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Abstract

The objective of the present study was to determifigne whether targeted-disruption of Npr1 gene 

(encoding for guanylyl cyclase/natriuretic peptide receptor-A; GC-A/NPRA) upregulates 

pro(renin) receptor (P)RR expression and leads to the activation of MAPKs in Npr1 gene-

knockout mice. The Npr1 homozygous (Npr1−/−; 0-copy), heterozygous (Npr1+/−; 1-copy), wild-

type (Npr1+/+; 2-copy), and gene-duplicated (Npr1++/++; 4-copy) mice were utilized. To identify 

the canonical pathway of (P)RR, we administered ACE-1 inhibitor (captopril), AT1R blocker 

(losartan), and MAPKs inhibitors (U0126 and SB203580) to all Npr1 mice genotypes. The renal 

expression of (P)RR mRNA was increased by 3-fold in 0-copy mice and 2-fold in 1-copy mice 

compared with 2-copy mice, which was also associated with significantly increased expression of 

ACE-1 and AT1R mRNA levels. Similarly, the phosphorylation of MAPKs (Erk1/2 and p-p38) 

was enhanced by 3.5-fold and 3.2-fold, respectively, in 0-copy mice with significant increases in 

1-copy mice compared with 2-copy mice. The kidney and plasma levels of proinflammatory 

cytokines were significantly elevated in 0-copy and 1-copy mice. Treatment with captopril and 

losartan did not alter the expression of (P)RR in any of the Npr1 mice genotypes. Interestingly, 

losartan significantly reduced the phosphorylation of Erk1/2 and p38 in Npr1 mice. The present 

results suggest that the ablation of Npr1 upregulates (P)RR, MAPKs (Erk1/2 and p38), and 

proinflammatory cytokines in 0-copy and 1-copy mice. In contrast, the duplication of Npr1 
exhibits the anti-inflammatory and antihypertensive effects by reducing the activation of MAPKs 

and inhibiting the expression levels of RAAS components and proinflammatory cytokines.
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1. Introduction

The cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) elicit natriuretic, 

diuretic, vasorelaxant, and antimitogenic effects, all directed to the reduction of blood 

pressure (BP) and blood volume. [1–5]. Both ANP and BNP bind to guanylyl cyclase/

natriuretic peptide receptor-A (GC-A/NPRA), which is considered a principal natriuretic 

peptide receptor that synthesizes the intracellular second messenger cGMP. [6–9]. Mice 

carrying targeted-disruption of Npr1 gene (encoding for the NPRA) exhibit hypertension, 

congestive heart failure, reduced kidney function, altered plasma renin and angiotensin II 

(Ang II) levels, and end-organ damage and dysfunction with sudden death occurring at the 

adult age. [5, 10–18]. We have previously reported that adult Npr1 gene-disrupted mice 

showed significant reduction in plasma renin concentration (PRC) and kidney renin content, 

whereas adrenal renin content was significantly increased in these animals [13]. Those 

previous findings implicated that the inhibitory responses on renal and systemic renin-

angiotensin-aldosterone system (RAAS) might exert a compensatory effect that prevents 

excessive increases in BP in adult Npr1 gene-knockout mice [13, 14]. On the other hand, the 

greater renin and Ang II levels were observed in Npr1 gene-knockout newborn pups that 

provided the evidence that ANP/NPRA system exerts inhibitory effect on renin synthesis 

and release [13]. Previous studies showed that both glomerular filtration rate (GFR) and 

renal plasma flow are drastically reduced in Npr1 gene-disrupted mice (0-copy) during and 

after blood volume expansion, indicating that ANP/NPRA signaling responses to volume 

expansion that leads to a diminished excretion of sodium and water [14]. Collectively, ANP/

NPRA system serves as an antagonist to RAAS [1, 10, 13, 16, 19–21].

Prorenin receptor (P)RR, a new member of RAAS is widely expressed in various tissues; 

including heart, kidney, brain, and adipose tissues [22–26]. The full (P)RR protein consists 

of a single transmembrane domain, an extracellular binding site, a signaling peptide, and a 

cytoplasmic region [23, 26–28]. It is increasingly evident that (P)RR not only mediates the 

formation of Ang II by enhancing the renin activity or activating prorenin, but also acts in a 

RAAS-independent manner [23, 29, 30]. Both the Ang II- dependent and -independent 

(P)RR signaling pathways have been linked to the pathogenesis of hypertension, diabetic 

nephropathy, and choroidal neovascularization [31–33]. Previous studies have reported that 

higher levels of (P)RR exhibited with worsening of chronic renal insufficiency, increased 

incidence of gestational diabetes, and proliferative retinopathy [34]. It has also been 

suggested that (P)RR is distributed in various renal structures and cell types such as 

podocytes, mesangial cells, proximal and distal tubules, collecting ducts, and renal 

vasculature [23, 29, 30, 35]. Additionally, both renin and prorenin bind specifically to (P)RR 

and the later induces nonproteolytic activation that leads to activation of mitogen-activated 

protein kinases (MAPKs) including extracellular signal-regulated kinases (Erk1/2), p38, and 

c-Jun N-terminal kinases (c-JNK), independently from the RAAS [23, 32, 36].

ANP/NPRA system has been shown to inhibit the Ang II-mediated induction of protein 

kinase C (PKC) and MAPKs in vascular smooth muscle and mesangial cells [24, 27, 28, 37–

40]. Recent studies have demonstrated the involvement of (P)RR in the development of BP, 

kidney diseases, inflammation, and end organ damage [39, 41–43]. Our previous studies 

have elucidated the role of Npr1 in the regulation of RAAS in Npr1 gene-knockout mice 
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[10, 13, 16, 20, 21]. However, the role of (P)RR in the absence of Npr1 in not known. In the 

present study, we report that the genetic disruption of Npr1 upregulates (P)RR and activates 

MAPKs involving the canonical pathways, independent of Ang II generation through the 

enhancement of renal production of pro-inflammatory cytokines.

