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Abstract

Introduction—Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin 

lymphoma and is an aggressive malignancy with heterogeneous outcomes. Diverse methods for 

DLBCL outcomes assessment ranging from clinical to genomic have been developed with variable 

predictive and prognostic success.

Areas covered—The authors provide an overview of the various methods currently used to 

estimate prognosis in DLBCL patients. Models incorporating cell of origin, genomic features, 

sociodemographic factors, treatment effectiveness measures, and machine learning are described.

Expert opinion—The clinical and genetic heterogeneity of DLBCL presents distinct challenges 

in predicting response to therapy and overall prognosis. Successful integration of predictive and 

prognostic tools in clinical trials and in a standard clinical workflow for DLBCL will likely require 

a combination of methods incorporating clinical, sociodemographic, and molecular factors with 

the aid of machine learning and high-dimensional data analysis.
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1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma 

(NHL) and is fatal without treatment.1 DLBCL is characterized by heterogeneous clinical2 

and molecular subgroups3 with disparate outcomes, and the rapid and accurate identification 

of high-risk groups has important ramifications for prognosis and therapeutic decision-

making. However, the clinical and genetic heterogeneity of DLBCL often presents 

challenges for risk stratification and prognostic modeling. Over the past three decades, 

methods of outcomes prediction in DLBCL have utilized a diverse array of data sources 

including clinical factors,4 cell-of-origin (COO) subtypes,5 and genetic subgroups,6-9 and it 

remains unclear what combination of these or other techniques will ultimately yield optimal 

prognostic models for integration into clinical trials and practice. Here, we review methods, 

remaining challenges, and future directions in outcomes prediction for DLBCL.

2. Prognostic modeling based on clinical characteristics

2.1 International Prognostic Index and beyond

Developed more than 25 years ago using stepwise regression, the International Prognostic 

Index (IPI; Tables 1 and 2)4 provides DLBCL risk assessment according to clinical 

characteristics (age, stage, serum lactic dehydrogenase level [LDH] level, performance 

status, and number of extranodal disease sites) and is routinely used in clinical practice. 

However, survival outcomes have changed markedly with the addition of rituximab to 

frontline chemotherapy regimens.10 In addition, IPI scores may have insufficient granularity 

for predicting the course of some DLBCLs, including the more aggressive cases that most 

warrant the development of individualized treatment strategies.11 To address these issues, 

two variations of the IPI have been proposed: the revised-IPI,10 which re-groups the original 

IPI scores into three risk groups, and the National Comprehensive Cancer Network–IPI 

(NCCN-IPI),12 which assigns incremental scores to increasing levels of age and LDH values 

and includes specific high-risk extranodal sites. A case series of >1,000 DLBCL patients 

treated with first-line chemoimmunotherapy investigated the interactions between clinical 

and genomic prognostic factors and found that the original IPI categories stratified patients, 

suggesting that the original factors remain prognostic in large populations.9 The inclusion of 

additional prognostic factors such as albumin serum levels have also been reported to 

increase prognostic accuracy in some models.13,14 A comparison of the IPI, R-IPI, and 

NCCN-IPI using individual patient-level data from 7 multicenter trials involving patients 

with aggressive B-cell lymphoma (n=2561; 86% DLBCL) treated with front-line with 

rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) or 

variants was performed to determine which clinical scoring systems best discriminated 

overall survival (OS). This analysis showed that the NCCN-IPI produced the greatest 

absolute difference in OS estimates between the highest and lowest risk groups at 1, 3, and 5 
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years, and best discriminated OS (c-index = 0.63), but was only marginally better than the 

IPI (c-index = 0.62).15

Recently, Biccler et al. developed a new prognostic model based on clinical data using a 

modern machine learning method known as a stacking algorithm.16 As an ensemble learning 

method, the stacking algorithm aggregates several regression models for obtaining survival 

curves and therefore eliminates the need for the specification of one prognostic modeling 

approach. The authors incorporated clinical data from Danish and Swedish nationwide 

lymphoma registries in defining their algorithm and reported that their stacking-based 

prognostic model was superior to the NCCN-IPI and IPI models (available as a web-based 

tool at https://lymphomapredictor.org).

In an effort to risk-stratify DLBCL patients in terms of cure rate rather than survival per se, 

Howlader et al. used the large population-based dataset available through the SEER registry 

to develop a prognostic model that included several additional non-IPI risk factors such as 

gender, race, Hispanic ethnicity, marital status, and a population-level measure of poverty.17 

Utilizing this model, Howlader et al. estimated 10-year survival and cure rates for high-, 

medium-, and low-risk groups and calculated mortality risks using standardized mortality 

ratios for various noncancer causes. The SEER data used in this study did not include 

several clinical factors known to be associated with poor survival, such as high IPI score. 

However, IPI data are available for a subset of DLBCL patients in SEER and have been 

utilized in other prognostic models using SEER data.18

2.2 Fitness status

Determination of fitness status using the Comprehensive Geriatric Assessment (CGA) has 

demonstrated prognostic and predictive significance among older patients with DLBCL and 

may inform therapeutic decision making.19 The CGA categorizes patients as fit, unfit, or 

frail and incorporates a variety of attributes including performance status, functional status, 

comorbidities, nutritional status, cognitive function, psychological state, social support, and 

polypharmacy.20 Prospective studies incorporating modified CGA have shown stratification 

by fitness status to OS, overall response rate (ORR), and toxicities associated with therapy in 

older DLBCL patients.21-24 CGA was more effective than clinical judgment in highlighting 

fit patients who would tolerate anthracycline-based treatment with curative intent.23 

Additional analysis is needed to identify preferred dose adjustments or alternate regimens 

for unfit and frail patients. Guidelines for oncologic treatment of elderly patients advise 

future integration of CGA tools,25,26 though application of the full CGA is impractical in a 

clinical setting. Simplified CGA models may be applicable in a clinical workflow and 

require validation in future studies. Incorporation of CGA in clinical trials has been limited,
27,28 and additional prospective clinical trials are required prior to wide clinical adoption of 

CGA. Alternate methods for assessment of fitness status are in development and include the 

Vulnerable Elders Survey 13 (VES-13), which has demonstrated an association between 

vulnerable status and adverse outcomes in NHL.29
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2.3 Hematologic parameters

Other studies have used hematologic parameters as a marker of prognosis. For example, 

there is evidence that the ratio of lymphocytes to monocytes in the serum at diagnosis of 

