1A.
Model simulations of monsoon evolution
The reconstruction of tectonics, structures, and depositional environ-
ments that underpin this study was created by Getech Plc. The paleo-
digital elevation models used as boundary conditions (topography,
bathymetry, ice sheets) in the model for each stage are informed by
these reconstructions, which are, in turn, constrained by extensive ge-
ological databases. The paleogeographies were produced at an original
resolution of 0.5° × 0.5°, and from these we generated model-resolution
(3.75° × 2.5°) land-sea mask, topography and bathymetry, and the
subgrid-scale orographic variables required by the model. These model-
Farnsworth et al., Sci. Adv. 2019;5 : eaax1697 30 October 2019
resolution paleogeographies are shown in fig. S1. For a robust com-
parison of model precipitation versus the proxy record, we consistently
rotate the modern-day monsoon region back through time with the
paleogeographies. In addition, we carry out six simulations (stages:
Valanginian, Albian, Turonian,Maastrichtian, Chattian, and Piacenzian)
with paleogeographies produced independently from, but using similar
methods to, the Getech paleogeographies. These are illustrated in fig.
S8. The HadCM3L GCM version 4.5 (3.75° × 2.5° longitude × latitude
atmosphere and ocean resolution), which is a low-resolution version
of HadCM3 (atmosphere resolution, 3.75° × 2.5°; ocean resolution,
1.25° × 1.25°), is used for these model simulations. A comprehensive
description and HTR topographic boundary conditions and model
skill are provided in the Supplementary Materials. The simulations
described in this paper, except for those of the Neogene, and the CO2

and paleogeography sensitivity studies, are described in detail, in-
cluding their experimental design, by Lunt et al. (60). Here follows
a brief summary of the key points of the experimental design and
model initiation and spin-up. For consistency, all simulations use
a modern-day orbital configuration. The paleogeographic sensitivity
studies are carried out at various CO2 concentrations and integrated
for varying lengths of time, although all are run for more than 8000
years, and all simulations have reached a steady state in the atmo-
sphere at the surface. To further ascertain the sensitivity of the mon-
soon system to pCO2, a series of 15 sensitivity studies were carried
out (detailed in Fig. 1C). The pCO2 sensitivity simulations follow the
same methodology as the other simulations. However, in the last
1000 years of the simulation, the pCO2 concentration was modified
(either to 2×, 3×, or 4× preindustrial concentrations) to allow the
simulation to approach equilibrium. The prescribed pCO2 for all the
simulations is shown in Fig. 1C. For more detailed Materials and
Methods, see the Supplementary Materials.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaax1697/DC1
Supplementary Text
Table S1. Proxy precipitation data in the East Asia Monsoon region.
Table S2. Summary and comparison of proxy paleoaltimetry and model paleogeography.
Table S3. GCM sensitivity simulations for each geologic stage-specific simulation
June–September (JJAS) data for the strength of the Hadley circulation (vertical velocities; Pa/s)
over 21.75°N to 38.75°N and between 1000 and 200 hPa in EA.
Table S4. Correlations between different processes during all geologic stages, Cretaceous
stages, Paleogene stages, and Neogene stages.
Fig. S1. Orography and bathymetry.
Fig. S2. EA proxy paleoaltimetry data versus prescribed paleogeography.
Fig. S3. Precipitation seasonality.
Fig. S4. Monsoonal regions.
Fig. S5. Simulation spin-up of SST and zonal 1.5-m air temperature (°C).
Fig. S6. Preindustrial mean fields.
Fig. S7. Wind profiles and vertical velocities in the Hauterivian, Santonian, and Zanclean.
Fig. S8. Mean SLLJ strength and alternative paleogeographies.
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