2. Materials And Methods

2.1. Materials

Gene specific primers were purchased from Eurofins, MWG Operon (Huntsville, AL). 

Primary antibodies for angiotensin converting enzyme-1 (ACE-1), extracellular-regulated 

kinase-1/2 (Erk1/2), phosphorylated MAPKs (Erk1/2 and p38MAPK), and IgG-HRP 

conjugated secondary antibodies were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA). Prorenin receptor (P)RR) antibody was purchased from Sigma-Aldrich (St. 

Louis MO). The RNeasy mini-kit for total RNA isolation was obtained from Qiagen, 

(Valencia, CA). SYBR Green RT-PCR kit was purchased from Roche Applied Science, 

(Indianapolis, IN). Captopril and losartan were purchased from Sigma Chemicals (St. Louis, 

MO). U0126 was purchased from Calbiochem (San Diego, CA) and SB203580 were 

purchased from Selleck Chemicals (Houston, TX). The direct cGMP correlate-EIA kit was 

purchased from Arbor Assay (Ann Arbor, MI). Multiplex kit for mouse cytokine assay was 

purchased from Millipore (Billerica, MA). All other chemicals were of molecular biology 

and analytical grade.

2.2. Animals

Npr1 gene-targeted mice were produced by homologous recombination in embryonic stem 

cells as previously described [11, 44]. These animals were bred and maintained at the animal 

facility of the Tulane University Health Sciences Center. Animals were handled under 

protocols approved by the Institutional Animal Care and Use Committee. The mouse 

colonies were maintained under 12h light/dark cycles at 25⁰C and fed regular chow (Purina 

laboratory) and tap water ad libitum. All experimental animals were littermate progenies of 

the C57/BL6 genetic background and were designated as Npr1 gene-disrupted homozygous 

null mutant (Npr1−/−, 0-copy), heterozygous (Npr1+/−, 1-copy), wild-type (Npr1+/+, 2-copy), 

and gene-duplicated (Npr1++/++, 4-copy) mice. The animals were genotyped by polymerase 

chain reaction (PCR) analysis of DNA isolated from tail biopsies using primer A (5’ 

GCTCTCTTGTCGCCGAATCT-3’), corresponding to 5’ sequences of the mouse Npr1 gene 

common to both alleles (Npr1+/+): primer B (5’ TGTCACCATGGTCTGATCGC-3’), 

corresponding to the exon 1 sequence present only in the intact allele (Npr1+/−), and primer 

C (5’ GCTTCCTCGTGCTTTACGGT-3’), corresponding to a sequence in the neomycin-

resistance cassette present only in the null mutant allele (Npr1−/−) as previously described 

[13, 45]. The Npr1 gene duplicated mice were genotyped using upstream (5 ‘-CCT CTA 

GAT GCA TAC ATG TGCC-3’) and downstream (5 -’GGT CAA GTT AAG TGT ATT TTT 

TTC CC-3’) primers. PCR was carried out in 25 ¼l of reaction mixture containing 50 mM 

Tris-HCl (pH 8.3), 20 mM ammonium sulfate, 1.5 mM MgCl2, 10% DMSO, 100 µM 

dNTPs, 2 units of taq DNA polymerase, and 40 nM primers with a 60 sec denaturation step 

at 72⁰C for 35 cycles using the GeneAmp 9700 (Applied Biosystem) as previously 
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described [45]. PCR product was resolved on 2% agarose gel with the endogenous band of 

500 bp and the target band of 200 bp.

2.3. Drug treatment, BP analysis, and blood and tissue collection

Experiments were performed on 5 groups of 16–20 weeks old mice. All the 5 groups 

consisted of 4 genotypes; including homozygous null mutant (Npr1−/−, 0-copy), 

heterozygous (Npr1+/−, 1-copy), wild-type (Npr1+/+, 2-copy), and gene-duplicated 

(Npr1++/++, 4-copy) mice. Group I mice received saline and served as the positive control; 

group II mice received captopril (5 mg/kg/day) and group III mice received losartan (25 

mg/kg/day) for 30 days by oral gavage, group 4 mice received Erk1/2 inhibitor, U0126 (10 

mg/kg/day) administered intraperitoneal, and group 5 mice received p38 inhibitor, 

SB203580 (30 mg/kg/day) administered orally for 21 days [46, 47].

BP was measured by a noninvasive computerized tail-cuff method using Visitech 2000 and 

was calculated as the average of three to five sessions per day for 7 consecutive days as 

previously described [13, 15]. Initially, all the mice were trained for 7 days. Later, actual 

systolic BP (SBP) was measured on 24th day until 30th day of the treatment and data were 

collected. Blood was collected by cardiac puncture under CO2 anesthesia in cold tubes 

containing 10 ¼l of heparin (1,000 USP units/ml). Plasma was centrifuged at 3,000 x g for 

20 min at 4⁰C and stored at −80⁰C until use. Animals were euthanized by high 

concentration of CO2 gas and the kidney was harvested. The half kidney was collected for 

the use of protein and total RNA extraction and stored at −80⁰C and the other half kidney 

was fixed in 10% buffered formaldehyde solution for immunohistochemical staining. Renal 

protein and mRNA levels were quantified with Western blot and semi-quantitative real-time 

PCR (qPCR), respectively.