DLBCL may reflect the immune microenvironment and can serve as a predictor of response 

to standard chemoimmunotherapy with R-CHOP, independent of IPI score.30-33 While these 

indicators of tumor milieu may be helpful in predicting disease progression, identifying 

molecular abnormalities will be vital to analyzing putative drivers of poor-risk tumor 

microenvironments and developing therapies that target them.34-36

2.4 Vitamin D

Low levels of 25-hydroxyvitamin D [25(OH)D] are associated with inferior outcomes in 

DLBCL.37 Vitamin D deficiency is thought to impair rituximab-mediated cytotoxicity,38 and 

in vitro supplementation with vitamin D yields greater rituximab-mediated antibody-

dependent cytotoxicity in B-cell lymphoma cells.39 In a prospective study analyzing serum 

25(OH)D levels in 983 patients with newly diagnosed NHL, 25(OH)D insufficiency (< 25 

ng/mL) demonstrated an association with inferior event-free survival (EFS) and OS in 

patients with DLBCL.37 A prospective cohort study assessed the impact of normalization of 

serum 25(OH)D levels in patients with aggressive lymphoma treated with R-CHOP.40 Of the 

155 patients included in analysis, 128 patients had a diagnosis of DLBCL, not otherwise 

specified. Two-thirds of patients were found to be deficient (< 20 ng/mL) in 25(OH)D, and 

25(OH)D deficiency was independently associated with inferior EFS. Normalization of 

25(OH)D following weekly doses of 25,000 IU of cholecalciferol led to improved EFS in 

comparison with patients who had ongoing vitamin D deficiency or insufficiency, indicating 

the importance of vitamin D repletion in patients treated with R-CHOP. Studies are 

underway evaluating whether vitamin D repletion can impact OS in DLBCL.

3. Molecular prognostic classification

3.1 Cell-of-origin subtype

Gene expression profiling (GEP) has provided significant insight into biologic factors 

underlying divergent clinical outcomes in DLBCL. Seminal work by Alizadeh et al. 
identified two molecularly distinct subgroups of DLBCL based on GEP: germinal center B 

cell-like (GCB)-DLBCL, with an expression profile resembling that of normal germinal 

center B cells, and activated B cell-like (ABC)-DLBCL, which resembles normal activated 

B cells.5 Despite identical histologic appearance of the ABC and GCB subtypes, ABC-

DLBCL has been shown to have significantly worse outcomes, exhibiting a 5-year OS rate 

of 35% following anthracycline-based chemotherapy compared to a 60% 5-year OS rate for 

GCB-DLBCL.41 Subsequent studies have since allowed for a better understanding of the 

dysregulated molecular pathways that characterize ABC- and GCB-DLBCLs, and clinical 

trials are underway examining subtype-specific therapeutic targets.42,43 At present, GEP is 

widely used in bench research, but it has only recently been incorporated into clinical trials 

and has not yet been adopted in clinical practice due to limitations of cost, turnaround time, 

and accessibility.
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To assess DLBCL COO subtypes in the clinical setting, immunohistochemical (IHC) 

classification systems have been developed as surrogates for GEP (Table 3). The first and 

most widely used IHC classification system was developed in 2004 by Hans et al. and uses 

the differential expression of the proteins CD10, BCL6, and MUM1 to separate GCB and 

non-GCB phenotypes.44 By combining these IHC stains sequentially, the Hans algorithm 

identifies GCB and non-GCB DLBCLs with sensitivity of 70% and 87%, with positive 

predictive values of 84% and 75%, respectively. This classification system demonstrates 

86% concordance with GEP, thus misclassifying 14% of patients. Eight other IHC 

classification systems have subsequently been developed that reported a higher concordance 

with molecular-based classification of DLBCL, though none have been as readily used in 

clinical practice as the Hans algorithm, likely due to its ease of use;45-51 these include the 

Choi algorithm, which adds GCET1 and FOXP1 to the Hans algorithm, and the Tally 

algorithm, which creates a score using CD10, MUM1, GCET1, FOXP1 and LMNO2. Many 

of the IHC classification systems have failed to reproduce the prognostic significance of 

COO subtyping seen with GEP.52

IHC staining is now considered essential for DLBCL prognostication in the clinical setting; 

however, it remains rife with challenges, as detailed throughout this section. Such 

classification systems also struggle to adapt to the evolving understanding of DLBCL 

biology. Informatics approaches have the potential to facilitate more objective and accurate 

classification systems. Approaches utilizing computerized image segmentation techniques 

have already began to show success in generating more reliable prognostic information in 

follicular lymphoma.53 Computerized image analysis tools may be able to play a similar role 

in classification of COO in DLBCL. For instance, the survival convolutional neural network 

combines deep learning with traditional survival models to learn survival-related patterns 

from histology images.54 Large whole-slide images are generated by digitizing IHC and 

hematoxylin and eosin (H&E)-stained glass slides, and a web-based viewer is used to 

manually identify representative regions of interest in the image. High-power fields are 

sampled from those regions and used to train a neural network to predict patient survival. 

The network includes convolutional layers that learn visual patterns related to survival and a 

Cox proportional hazards layer that models time-to-event data, such as OS. Predictions are 

then compared with actual patient outcomes to adaptively train the network weights that 

interconnect the layers. Our group has begun utilizing these image analysis tools with 

machine learning methods to classify COO for DLBCL in a consistent and accurate manner,
53 while others have used similar techniques for identifying the DLBCL proliferation index.
55 These methods will begin to show more value in the clinical setting as digital pathology 

tools, which were recently FDA-approved for use in hospitals, gain more widespread 

traction.

3.2 Clinical integration of IHC and GEP methods for prognostication

Given the prognostic importance of identifying COO subtypes and other DLBCL subgroups 

with predictive significance, there is clear benefit to incorporating IHC and GEP methods 

into a clinical workflow. However, historical challenges related to feasibility and 

reproducibility have prevented clinical adoption of these laboratory techniques. IHC 

methods have shown poor inter-assay and inter-laboratory concordance in multiple studies. 
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Gutierrez-Garcia et al. compared the Colomo, Hans, Muris, Choi, and Tally IHC algorithms 

and showed that none of these IHC methods effectively risk-stratified patients by COO 

subtype or OS.56 Coutinho et al. assessed nine IHC algorithms and found low concordance 

and poor prognostic performance across all methods.51 While IHC algorithms and materials 

are readily accessible and available for clinical use, early IHC methods were considered too 

unreliable for clinical adoption.57

Clinical implementation of GEP technology has also proven difficult. Initial GEP methods 

were impractical in a clinical setting due to reliance on fresh frozen tissue with microarrays. 