2.4. Preparation of cytoplasmic extracts

Cytosolic proteins were extracted from the frozen kidney tissues as previously described 

with some modifications [15, 48]. Tissues were homogenized in ice-cold 10 mM Tris-HCl 

buffer (pH 8.0) containing 0.32 M sucrose, 3 mM calcium chloride (CaCl2), 2 mM 

magnesium acetate (Mg0Ac), 0.1 mM ethylenediaminetetraacetic acid (EDTA), 0.5% 

Nonidet P-40, 1 mM dithiothreitol (DTT), 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 

and 4 μg/ml each of leupeptin, aprotinin, and pepstatin. The homogenate was centrifuged at 

800 × g and the supernatant was separated and saved as a cytosolic fraction.

2.5. Western blot analyses

Whole cell lysate was mixed with an equal volume of 2X sodium dodecyl sulfate (SDS) 

sample loading buffer containing 125 mM Tris-HCl, 4% SDS, 20% glycerol, 100 mM DTT, 

and 0.2% bromophenol blue, and then separated in a 10% polyacrylamide gel. Proteins were 

then electrotransferred onto a polyvinyldifluoride (PVDF) membrane. The membrane was 

blocked with 1 X Tris-buffered saline-Tween 20 (TBST; 25 mM Tris, 500 mM NaCl, and 

0.05% Tween 20, pH 7.5) containing 5% fat-free milk and incubated overnight in TBST 

(Tris, borate, saline, and Tween-20) containing 3% fat-free milk at 4⁰C with primary 

antibodies at 1:200 dilution (Table 1). The membrane was finally treated with corresponding 

secondary horseradish peroxidase-conjugated antibodies at 1:5000 dilution. Protein bands 

Periyasamy et al. Page 4

Peptides. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were visualized by enhanced chemiluminescence (ECL) plus detection system with Alpha 

Innotech phosphoimager.

2.6. Semi-quantitative real-time PCR

Total RNA was extracted from mouse kidney tissues using RNeasy mini kit. First-strand 

cDNA was synthesized from 1¼g of total RNA in a total volume of 20 ¼l using the SYBR 

Green RT-PCR kit. All the primers were designed using Primer 3.0 software. The primers 

used for mouse (P)RR were 5’-TCGAATCCCAGACGTAGCTG-3’ (sense) and 5’-

GGTGGAATAGGTTACCCACGG-3’, (antisense) for mouse ACE-1 – 

5-’AGGTTGGGCTACTCCAGGAC-3’, (sense) and 5-’ 

GGTGAGTTGTTGTCTGGCTTC-3’, (antisense) for mouse AT1R 5’-

TTGTCCACCCGATGAAGTCTC-3’ (sense) and 5’-

AAAAGCGCAAACAGTGATATTGG-3’ (antisense). Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used as an internal control with 5’-

TCCCTCAAGATTGTCAGCAA-3’ (sense) and 5’- AGATCCACAAACGGATACATT-3’ 

(antisense) primers. Real-time reverse transcription was done with the Mx3000P system 

(Stratagene, La Jolla, CA) using the SYBR green qPCR master mix (Roche) according to 

the manufacturer’s instructions. Cycling conditions were 95⁰C for 10 min and then 40 cycles 

consisting of 15 sec at 95⁰C, 60 sec at 60⁰C and 30⁰C at 72⁰C. Relative expression was 

calculated using MxPro software according to the 2-ΔΔCT method. After PCR amplification, 

a melting curve of each amplicon was determined to verify its accuracy.

2.7. Assay of plasma and renal levels of proinflammatory cytokines

Commercially available kit was used to measure the concentrations of proinflammatory 

cytokines. The concentrations of TNF-α and IL1-β in plasma and kidney tissue homogenate 

were measured using the Bioplex system, which are multiplex bead-based assays used with 

the Luminex Xmap technology according to the manufacturer’s instructions (Bio-Rad 

Laboratories, Hercules, CA). Eight-point standard curves were performed for each cytokine 

using the same Luminex bead technology as previously described [49, 50].

2.8. Immunohistochemistry

Paraffin-embedded 5 μm kidney sections were washed in xylene twice for 5 min each and 

rehydrated by successive rinsing in 100%, 95%, 70%, 50%, and 10% ethanol followed by 

phosphate-buffered saline (PBS), and antigen retrieval was performed using 10 mmol/l 

sodium citrate (pH 6.0) with 0.1% triton X −100 for 20 min at 95⁰C. Slides were incubated 

at room temperature with normal blocking serum for 30 min, primary antibody (rabbit 

polyclonal (P)RR antibody) diluted in PBS containing 1% bovine serum albumin and 

incubated overnight at 4⁰C. The sections were washed and incubated with secondary biotin- 

conjugated rabbit anti-mouse IgG for 30 min, after which peroxidase activity was visualized 

using the ABC Vectastain kit (Vector laboratories, Burlingame, CA). The slides were then 

counterstained with hematoxylin and mounted using aqueous mounting medium and cover 

slipped. Immunohistochemical stained slides were visualized using an Olympus BX51 

camera and photographed with integrated Magnafire SP Digital Firewire camera software.
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2.9. Assay of plasma and renal cGMP levels

Blood samples were collected in tubes containing EDTA and immediately centrifuged at 

3,000 x g for 10 min at 4ºC. Plasma were separated and stored at −70ºC until used. Frozen 

kidney tissue samples were homogenized in 10 volumes of 0.1 M HCl containing 1% Triton 

x-100. The homogenate was heated at 95⁰C for 5 min and centrifuged at 600 × g at 22⁰C, 

after which the supernatant was collected. The levels of cGMP in the kidney tissues and 

plasma samples were analyzed using a direct cGMP immunoassay kit (Arbor Assay, Ann 

Arbor, MI) according to the manufacturer’s protocols as previously described [5, 51]. The 

results were expressed as picomoles of cGMP/mg of protein.