In addition, the enormity and complexity of data obtained from cancer-related gene 

expression studies present great challenges in analyses and subsequent applications to a 

practical clinical environment. Data analysis methodologies that will efficiently aid in 

extracting relevant biological information in high-dimensional settings are required. In 2010, 

Williams et al. compared GEP with fresh frozen tissue to GEP using formalin-fixed paraffin-

embedded tissue (FFPET) with 98% concordance.58 The successful use of FFPET, which is 

readily available from routine biopsy, meant that GEP integration in a clinical setting was 

more feasible than before, and subsequent research has focused on adapting DLBCL 

molecular COO subtyping to the bedside. The Lymphoma/Leukemia Molecular Profiling 

Project developed and validated Lymph2Cx, a digital gene expression-based assay that can 

determine COO subtype using FFPET biopsies with both consistency and accuracy.59 Using 

the NanoString multiplexed gene expression analysis platform, the Lymph2Cx assay was 

able to maintain prognostic significance of COO subtypes.60

However, FFPET-based GEP methods have also met challenges that hinder ready adoption 

in the clinical setting. Barriers to clinical implementation include the requirement of 

sufficient tissue for GEP beyond the initial diagnostic workup, potential for increased cost, 

and necessary access to equipment for this specialized technique.57 Despite successful 

performance of the NanoString platform, cost-effectiveness analysis of the Lymph2Cx assay 

has not been conducted, and GEP has not yet gained traction in clinical practice. Of note, a 

recent study on early-stage breast cancer found a substantially higher cost-effectiveness ratio 

for GEP use in community practice. 61 Given these challenges, the 2016 WHO classification 

system includes IHC algorithms as acceptable methods for COO categorization62 despite 

better historical performance of GEP.

In 2019, Robetorye et al. published clinical validation of GEP in a routine clinical setting 

through implementation of the Lymph2Cx digital GEP assay.63 The authors outline a 

workflow that proceeds from biopsy to immunophenotyping using the Hans algorithm to 

flow cytometry and FISH. If sufficient tissue remained at this stage (60+% lymphoma 

remaining in the specimen), the authors conducted the Lymph2Cx digital GEP assay. They 

reported analysis of 90 clinical cases and concluded that incorporation of Lymph2Cx in their 

clinical workflow was accurate, rapid, and reproducible.

Given the prognostic and potentially predictive significance of COO subtype, IHC and GEP 

methods have been increasingly implemented in randomized controlled trials for DLBCL. 

The PHOENIX trial assessing R-CHOP ± the BTK inhibitor ibrutinib in non-GCB patients 

(ClinicalTrials.gov identifier ) utilized a Hans-based IHC kit to distinguish non-GCB study 
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participants from GCB patients. Development of such IHC kits may standardize IHC 

methods and minimize discordance across laboratories. The REMoDL-B trial comparing R-

CHOP ± bortezomib in ABC-DLBCLs (ClinicalTrials.gov identifier ) utilized a GEP assay 

designed by Barrans et al.64 to assign COO subtype. In the ECOG/ACRIN E1412 

(ClinicalTrials.gov identifier ) and ROBUST (ClinicalTrials.gov identifier ) trials examining 

R-CHOP ± lenalidomide, the NanoString platform categorized patients according to COO. 

Results of IHC and GEP application in these and other trials may guide future clinical 

workflows for rapid identification of COO subtypes and assignment of patients to subtype-

specific therapeutic approaches.

3.3 Oxidative phosphorylation subgroup

Revisiting prior gene expression-based analyses beyond COO subtypes may provide 

prognostic and predictive value. The oxidative phosphorylation (OxPhos)-DLBCL subgroup 

has been shown to exhibit a gene expression profile that is independent of COO 

classification and may inform therapeutic decision making.65-67 OxPhos-DLBCLs do not 

respond to B cell receptor (BCR) signaling inhibition68 but may respond to disruption of 

fatty acid oxidation pathways, glutathione synthesis, and PPAR-γ.66 GEP-based 

identification of this subgroup may yield important clinical and research insight regarding 

appropriate therapies. Of particular note, the glycylcycline antibiotic tigecycline, which has 

demonstrated antitumor effects in other cancers69 and has been shown to have therapeutic 

synergy with venetoclax in lymphomas with rearrangements of MYC and BCL2,70 exhibited 

toxicity in OxPhos-DLBCLs at doses known to be tolerable in humans.67 This approach for 

classifying DLBCL has rarely been used in research or clinical settings, but could be more 

widely adopted if GEP characterization of OxPhos-DLBCLs can identify patients who are 

responsive to pharmacologic interference of fatty acid oxidation, glutathione synthesis, or 

mitochondrial translation and who display insensitivity to disruption of BCR signaling.

3.4 Rearrangements of MYC and BCL2 and/or BCL6

So-called “double-hit” lymphomas (DHL), which exhibit dual rearrangement of MYC and 

either BCL2 or BCL6, and “triple-hit” lymphomas (THL), which possess simultaneous 

rearrangement of all three genes, are associated with poor outcomes after standard frontline 

chemoimmunotherapy and have historically required fluorescence in situ hybridization 

(FISH) for detection.71,72 Ennishi et al. have described a gene expression-based 

methodology derived from RNAseq analysis of double- and triple-hit high-grade B-cell 

lymphomas with BCL2 rearrangements (HGBL-DH/TH-BCL2) that identifies a GCB 

subgroup with distinct biological and clinical characteristics.73 In this study, 27% of GCB 

DLBCLs demonstrated a HGBL-DH/TH-BCL2 gene expression profile according to a 104-

gene double hit signature (“DHITsig”). Intriguingly, only half of this GCB subgroup 

exhibited MYC and BCL2 rearrangements. DHITsig positivity was associated with poor 

outcomes among GCB-DLBCLs according to time to progression, disease-specific survival, 

and OS. Notably, the DHITsig-negative GCB subgroup exhibited a 5-year disease-specific 

survival rate of 90%, suggesting that R-CHOP is sufficient therapy for these patients 

following DHITsig stratification. Incorporation of the DHITsig gene expression-based assay 

in clinical practice and future clinical trials may allow for identification of twice as many 

patients with the HGBL-DH/TH-BCL2 gene expression signature as would be identified by 
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FISH analysis of MYC and BCL2 rearrangements alone. In addition, clinical 

implementation might distinguish patients in the DHITsig-negative GCB subgroup who 

could remain on R-CHOP without therapy escalation.

3.5 Double-expressor lymphoma

Independent of COO classification or IPI score, positive IHC staining for BCL2 and MYC 

have been shown to be strong predictors of inferior outcomes.74-77 DLBCLs with high 

expression of both BCL2 and MYC, referred to as double-expressor lymphomas (DELs), 

have been reported to portend a more aggressive disease course with a risk of death elevated 

as high as nine times that of those with low BLC2 and MYC expression.78,79 However, 

pathologist scoring of these two important IHC stains has been inconsistent. Interpretation of 

the BCL2 IHC stain varies significantly with an agreement rate of just 47% (κ = 0.23).80 

Furthermore, ideal cut-off for a positive BCL2 IHC stain has not yet been universally agreed 

upon. A recent study has attempted a new scoring system for BCL2 hoping to improve 

consistency.81 Meanwhile, studies looking at inter-rater reliability of pathologists on scoring 

whole slides for MYC positivity yielded almost 40% discordant cases.82 Accurate 

prognostication of DLBCL will require more consistency of scoring the MYC and BCL2 

IHC stains that define double-expressor lymphomas.

4. Next-generation sequencing

Next-generation sequencing has allowed clinicians and researchers to identify driving 

genetic aberrations and to determine which pathways and rearrangements demonstrate 

preferential distribution among DLBCL subtypes (Figure 1). For example, ABC-DLBCLs 

preferentially express somatic mutations in CD79A/B and MYD88 that result in constitutive 

BCR signaling and canonical NF-κB activation, while GCB-DLBCLs have much higher 

rates of mutated EZH2, resulting in suppressed apoptosis.83 Identifying and validating 

potential predictive biomarkers will be an important component of future personalized 

medicine strategies for DLBCL. Molecular hallmarks based on genetic aberrations have 

increasingly been accepted as nascent biomarkers for selecting precision medicine therapies.
84-87

Progress in identifying putative mutations in DLBCL has been rapid. Four recent high-

impact papers have each analyzed a large sample of DLBCLs to characterize the genomic 

and exomic landscape of the disease6-9 (Table 4). Reddy et al. performed whole-exome and 

transcriptome sequencing of 1,001 DLBCL patients and then established a prognostic model 

with the 150 driver mutations identified. Their genomic risk model was highly predictive, 

especially in regard to long-term mortality outcomes, which was lacking from the clinical 

IPI model. This prognostic model is discussed in greater detail later in the current review. 

Similarly, Schmitz et al. performed whole-exome and transcriptome sequencing alongside 

array-based DNA copy-number analysis as well as targeted amplicon resequencing of 574 

DLBCL samples to define novel genomic subtypes beyond the standard COO classification 

scheme. The Schmitz et al. algorithm was based on co-occurring genetic aberrations and 

defined four subtypes: MCD (exhibiting mutations in MYD88 and CD79B), BN2 

(exhibiting BCL6 fusions and NOTCH2 mutations), N1 (exhibiting NOTCH1 mutations), 
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and EZB (exhibiting EZH2 mutations and BCL2 translocations). Chapuy et al. analyzed a 

cohort of 304 primary DLBCLs to identify 98 driver mutations that defined 5 novel DLBCL 

subsets: low-risk ABC-DLBCLs of extrafollicular/marginal zone origin, two phenotypically 

distinct subsets of GCB-DLBCL, and one COO subtype-independent group with biallelic 

inactivation of TP53 and CDKN2A loss. The most recent of these DLBCL genomics studies 

by Arthur et al. analyzed 338 de novo DLBCL cases and identified novel cis- regulatory 

sites, implicated recurrent mutations in the 3′ UTR of NFKBIZ as a NF-κB pathway 

activator in ABC-DLBCLs, and associated over-expression of FCGR2B with poor 

outcomes, particularly in GCB-DLBCL. New efforts are underway to use the results of these 

studies to identify potential genome-directed therapies as part of a precision medicine 

approach.88

4.1 Translating high-dimensional genomic data into clinical predictions

Although the aforementioned prognostic models such as the IPI score have demonstrated the 

utility of combining clinical and population-based data with statistical methods for 

prognostic prediction, they are imperfect in the identification of high-risk DLBCL patients, 

and they fail to capture the intrinsic molecular heterogeneity of DLBCL. With the rapid 

advent of genomic technologies, efforts have shifted to include gene expression and 

mutational profiles in prognostic modeling for more accurate discrimination between high- 

and low-risk DLBCL.

Utilization of DNA microarray and, more recently, high-throughput sequencing technologies 

have spawned large amounts of gene expression data. Integration of gene expression data 

with clinical, histological, imaging, demographic, and epidemiological information could 

provide insights for improving cancer diagnosis and prognosis. However, the enormity and 

complexity of data obtained from cancer-related gene expression studies present great 

challenges in making accurate predictions of clinical outcomes. Machine learning methods 

are designed to organize, process, and discover actionable knowledge in high-dimensional 

settings. As such, several different types of machine learning methods have been adapted to 

achieve three fundamental predictive tasks in cancer research: 1) prediction of cancer 

susceptibility (risk assessment); 2) prediction of cancer recurrence; and 3) prediction of 

cancer survival outcomes.89,90 An important challenge in translating high-dimensional data 

into accurate predictions for clinical decision-making is to identify informative features 

(e.g., clinical risk factors and genes) that contribute most to the prediction. Firstly, a more 

compact model will be more useful and interpretable in predicting outcomes for future 

patients. Secondly, selecting informative features is critical to avoiding overfitting and 

improving the accuracy and speed of prediction systems. Lastly, informative features allow 

investigators to understand the underlying cancer mechanisms that generated the data.

To overcome the difficulty of constructing accurate predictive models with high-dimensional 

data, there are two dimensionality-reduction techniques that are often used: feature selection, 

and feature extraction. Feature selection in genomic microarray analysis has been 

extensively studied in the last two decades for the prediction of cancer survivability, 

susceptibility and subtypes.91-94 Methods of feature selection vary in terms of performance 

and computational load and include filtering based on statistically defined relevance scores, 
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stepwise selection, Lasso regression, and others. In contrast to feature selection, feature 

extraction creates new features as combinations of others to reduce the dimensionality of the 

selected features. Commonly used approaches for feature extraction include clustering 

methods and principal component analysis (PCA). As illustrated in Alizadeh et al., 
hierarchical clustering can be used to find meaningful clusters of features without the 

knowledge of clinical outcome, and these clusters can later be used in conjunction with the 

outcome to build a predictive model.5 An important drawback of both clustering and PCA 

for dimensionality reduction is that new features are created in an unsupervised manner: 

there is no guarantee that the new features will be predictive of the clinical outcome. To 

overcome this, some have proposed supervised principal component analysis, which selects 

the principal components based on the clinical outcome. This method has been used to 

predict patient survival using microarray data.95,96

In the DLBCL domain, several high-impact studies have combined genomics and machine 

learning for prediction of outcomes. Shipp et al.97 combined gene expression data of 58 