2.10. Statistical Analysis

Statistical analysis of differences between groups was performed by ANOVA and 

subsequent Dunnett test for multiple comparisons using GrahPad Prism software (La Jolla, 

CA). All data are expressed as mean ± SD. Comparisons with a P < 0.05 were considered as 

statistically significant.

3. Results

The results showed that SBP was 36 mmHg higher (138.2 ± 4.8, P < 0.001) in 0-copy 

(Npr1−/−) mice and 15.0 ± mmHg higher (117 ± 4.6, P < 0.001) in 1-copy (Npr1+/−) mice 

compared with 2-copy (Npr1+/+; 102 ± 3.3) mice (Table 2). The SBP was decreased by 23 

mmHg (79.0 ± 3.8) in gene-duplicated 4-copy (Npr1++/++; P < 0.001) mice compared with 

2-copy mice. Treatment with captopril and losartan significantly decreased SBP in 0-copy 

mice (110.8 ± 3.0 and 106.5 ± 3.2, respectively) compared with vehicle-treated 0-copy 

(138.2 ± 4.8) mice (P<0.001). Similarly, SBP was also significantly reduced in 1-copy (92.3 

± 5.2; 91.8 ± 4.8 vs. 117 ± 4.6), 2-copy (83.1 ±4.3; 82.0 ± 4.0 vs. 102 ± 3.3), and 4-copy 

mice (66.0 ± 3.8; 63.2 ± 2.9 vs. 79.0 + 3.2) compared with their respective control groups 

(Table 2). However, SBP was not significantly changed after treatments with Erk1/2 

inhibitor, U0126 and p38MAPK inhibitor, SB 203580 in either 0-copy, 1-copy, 2-copy, or 4-

copy mice (Table 2).

Plasma cGMP levels were significantly reduced by 80% and 50% in Npr1 0-copy and 1- 

copy mice, respectively, compared with Npr1 2-copy mice (P<0.001). In the 4-copy mice, 

there was 42% increase in cGMP levels compared with 2-copy control mice. Similarly, renal 

cGMP level was drastically reduced by more than 90% and 50% in 0-copy and 1-copy mice, 

respectively, compared with Npr1 2-copy control mice. There was 40–45 % increase in 

cGMP level in gene-duplicated Npr1 4-copy mice compared with 2-copy control mice 

(Table 2).

The protein expression of (P)RR and ACE-1 is shown in Fig 1, A–C. The expression level of 

(P)RR was significantly increased in Npr1 0-copy (3-fold, P < 0.001) and 1-copy mice (2-

fold, P < 0.01) compared with 2-copy mice (Fig. 1 A). The expression level of (P)RR was 

decreased by 2.5-fold in Npr1 4-copy mice compared with 2-copy mice (Fig. 1 B). Similarly, 

the expression of ACE-1 was increased 3-fold (P < 0.001) in Npr1 0-copy and 2-fold 

(P<0.01) in 1-copy mice compared with those of Npr1 2-copy control mice. Although 
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significant changes were not observed in ACE-1 protein levels in 4-copy mice compared 

with 2-copy mice (Fig. 1 C).

The representative real-time qPCR analysis of renal mRNA expression for (P)RR, ACE-1, 

and AT1R are shown in Fig 2, A-C. The expression of (P)RR (3-fold, P < 0.001), ACE-1 

(3.5-fold, P < 0.01), and AT1R (2.8-fold, P < 0.001) mRNA levels, were significantly 

increased in Npr1 0-copy mice compared with 2-copy counterparts. Similar changes were 

also observed in the Npr1 1-copy mice. There was no significant change in the expression of 

ACE-1, while the expression of (P)RR, and AT1R was significantly reduced by more than 2-

fold in the Npr1 4-copy mice compared with 2-copy control mice (Fig. 2 A-C). After 

staining kidney sections from each group of mice with anti-(P)RR antibody, we observed an 

increased levels of (P)RR immunolocalization in 0-copy (4-fold) mice and 1-copy (2.5-fold) 

mice as compared with Npr1 2-copy mice (Fig. 3 A-C, E). Immunohistochemical staining of 

the kidney tissues indicated that the immunoreactive (P)RR was localized in the glomerulus 

apparatus, mesangial cells, and collecting duct of 0-copy (Fig. 3 A ). Similarly, in the kidney 

of 1-copy mice, the immunoreactive (P)RR was localized largely in the glomerulus 

apparatus (Fig. 3 A, B). The immunoreactivity of (P)RR in 4-copy mice was decreased by 

almost 50% compared with 2-copy mice (Fig. 3 C-E).

Furthermore, to identify the Ang II-dependent and -independent mechanisms of (P)RR, we 

utilized ACE-1 inhibitor (captopril) and AT1R antagonist (losartan), which were 

administered to all Npr1 mice genotype groups. Both captopril and losartan did not 

significantly alter the expression of (P)RR protein levels (Fig. 4 A, B, D, E) but decreased 

the protein levels of ACE-1 (2.5-fold, p<0.001) in Npr1 0-copy mice compared with Npr1 2-

copy mice (Fig. 4 A, C, D). Similarly, treatment with captopril and losartan also attenuated 

the expression of ACE-1 (2-fold, P < 0.01) in 1-copy mice compared with the vehicle-treated 

control mice (Fig. 4 A, C, D). The protein levels of ACE-1 in Npr1 2-copy and 4-copy mice 

was significantly reduced after treatment with captopril compared with the control groups 

(Fig. 4 A, C, D). However, losartan treatment did not exhibit any significant changes in 

(P)RR levels in either 0-copy, 1-copy 2-copy, or 4-copy mice (Fig. 4 E).

In Npr1 0-copy mice, the phosphorylation of extracellular-regulated kinases (Erk1/2) was 

increased by 3.5-fold (P < 0.001) and p38 by 3-fold (P < 0.001) and in 1-copy mice, 

phosphorylation of both Erk1/2 and p38 was increased by 2-fold (p<0.01) compared with 2-

copy control mice (Fig. 5 A-C). A significant decrease in the phosphorylation of both the 

Erk1/2 (60% P < 0.01) and p38 (40%; P<0.05) was observed in Npr1 4-copy mice compared 

with Npr1 2-copy control mice (Fig. 5 A-C).

Treatment with Erk1/2 inhibitor, U0126 and p38 inhibitor, SB203580 significantly 

attenuated the phosphorylated levels of Erk1/2 and p38 by almost 60–65% in all the Npr1 
mice genotypes as compared to their vehicle treated control groups (Fig. 6 A-D). In contrast, 

captopril did not alter the phosphorylation of Erk1/2 and p38 in any of the treated mice 

groups (Fig. 7 A-C). Interestingly, losartan significantly reduced the phosphorylation of 

Erk1/2 (48%, P < 0.01) and p38 (52%, P < 0.05) in Npr1 1-copy mice and as well as in 2-

copy and 4-copy mice compared to their vehicle treated control groups (Fig. 7 D-F).
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To determine whether Erk1/2 and p38 activation could also triggered the expression of 

critical proinflammatory pathways, we analyzed key cytokines, including tumor necrosis 

factor-alpha (TNF-α) and interleukin 1-beta (IL1-β) in the plasma and kidney tissues of 

Npr1 mice. Plasma TNF-α level was increased 4-fold in Npr1 0-copy and 2-fold in 1-copy 

mice compared with Npr1 2-copy mice. Treatment with U0126 and SB203580 significantly 

reduced plasma TNF-α level in Npr1 0-copy mice and Npr1 1-copy mice by 2-fold 

compared with their respective vehicle-treated control mice (Fig. 8 A). Similar to plasma, 

renal TNF-α concentrations were significantly increased by 5- fold and 2-fold in Npr1 0-

copy and Npr1 1-copy mice, respectively, compared with their vehicle-treated control 

groups. The TNF-α level in the kidney was also significantly decreased in Npr1 0-copy and 

1-copy mice after treatment with U0126 and SB203580 compared with the untreated Npr1 
0-copy and 1-copy mice (Fig. 8 B). In gene-duplicated Npr1 4-copy mice, plasma and renal 

TNF-α levels were significantly lower and even undetectable after treatment with U0126 

and SB203580. In addition, plasma IL1-β levels were increased to 7-fold in Npr1 0-copy 

and 4-fold in 1-copy mice compared with 2-copy control mice. Treatment with small 

molecule inhibitors such as Erk1/2 inhibitor (U0126) and p-38 inhibitor (SB203580) 

significantly reversed the increase in IL1-β level in both Npr1 0-copy and Npr1 1-copy mice 

compared with their respective control groups.

Similarly, renal IL1-β level was increased to 5.5-fold and 2.5-fold in Npr1 0-copy and Npr1 
1-copy mice, respectively, compared with their vehicle-treated control mice group. A 

significant attenuation in proinflammatory cytokines levels was observed in both Npr1 0-

copy and 1-copy mice after treatment with the MAPKs inhibitors. However, the levels were 

considerably reduced in Npr1 4-copy mice compared with 2-copy mice and were even 

undetectable after treatment with inhibitors.

4. Discussion

The results of the present study, for the first time, showed an association between (P)RR and 

Npr1 gene copy number in the context of renal expression of proinflammatory signal 

activation and regulation of BP. Although, our previous studies elucidated the role of RAAS 

in Npr1 gene-knockout mice, the importance of (P)RR remained largely unknown [10, 12–

16, 52]. The results of the present study demonstrate that the disruption of Npr1 activates the 

expression of RAAS components including; (P)RR, ACE-1, and AT1R in Npr1 gene-

knockout mice. The mRNA expression and protein levels of (P)RR were significantly 

increased in Npr1 gene-knockout mice, which in turn seem to be associated with increased 

expression levels of both mRNA and protein levels of ACE-1 and mRNA expression of 

AT1R, accompanied with elevated BP in these animals. Previous studies from our laboratory 

showed that the absence of Npr1 gene allows higher renin and Ang II levels in Npr1 null 

mutant newborn pups as compared to their age-matched wild-type control pups [13]. In 

contrast, the circulating renin and Ang II levels were considerably decreased in adult Npr1 
homozygous null mutant mice as compared to the wild-type control mice [13]. The decrease 

in renin activity in adult Npr1 0-copy mice is probably due to the progressive elevation in 

arterial pressure, leading to inhibition of renin synthesis and release from the 

juxtaglomerular cells [13]. Interestingly, those previous studies have also shown that the 

adrenal renin content, mRNA levels, Ang II, and aldosterone concentrations were elevated in 

Periyasamy et al. Page 8

Peptides. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adult Npr1 null mutant 0-copy mice as compared with wild-type 2-copy mice. Evidence 

suggests that the circulating levels of prorenin were almost 10-fold higher than those of 

circulating levels of renin and may reach up to 100-fold higher during the 

pathophysiological conditions [53].