DLBCL patients from oligonucleotide microarrays with classification analysis to predict a 

dichotomous clinical outcome (cured versus fatal/refractory disease). Feature selection 

methods were used to determine the predictive genes. However, this analysis was limited by 

the low number of genes and lacked some of the clinical data elements described above that 

are known to be associated with survival. In a more recent study, Reddy et al. performed an 

integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 

1,001 DLBCL patients to comprehensively define the landscape of the disease.9 A 

supervised learning approach including an embedded feature selection method was used to 

develop a predictive model for survival that included clinical information, 150 genetic driver 

genes, and gene expression markers (COO, MYC, and BCL2). Although these studies 

demonstrate the utility of combining genomic data and machine learning for DLBCL risk 

assessment, future efforts can expand upon this approach by incorporating additional 

classification methods (i.e., other than linear models), comprehensively assessing all 

possible combinations of features and classification methods to identify the best possible 

model, and using alternative feature selection algorithms capable of capturing the molecular 

heterogeneity of DLBCL. Recent advances in prognostic modeling for DLBCL include the 

Continuous Individualized Risk Index (CIRI), which dynamically integrates personalized 

risk factors at pretreatment, treatment, and end-of-treatment phases.98 CIRI showed 

improved outcomes prediction in comparison with other models and may be applicable to 

cancers beyond DLBCL.

With major advances in the fields of epidemiology, genomics, and clinical research, large 

amounts of heterogeneous data have become available in various healthcare organizations. 

Therefore, there is a profound need for unified machine learning-based platforms 

incorporating vast amounts of mixed data types (e.g., imaging, histological, clinical, and 

genomic). The neural networks-based approaches, broadly described as deep learning, have 

been successfully implemented in areas such as image recognition, natural language 

processing, and robotics. Due to its ability to effectively leverage large data sets, the 

application of deep learning for precision genomic medicine is rapidly developing and has 

shown promise for the prediction of clinical outcomes with genomics.54,99 Future efforts 

should also aim to integrate robust machine learning-based platforms into clinical use to 
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improve the risk stratification of DLBCL patients in a manner that can eventually translate to 

more effective and personalized treatment strategies.

5. Sociodemographic disparities in DLBCL presentation and outcomes

5.1 Race

Population-based epidemiology studies in the U.S. have demonstrated that DLBCL in 

African Americans displays different characteristics compared to DLBCL in white patients. 

The National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 

Program data have shown that African American patients presented at 10 years younger, 

exhibited more advanced stage, and had inferior 5-year survival relative to individuals of the 

white population.100 Historically, these differences have been attributed to confounding 

social, environmental, and behavioral factors, but biologic factors may also play a role in 

racially disparate outcomes.

5.2 Socioeconomic status

According to a retrospective cohort analysis of 33,032 patients diagnosed with DLBCL in 

California from 1988 to 2009, DLBCL patients living in neighborhoods with lower 

socioeconomic status (SES) had increased risks of mortality compared to patients in higher 

SES neighborhoods.101 After adjusting for insurance status, the association of neighborhood 

SES with mortality risk was attenuated but remained statistically significant, suggesting an 

impact of SES beyond barriers related to being uninsured or underinsured. These findings 

are corroborated by a retrospective study using the National Cancer Database (NCDB), 

which demonstrated that uninsured patients (hazard ratio [HR]1.39, p<0.05) and Medicaid-

insured patients (HR 1.48, p<0.05) had lower survival than patients with private insurance 

after adjusting for sociodemographic factors such as age, sex, race, ZIP code area, and level 

of education.102 These findings highlight the association of SES and mortality risk in 

DLBCL and suggest that barriers to optimal outcomes include but are not limited to 

inadequate insurance coverage among disadvantaged patients.

5.3 Place of residence

Moreover, place of residence affects the survival of lymphoma patients. Ritter et al. analyzed 

outcomes of 83,108 DLBCL patients in the NCDB who were classified as rural (county 

population less than 2,500), urban (county population more than 2,500 but outside 

metropolitan areas), or metro (at least 50,000 urbanized population in county).103 Rural and 

urban DLBCL patients were more likely than metro populations to have lower SES, 

Medicaid insurance, advanced stage at diagnosis, and more comorbidities. Rural and urban 

populations exhibited inferior 5-year OS compared to metro patients, although risk was 

attenuated by SES, insurance status, and treatment facility type. Neighborhood SES may 

affect health outcomes directly or indirectly through mechanisms such as availability and 

accessibility of healthcare, healthy foods, recreational facilities, environmental pollution, 

health literacy, and social support. It is therefore important to address neighborhood SES 

when developing strategies for rural/urban DLBCL patients.
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5.4 Diagnosis-to-treatment interval

Recently, Maurer and colleagues analyzed 986 DLBCL patients included in the Molecular 

Epidemiology Resource (MER) database at the Mayo Clinic and the University of Iowa 

from 2002 to 2013. 104 They found that shorter diagnosis-to-treatment interval (DTI) was 

associated with adverse clinical factors and worse outcomes. The prognostic effect of DTI 

independent of IPI may indicate high-risk disease features that are not entirely captured by 

standard prognostic assessments such as age, disease stage, or performance status. This 

study is limited by its observational nature and lack of information regarding patient 

comorbidity and reason for treatment delay, and requires further validation. However, these 

findings may have important implications for clinicians and researchers designing and 

interpreting clinical trials in DLBCL.

5.5 Association between genomic alterations and ancestry

Extensive prior work has explored SES contributions to DLBCL disparities. However, our 

knowledge of the extent to which genetic mechanisms may contribute to the observed 

disparities has been limited. Analysis of genetic contributions to demographic disparities in 

DLBCL is challenging in part because the majority of genomic characterization studies 

primarily incorporate patients with European ancestry. This limited racial diversity precludes 

the detection of genomic patterns that are unique in underrepresented African American 

patients. Recently, Lee et al. utilized genetically-determined African ancestry rather than 

self-reported race to examine differences in mutational profiles of 150 DLBCL driver genes.
105 Distinct prevalence and patterns of genomic alterations occurring in African Americans 

suggest involvement of different oncogenic genes and pathways in African American 

populations. These divergent patterns may constitute possible mechanisms that contribute to 

racial differences in disease incidence, patterns of presentation, and survival.

5.6 Merging sociodemographic and molecular factors in DLBCL outcomes research

With the identification of putative DLBCL driver mutations and pathways through whole-

genome and -exome sequencing, novel molecular factors and sociodemographic factors 

should now be incorporated together in DLBCL prediction models. In an ongoing effort to 

define the interplay between clinical, epidemiologic, host genetic, tumor, and treatment 

factors in determining patient outcomes in lymphoma, the Lymphoma Epidemiology of 

Outcomes (LEO) Cohort Study was established in 2016 (; https://leocohort.org/). The LEO 

cohort is currently accruing at eight medical centers across the U.S., with a goal enrollment 

of 13,900 patients. This comprehensive prospective study catalogs clinical factors (e.g., body 

mass index and co-morbid diseases), epidemiologic factors (including race, lifestyle, and 

exposures), pathology (tumor bank and peripheral blood sample), and treatment data. 