The results of the present study showed that decreased plasma and renal cGMP levels 

correlated with increased BP and increased expression of RAAS components in an Npr1 
gene-dose- dependent manner. On the other hand, increased cGMP levels correlated with 

decreased BP and reduced expression of mRNA and protein levels of (P)RR and ACE-1, and 

reduced mRNA expression of AT1R in Npr1 gene-duplicated 4-copy mice. Furthermore, 

renal RAAS components were significantly activated in the kidneys of Npr1 0-copy mice 

similar to those seen in in the heart of Npr1 null mutant mice; however, in those previous 

studies (P)RR was not determined [15, 16].

It has been shown that binding of prorenin to (P)RR contributes to the generation of Ang II, 

resulting in the activation of RAAS [23, 54]. On the other hand, it also stimulates (P)RR-

mediated signal transduction in an Ang II-independent manner, which in turn activates 

Erk1/2 and p38MAPK and fibrotic pathways [22, 23, 30, 54–56]. To elucidate Ang II-

dependent and -independent mechanism of (P)RR, all the Npr1 mice genotypes were treated 

with captopril and losartan, both drugs did not have any significant effect in down-regulation 

of (P)RR in Npr1 null mutant mice. The present findings suggest that increased expression 

of (P)RR has contributing role in the development of BP and proinflammatory pathway in 

the kidneys through the activation of (P)RR, and important component of RAAS in the 

absence of functional Npr1 gene. Increased expression of (P)RR in Npr1 gene-knockout 

mice might therefore be related to kidney damage through the activation of tissue RAAS and 

by direct stimulation of MAPKs signaling pathways. ANP/NPRA system has been shown to 

inhibit the Ang II-mediated induction of protein kinase C (PKC) and MAPKs in vascular 

smooth muscle and mesangial cells [38, 40, 57–59]. It has also been shown that ANP/NPRA 

negatively regulates MAPKs (Erk1/2 and p38MAPK) activity in a cGMP-dependent manner 

in mesangial cells [5, 12, 38, 60]. The present results are consistent with those previous in 
vitro findings that a decreased phosphorylation of Erk1/2 and p38 exhibited a progressive 

decrease in MAPKs signaling with increased Npr1 gene-copy number. Small molecule 

inhibitors such as Erk1/2 inhibitor (U0126) and p38 inhibitor (SB203580) significantly 

blocked the activation of Erk1/2 and p38 in Npr1 null mutant mice. Previous findings have 

indicated that activation of (P)RR and AT1R by Ang II, transactivates MAPKs (Erk1/2, p38, 

and JNK) in different cell types [38, 42, 61–63]. The evidence suggests that the 

phosphorylated MAPKs (Erk1/2, p38, and JNK) were significantly activated in the kidneys 

of wild-type diabetic and AT1R gene-knockout mice [28]. Interestingly, ACE-1 inhibitor, 

imidapril or AT1R gene-knockout mice did not completely abolish the activation of MAPKs 

whereas, handle region peptide infusion reversed the increased levels of Erks, p38, and JNK 

in both diabetic wild-type and AT1R gene-knockout mice [28, 64]. The present data suggest 

that (P)RR expression follows Npr1 gene-copy number and is not changed by RAAS 

blockade and the resulting BP status. Moreover, ACE expression seem to follow the changes 

in Erks and p38 phosphorylation without changing (P)RR expression. Thus, (P)RR 

expression seems to be independent of the RAAS and BP. Since, the treatment with captopril 

and losartan did not alter the expression of (P)RR, suggesting that the increased expression 
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is largely regulated in Ang II-independent manner. Further, the discrepancy between 

captopril and losartan effect on MAPKs remains unexplained but could be caused by an 

ACE-independent sources of Ang II in these animals.

In the present study, captopril did not show any significant effect in reducing the expression 

of Erk1/2 and p38 in Npr1 null mutant mice. Surprisingly, losartan decreased the expression 

of both MAPKs (Erk1/2 and p38) in Npr1 0-copy and 1-copy mutant mice. It is evident that 

the observed inhibition of Erk1/2 and p38 could be due to the losartan-dependent inhibitory 

efforts on Ang II effects. The results of our study demonstrate that MAPKs activation in 

Npr1 gene-knockout mice is not completely related to Ang II-dependent pathway; however, 

it might also be due to at least, in part, to the direct activation of (P)RR, which is 

independent of Ang II mechanism. In addition to phosphorylation of Erk1/2 and p38, we 

also observed increased up-regulation of both plasma and tissue levels of pro-inflammatory 

cytokines (TNF-α and IL1-β). It has been demonstrated that systemic disruption of Npr1 
gene activates cardiac and renal NF-kB pathways in Npr1 null mutant mice and 

transactivates the expression of pro-inflammatory cytokines. [10, 15, 16, 49, 50, 65]. In the 

present study, we observed a sizeable reduction of proinflammatory cytokines levels, 

including TNF-α and IL1-β in Npr1 gene-duplicated mice, suggesting that increased 

production of cGMP exhibits anti-inflammatory effects. The inhibitors of MAPKs (U0126 

and SB203580) reduced the levels of proinflammatory cytokines in Npr1 null mutant and 

heterozygous mice; however, undetectable in gene-duplicated mice treated with U0126 or 

SB203580. Interestingly, both MAPKs inhibitors, U0126 or SB203580 did not exert any 

significant effect on lowering the BP; however, both inhibitors significantly reduced the 

proinflammatory cytokines levels. Previous studies demonstrated that binding of prorenin or 

renin to (P)RR might directly activate Erk1/2 and p38, thereby, leading to the activation of 

TNF-α and IL1-β, involving the Ang II-independent pathway [43, 66]. It is also possible 

that the influence of (P)RR in the up-regulation of pro-inflammatory cytokines could in part 

be mediated via Ang II-independent mechanisms. However, inhibition of (P)RR with 

appropriate blocker or with small interference RNA could explain its cascade of intracellular 

signal transduction mechanisms, including activation of MAPKs and subsequent production 

of proinflammatory cytokines.