Notably, quality-of-life scores as well as NHL molecular subtype are included—factors not 

available in SEER or any other large, prospective U.S. NHL cohort. With >9,000 NHL 

patients already enrolled, this unique study will enable examination of the interactions 

among a broad array of clinical and molecular factors and their impact on outcomes in 

DLBCL.
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6. Measures of treatment effectiveness in DLBCL outcomes prediction

6.1 Interim PET/CT

While pre-treatment risk factors will continue to play an important role in prognostication, 

metrics associated with treatment response can provide valuable, dynamic information for 

predicting DLBCL outcomes. The current Lugano criteria for DLBCL staging rely on the 

use of [18F]-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed 

tomography (CT) obtained prior to treatment. Assessment of pretreatment total metabolic 

tumor volume using [18F]-FDG PET/CT has been shown to predict OS in DLBCL patients,
106 and baseline tumoral metabolic heterogeneity on PET/CT may be prognostic in B-cell 

lymphomas.107 The utility of PET/CT in restaging patients after completion of therapy is 

well established.108 Likewise, it is generally accepted that the use of PET/CT for routine 

surveillance after treatment does not provide clinical benefit and is currently not 

recommended.109,110 The use of interim PET/CT (i.e., at some time between cycles 2 and 4 

of frontline therapy) is an attractive approach given the possibility to ‘adapt’ the treatment 

based on ongoing responses, with the goal of achieving improved response. Indeed, the use 

of this strategy has produced improved outcomes in Hodgkin lymphoma111-113 and is now 

considered standard of care in that disease.

Several studies have been performed to assess the prognostic and predictive value of an 

interim PET/CT in the management of DLBCL with varying outcomes,114-117 which may 

stem from differences in factors such as patient population, sample size, tumor 

heterogeneity, number of treatment cycles prior to re-imaging, and approach to subsequent 

therapy for interim PET-positive patients. A recent retrospective study from our group 

examining DLBCL patients treated with R-CHOP as first-line therapy showed that interim 

PET with full resolution of metabolic tumor was highly correlated with achieving complete 

remission of DLBCL by the end of treatment, as well as with improved survival.116 

However, the degree of decrease from pre-treatment PET to interim PET did not relate to 

outcomes. Studies are underway to test novel compounds117,118 or the addition of laboratory 

measurements119 that could improve upon traditional FDG-PET/CT. Further studies 

addressing the use of interim imaging assessments in the context of tumor genetics may also 

help identify the patient population who may benefit most from a PET-adapted approach.

6.2 Cell-free DNA

The presence of extracellular nucleic acids in humans has been known for decades and has 

been detected in multiple types of bodily fluids.120 Most of these DNA fragments are short, 

although some can be >30 kb long, and are present at very low concentrations (in the ng/mL 

range) due to a short half-life in the circulation.120 In certain illnesses such as cancer, 

however, the amount of plasma cell-free DNA increases. This increase in cell-free DNA 

originates mostly from the tumor and is thus termed circulating tumor DNA (ctDNA). 

Despite the knowledge of the existence of cell-free DNA, it was not until recently that 

improvements in DNA sequencing technologies enabled accurate detection and sequencing 

of such small and infrequent fragments, allowing for the detection of mutations and 

epigenetic changes in a variety of applications.121-124
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The use of ctDNA for tumor diagnosis, monitoring, and detection of relevant mutations is an 

attractive approach as it is minimally invasive, allows for serial sampling, and can be 

sensitive enough to detect subclinical disease. Armand and colleagues first showed that 

ctDNA can be detected in DLBCL patients with newly diagnosed disease, and became 

undetectable in patients after treatment, positing ctDNA as a useful biomarker for assessing 

treatment response.125 The use of ctDNA as a tool for treatment response assessment and 

post-remission surveillance was also illustrated in a recent restrospective analysis by 

Roschewski et al. They found that detection of VDJ segments of tumor immunoglobulin 

genes after 2 treatment cycles correlated with disease progression by 5 years, with presence 

of ctDNA detected a median of 3.5 months before clinical evidence of disease in individuals 

undergoing surveillance after therapy.126 Similarly, Kurtz and colleagues found 

prospectively that detection of molecular disease in the plasma preceded PET/CT detection 

of relapsed disease in DLBCL patients.127

The use of ctDNA also allows for the assessment of the entirety of a given tumor’s genetics, 

providing information about tumor heterogeneity and clonal evolution. This was recently 

illustrated by Rossi et al., who were able to detect many mutations in the plasma that were 

undetectable in the tissue biopsy, presumably due to spatial tumor heterogeneity. They also 

detected new mutations in ctDNA in treatment-resistant patients, potentially reflecting the 

mechanisms that confer resistance to treatment.128 In other applications, ctDNA can be used 

for genotyping, allowing for identification of COO, and to distinguish patterns of clonal 

evolution distinguishing transformed lymphomas from their indolent counterpart.129,130 In 

the era of precision medicine, the possibility to identify targetable mutations and monitor 

treatment response through minimally invasive methods could prove very useful in the 

design of clinical trials and identification of patients who would benefit most from targeted 

approaches. However, additional studies are needed to determine whether the routine use of 

ctDNA for surveillance is cost-effective and improves clinical outcomes.

7. Conclusions

The clinical and genetic heterogeneity of DLBCL presents significant challenges for 

accurate outcomes prediction. Several non-overlapping DLBCL subgroup classifications 

including cell-of-origin subtype, double- and triple-hit status, and, more recently, genetic 

clusters, exhibit independent predictive and prognostic significance. Furthermore, 

technological advances are steadily ushering in various classification methods from research 

laboratories to DLBCL clinical trials and daily clinical workflow. In particular, recent 

advances in DLBCL genomics may have far-reaching ramifications for prognostic modeling 

and therapeutic decision-making in the molecular subtyping era. Ongoing hurdles for 

successful integration of subtyping methods into clinical trials and standard practice include 

demonstration of cost-effectiveness, inter-method and inter-laboratory concordance, and 

standard protocols that enable consistency across hospitals and clinics. Beyond molecular 

and histologic subtypes, sociodemographic and clinical decision-making factors such as 

racial and ethnic disparities, socioeconomic status, and diagnosis-to-treatment interval are 

known to play important roles in DLBCL outcomes. These factors should thus be considered 

in estimating patient prognosis and in designing future DLBCL clinical trials. Interim 

PET/CT and ctDNA present additional attractive options for predicting outcomes in DLBCL 
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by allowing for longitudinal measures of therapeutic efficacy, but more research is needed 

prior to widespread adoption of these technologies for the development of dynamic, adaptive 

treatment strategies. Prognostic models in DLBCL are diverse and mirror the clinical and 

genetic heterogeneity of the disease through incorporation of clinical, histologic, and genetic 

factors. Nuanced, accurate outcomes prediction in DLBCL will likely leverage advances in 

machine learning techniques to combine clinical, sociodemographic, tumor 

microenvironment, and genetic factors in comprehensive but easy-to-use prognostic models 

(Figure 2).

8. Expert opinion

The introduction of next-generation sequencing has facilitated discovery and 

characterization of oncologic genomic landscapes at a rapid pace and at relatively low costs.
131 Genomic sequencing may elucidate mechanisms of lymphomagenesis by associating 

genetic aberrations with dysregulated molecular pathways and thus has the potential to 

generate novel therapeutic targets. Incorporation of next-generation sequencing into 

prognostic modeling and therapeutic decision-making in the management of DLBCL 

patients may allow definition of more precise disease subsets based on actionable mutation 

groups, which could be useful for reviving subtype-based therapies. Large genomic studies 

will be instrumental to define rational biomarkers for DLBCL therapy selection. These 

genomic data can emerge from various sources, including FFPE blocks at diagnosis and 

ctDNA at diagnosis, between treatment cycles, and at the end of treatment. Determining the 

optimal means for collecting and utilizing tumor genomic information should be addressed 

in future clinical trials.

After identifying predictive biomarkers and potential targets for precision medicine in 

DLBCL, there remain external considerations for the rigorous design of precision medicine 

clinical trials. Novel approaches to define cross-talk between molecular pathways via 

bioinformatics and computational methods may identify relevant genes or groups of genes 

that act as biomarkers for therapeutic response to targeted agents.132-135 In addition, future 

trials that incorporate DLBCL genomics will benefit from standardized sequencing methods 

and informatics pipelines across multi-center collaborations to optimize the reproducibility 

of findings.134 Importantly, DLBCL clinical trials using genomic biomarkers will require 

quick turnaround of DLBCL genomic analysis given the aggressive nature of the disease and 

the frequent need for urgent treatment.

Bridging clinical trial results that leverage DLBCL genomics with clinical standards of care 

will require collaborative relationships between diverse groups of professionals, including 

clinicians and bioinformaticians.136 Clinical integration of next-generation sequencing 

technologies will necessitate a systematic method for balancing clinical and biological 

prognostic factors when determining treatment strategies by subtype or patient.137 

Furthermore, conversion of this “big data” into a streamlined, clinically relevant report that 

is integrated into the electronic medical record and clinical workflow will be essential in 

facilitating clinicians’ use of genomic data during medical decision-making.138 This 

becomes particularly relevant for patients in rapid need of therapy, since current research 

indicates that patients with the shortest DTI have adverse outcomes, and thus may have the 
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greatest need for novel molecularly-targeted therapeutic approaches. Moreover, ensuring 

rapid and affordable access to genomic sequencing will be necessary for clinicians to 

confirm whether patients express biomarkers linked to specific treatment strategies in a cost-

effective and efficient manner.139

Mounting evidence from studies examining disparities in DLBCL suggests that 

sociodemographic factors including race, insurance status, and rural status also play a 

significant role in lymphoma-related survival. Further examination of practice patterns and 

health outcomes in treatment of DLBCL may inform public policy to improve access to care 

for poor-risk populations. Situations where access to care is a key determinant of outcome 

may be further exacerbated by the advances in molecular technologies described above if 

these are inaccessible by certain patient groups. In addition to individual-level and 

neighborhood-level SES, analysis of the impact of living conditions and environmental 

exposures are needed to guide public health policy and preventive programs. At present, 

little is known about the community infrastructures (e.g., transportation, sick pay) necessary 

to reduce barriers to care for patients with DLBCL. Ultimately, a more thorough 

understanding of the interaction between biological, clinical, and socioeconomic factors that 

lead to inferior patient outcomes will help identify the most effective strategies to eliminate 

disparities and improve survival in DLBCL. In the next 5 years, we expect that advances in 

sequencing technology, robust population-level capture of multi-level clinical and 

sociodemographic factors, and informatics accessibility of these data sources will allow for 

widespread, real-time incorporation of complex genomic and patient-specific data into 

prognostic models, leading to targeted treatment algorithms used by lymphoma clinicians 

and patients for decision-making.
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Article highlights:

• The clinical and genetic heterogeneity of diffuse large B-cell lymphoma 

presents significant challenges for accurate outcomes prediction.

• Several non-overlapping DLBCL subgroup classifications, including cell-of-

origin subtype, “double-hit” rearrangements of MYC, BCL2, and/or BCL6, 

and newly defined genetic clusters, exhibit independent predictive and 

prognostic significance.

• Technological advances in high-throughput sequencing are steadily ushering 

in various classification methods from research laboratories to DLBCL 

clinical trials and daily clinical workflow.

• In the future, nuanced prediction of clinically relevant outcomes for patients 

with DLBCL will likely leverage advances in machine learning techniques to 

combine clinical, sociodemographic, tumor microenvironment, and genetic 

factors in comprehensive, multilevel prognostic models that are easily used by 

patients and providers.
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Figure 1. Select genetic alterations in DLBCL and associations with COO subtype.
Abbreviations: ABC, activated B cell-like; BCR, B-cell receptor; COO, cell-of-origin; 

DLBCL, diffuse large B-cell lymphoma; GCB, germinal center B cell-like; IL-1, 

interleukin-1; NF-κB, nuclear factor κB; TLR, toll-like receptor.
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Figure 2. Summary schematic for optimized integration of prognostic methods in DLBCL.
Abbreviations: COO, cell of origin; CT, computed tomography; ctDNA, circulating tumor 

DNA; DEL, double-expressor lymphoma; DHITsig, double-hit signature; DHL, double-hit 

lymphoma; DLBCL, diffuse large B-cell lymphoma; DTI, diagnosis-to-treatment interval; 

FISH, fluorescence in situ hybridization; GEP, gene expression profiling; IHC, 

immunohistochemistry; IPI, International Prognostic Index; LMR, lymphocyte/monocyte 

ratio; NCCN, National Comprehensive Cancer Network; NGS, next-generation sequencing; 

OxPhos, oxidative phosphorylation; PET, positron emission tomography; R-IPI, revised IPI; 

SES, socioeconomic status; THL, triple-hit lymphoma.
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Table 1.
Prognostic methods for DLBCL.