In conclusion, (P)RR is up-regulated with subsequent increased expression of other RAAS 

components, such as ACE-1 and AT1R in the kidneys of Npr1 gene-knockout mice. 

Treatments with captopril and losartan did not alter the expression of (P)RR, implicating that 

its enhanced expression in Npr1 0-copy and 1-copy mice is mediated by Ang II-independent 

mechanisms. Furthermore, captopril failed to attenuate the increased phosphorylation of 

Erk1/2 and p38 in Npr1 null mutant mice. On the other hand, it is noteworthy that losartan 

decreased the expression of MAPKs (Erk1/2 and p-38) in Npr1 mice genotypes. Since, the 

treatments with captopril or losartan did not change the expression of (P)RR, suggesting that 

the Ang II-independent signaling pathway mainly triggers its enhanced expression; however, 

the (P)RR is proportionately increased with decreasing Npr1 gene copy number.
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Highlights

■ (P)RR expression is increased with decreasing Npr1 gene copy number.

■ (P)RR expression seems to be independent of RAAS and blood pressure.

■ MAPKs and proinflammatory cytokines are upregulated in Npr1−/− mice.

■ Captopril and losartan did not alter expression of (P)RR.
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Figure 1: Western blot analyses of (P)RR and ACE-1 proteins in the kidney tissues of Npr1 gene-
targeted mice:
Renal expression levels of (P)RR and ACE-1 proteins in Npr1 homozygous mutant (0-copy), 

heterozygous (1-copy), wild-type (2-copy) and gene duplicated (4-copy) mice as determined 

by Western blot analysis. β-actin was used as a loading control (A). Densiometric analyses 

of the respective bands were done by Alpha Innotech phosphoimager are shown in panels B-

C for each protein: panel (B) (P)RR and panel (C) ACE-1. The data for 0-copy, 1-copy, and 

4-copy mice were compared with 2-copy control mice. Values are expressed as mean ± 

SEM. *P<0.01, **P<0.001; n = 8 mice per group.
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Figure 2. 
A: Analyses of mRNA expression levels of (P)RR, ACE-1, and AT1R in the kidney tissues 

of Npr1 gene-targeted mice: Relative expression of renal mRNA are shown in (A) (P)RR, 

(B) ACE-1, and (C) AT1R in Npr1 mice genotypes as determined by real time RT-PCR 

method. The expression levels in 0-copy, 1-copy and 4-copy mice were compared with 2-

copy control mice. Values are expressed as mean ± SEM. *P<0.01, **P<0.001; n = 6 mice 

per group.
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Figure 3: Immunohistochemistry of (pro)renin receptor expression in kidney sections of Npr1 
mice genotypes:
Kidney sections were stained with rabbit polyclonal primary antibody against (P)RR from 

Npr1 gene-targeted mice. Panel (A) homozygous mutant (0-copy), (B) heterozygous mutant 

(1-copy), panel (C) wild-type (2-copy), and panel (D) gene-duplicated (4-copy) mice. Panels 

A and B show a marked (P)RR staining (denoted by arrows) in Npr1 0-copy and 1-copy 

mice compared with 2-copy and 4-copy mice (C and D). Immunoreactive (P)RR was 

localized in the glomerulus apparatus, mesangial cells, and tubular collecting duct of kidney 

sections of 0-copy mice. Similarly, the immunoreactive (P)RR staining was also observed 
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largely in the glomerulus apparatus of 1-copy mice (A and B). Panel E shows the semi-

quantitative measurements of (P)RR protein expression in Npr1 0-copy, 1-copy, and 4-copy 

mice compared with 2-copy control mice. Values are expressed as mean ± SEM. *P<0.01; 
**P<0.001; All panels are representative photographs of 6 experiments.
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Figure 4: The effect of Captopril and Losartan on the protein levels of (P)RR and ACE-1 in the 
kidney tissues of Npr1 gene-targeted mice:
Expression of renal (P)RR and ACE-1 in Npr1 genotypes mice after treatments with 

Captopril and Losartan. (A) Renal protein expression of (P)RR and ACE-1 were determined 

by Western blot after captopril treatment, (B) represents densitometric analysis of (P)RR, 

and (C) represents the densitometric analysis of ACE-1. (D) represents protein levels of 

(P)RR and (E) represents densitometric analysis of (P)RR. β-actin was used as a loading 

control. Representative densitometry analysis of the respective bands were done by Alpha 

Innotech phosphoimager for each protein. The treated 0-copy, 1-copy, 2-copy, and 4-copy 
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mice were compared with their respective untreated control groups. Values are expressed as 

mean ± SEM. *P<0.05, **P<0.01; n = 6 mice per group.
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Figure 5: Western blot analyses of phosphorylated Erk1/2 and p38 MAPKs in the kidney tissues 
of Npr1 gene-targeted mice:
(A) Renal expression levels of phosphorylated-Erk1/2 and phosphorylated-p38 protein 

bands. Total Erk1/2 and total p38 was used as a loading control. Densitometric analysis of 

the respective bands were done by Alpha Innotech phosphoimager and are shown in (B, C) 

for each protein. The protein levels in 0-copy, 1-copy, and 4-copy mice were compared with 

2-copy control mice. Values are expressed as mean ± SEM. *P<0.05, **P<0.0; n = 8 mice 

per group.
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Figure 6: The effect of MAPKs inhibitors on the phosphorylated state of Erk1/2 and p38 MAPKs 
in the kidney tissues of Npr1 gene-targeted mice:
Renal expression levels of phosphorylated-Erk1/2, and phosphorylated-p38 proteins in Npr1 
mice genotypes were determined by Western blot analysis after treatment with Erk1/2 

inhibitor U0126 and p38 inhibitor SB 203580. Total Erk1/2 and p38 was used as a loading 

control. Densitometric analysis of the respective bands was done by Alpha Innotech 

phosphoimager for each protein. (A) Represents the renal protein bands of Erk1/2 and p-

Erk1/2 after U0126 treatment, (B) represents densitometric analysis of Erk1/2, (C) 

represents the renal protein bands of p38 and p-p38, after treatment with SB203580, and (D) 

represents densitometric analysis of p38. The protein levels of MAPKs in the inhibitor-

treated 0-copy, 1-copy, 2-copy, and 4-copy mice were compared with their respective 

vehicle-treated control groups. Values are expressed as mean ± SEM. *P<0.05, **P<0.01; n 

= 6 mice per group.
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Figure 7: The effect of captopril and losartan on the phosphorylated Erk1/2 and p38 MAPKs in 
the kidney tissues of Npr1 gene-targeted mice:
Expression levels of renal p-Erk1/2 and p-p38 proteins in Npr1 mice genotypes after 

treatment with captopril and losartan. Total Erk1/2 and total p38 was used as a loading 

control. Representative densitometric analysis of the respective bands were done by Alpha 

Innotech phosphoimager for each protein. (A) Represents the renal protein bands of Erk1/2 

and p38 after captopril treatment, (B) represents the densitometric analysis of Erk1/2, (C) 

represents the densitometric analysis of p38, (D) represents the renal protein bands of Erk1/2 

and p38 after losartan treatment, (E) represents the densitometric analysis of Erk1/2, and (F) 
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represents the densitometric analysis of p38. The treated 0-copy, 1-copy, 2-copy and 4-copy 

mice were compared with their respective vehicle-treated groups. Values are expressed as 

mean ± SEM. *P<0.05, **P<0.01; n = 6 mice per group.
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Figure 8: Effect of mitogen-activated protein kinase inhibitors on the proinflammatory cytokines 
levels in the kidney tissues of Npr1 gene-targeted mice:
Plasma and renal proinflammatory cytokine levels in Npr1 gene-targeted mice were 

analyzed after treatment with Erk1/2 inhibitor U0126 and p38 inhibitor SB203580. (A) and 

(B) panels show plasma and kidney tissue level of TNF-α and (C) and (D) panels show 

plasma and kidney tissue level of IL1-β of 0-copy, 1-copy, 2-copy, and 4-copy mice. Values 

are expressed as mean ± SEM. *P<0.05, **P<0.01; n = 8 mice per group.
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TABLE 1:

The list of the antibodies with specific details of reference numbers and suppliers utilized in the Western blot 

analyses in the current work.

Protein Description Source

ACE Cat# SC-23908 Santa Cruz, Biotechnology (Santa Cruz, CA)

Beta-actin Cat # SC-47778HRP Santa Cruz, Biotechnology (Santa Cruz, CA)

Erk1/2 Cat # SC-514302 Santa Cruz, Biotechnology (Santa Cruz, CA)

p-Erk1/2 Cat # SC-514302 Santa Cruz, Biotechnology (Santa Cruz, CA)

p38 Cat # SC-7973 Santa Cruz, Biotechnology (Santa Cruz, CA)

p-p38 Cat # SC-166182 Santa Cruz, Biotechnology (Santa Cruz, CA)

(P)RR Cat # SAB4100475 Sigma-Aldrich (St. Louis, MO)
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TABLE 2:

Comparison of systolic blood pressure (SBP) and cGMP concentrations in plasma and kidney tissues in Npr1 
gene-targeted mice.

Parameters Npr1 Mice Genotypes

0-Copy 1-copy 2-copy 4-copy

Control SBP (mmHg)
138.2±4.8

**
122.0±4.6

**
102.0±3.3 79.0±3.8

**
79.0±3.8

**

Captopril SBP (mmHg)
110.8±3.0

**
104.3±5.2

**
83.1±4.3

*
72.0±3.8

**

Losartan SBP (mmHg)
106.5±3.2

**
97.8±4.8

**
82.4±4.0

*
71.2±2.9

**

U0126 SBP (mmHg)
138±4.6

**
121±4.1 

**
101.0±4.5 

**
78.6±3.5 

**

SB203580 SBP (mmHg)
137.2±5.0 

**
120.8±4.9 

**
99.8±4.7 

**
78.1±4.0 

**

Plasma cGMP (pmol/ml)
4.9±1.9

**
11.0±2.2

* 17.5±2.8
24.9±3.2

*

Kidney cGMP (pmol/mg)
5.1±2.9

**
17.7±5.5

** 38.5±6.1
54.7±4.6

**

Systolic blood pressure was measured by non-invasive computerized tail-cuff method as described under Materials and Methods section. The 
concentrations of cGMP in the plasma and kidney tissues were estimated by our established procedures as stated in the Materials and Methods 
section. Values are expressed as mean ± SEM. n = 8 mice per group.

*
P<0.01,

**
P<0.001. (0-copy, 1-copy, and 4-copy mice were compared with 2-copy control mice).
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