Italicized methods incorporate a prognostic model.

Method Variables in prognostic method Comments

Clinical

 IPI4 Age, stage, LDH, ECOG PS, no. of 
extranodal sites

4 risk groups: low (score 0-1, 4-year OS 82%), low-intermediate (2, 
81%), high-intermediate (3, 49%), high (4-5, 59%).

 R-IPI10 Age, stage, LDH, ECOG PS, no. of 
extranodal sites

3 risk groups: very good (score 0, 4-year OS 94%), good (1-2, 79%), 
poor (3-5, 55%).

 NCCN-IPI12 Age, stage, LDH, ECOG PS, no. of 
extranodal sites

4 risk groups: low (score 0-1, 5-year OS 96%), low-intermediate (2-3, 
82%), high-intermediate (4-5, 64%), high (6-8, 33%).

 Biccler et al.16 Age, stage, LDH, ECOG PS, no. & type of 
extranodal sites, B symptoms, WBC, ALC, 
Hb, albumin, sex, tumor diameter

Combined multiple models using a stacking algorithm; 
lymphomapredictor.org.

 Howlader et al.17 Age, stage, sex, race, Hispanic ethnicity, 
marital status, poverty, initial therapy

3 risk groups by 10-year OS: low (80%), medium (60%), high (36%).

 Fitness status19 Comprehensive Geriatric Assessment Predictive of OS, ORR, and toxicities in older patients.

 LMR32 ALC and monocyte counts Low LMR associated with inferior OS.

 Vitamin D37 Serum 25-hydroxyvitamin D level Low 25(OH)D associated with inferior EFS and OS.

Molecular

 COO subtype56 Non-GCB- (by IHC) and ABC-DLBCL (by 
GEP) vs GCB-DLBCL

Non-GCB & ABC subtypes associated with inferior outcomes.

 OxPhos67 Gene expression signature OxPhos subtype associated with insensitivity to BCR signaling 
inhibition.

 DHL/THL72 MYC & BCL2 and/or BCL6 rearrangement DHL and THL associated with poor outcomes.

 DHITsig73 Gene expression signature 5-year TTP 57% in DHITsig+, 81% in DHITsig− GCB-DLBCL.

 DEL78 Expression of MYC and BCL2 by IHC Coexpression of BCL2 & MYC associated with inferior OS & PFS.

NGS

 Shipp et al.97 Gene expression in tumors Identifies patients within IPI risk groups with a greater probability of 
cure or dying of DLBCL.

 Reddy et al.9 Gene expression markers (COO, MYC, and 
BCL2) and 150 genetic driver genes

3 risk groups (low, medium, and high).

 Schmitz et al.7 Genetic abnormalities MCD and N1 subtypes with inferior outcomes; BN2 and EZB with 
favorable survival.

 Chapuy et al.8 Genetic abnormalities 5 genetic subsets with outcomes independent of IPI.

 Arthur et al.6 Genetic abnormalities FCGR2B overexpression associated with poor outcomes.

Sociodemographic

 Race100 African American vs. white vs. other African American race associated with inferior 5-year OS.

 SES101 Neighborhood SES by census-block group Lower SES associated with increased mortality risk.

 Residence103 Urban, metro, and rural residence location Urban and rural residence associated with inferior outcomes.

 Insurance status102 Private vs. Medicaid vs. no insurance Medicaid & no insurance associated with inferior outcomes.

 DTI104 Disease-to-treatment interval Shorter DTI associated with adverse clinical factors & worse 
outcomes.

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; ABC, activated B cell-like; ALC, absolute lymphocyte count; BCR, B cell receptor; COO, cell-of-
origin; DEL, double-expressor lymphoma; DHITsig, double-hit signature; DHL, double-hit lymphoma; DLBCL, diffuse large B-cell lymphoma; 
DTI, diagnosis-to-treatment interval; ECOG PS, Eastern Cooperative Oncology Group performance status; EFS, event-free survival; GCB, 
germinal center B cell-like; GEP, gene expression profiling; IHC, immunohistochemistry; IPI, International Prognostic Index; LDH, lactate 
dehydrogenase; LMR, lymphocyte/monocyte ratio; NCCN, National Comprehensive Cancer Network; NGS, next-generation sequencing; OS, 
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overall survival; ORR, overall response rate; OxPhos, oxidative phosphorylation; PFS, progression-free survival; R-IPI, revised IPI; SES, 
socioeconomic status; THL, triple-hit lymphoma; WBC, white blood cell count.
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Table 2.
International Prognostic Index variants.

Prognostic index Risk factors assessed Risk groups

IPI4 Age > 60 years
Ann Arbor stage III–IV
ECOG PS ≥ 2
Serum LDH level > 1× normal
> 1 extranodal site

0 or 1 risk factor: Low
2: Low intermediate
3: High intermediate
4 or 5: High

AA-IPI (age ≤ 60 years)4 Ann Arbor stage III–IV
ECOG PS ≥ 2
Serum LDH level > 1× normal

0 risk factors: Low
1: Low intermediate
2: High intermediate
3: High

R-IPI10 Age > 60 years
Ann Arbor stage III–IV
ECOG PS ≥ 2
Serum LDH level > 1× normal
> 1 extranodal site

0 risk factors: Very good
1 or 2: Good
3–5: Poor

NCCN-IPI12 Age, years
 > 40 to ≤ 60 (+1 to NCCN-IPI score)
 > 60 to ≤ 75 (+2)
 > 75 (+3)
Ann Arbor stage III–IV (+1)
ECOG PS ≥ 2 (+1)
Serum LDH level
 > 1× to ≤ 3× normal (+1)
 > 3× normal (+2)
Extranodal disease (+1)

Total score 0 or 1: Low
2 or 3: Low intermediate
4 or 5: High intermediate
6–8: High

Abbreviations: AA-IPI, age-adjusted IPI; ECOG PS, Eastern Cooperative Oncology Group performance status; IPI, International Prognostic Index; 
LDH, lactate dehydrogenase; NCCN-IPI, National Comprehensive Cancer Network IPI; R-IPI, revised IPI.
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Table 3.
Immunohistochemical classifiers for DLBCL.

IHC classifier Antibodies
in algorithm

COO subtypes
identified

Choi48 GCET1
MUM1
CD10
BCL6

FOXP1

GCB, non-GCB, ABC

Choi modified49 FOXP1
GCET1
CD10

MUM1

GCB, ABC

Hans44 CD10
BCL6

MUM1

GCB, non-GCB

Hans modified49 CD10
MUM1

GCB, non-GCB

Muris45 BCL2
CD10

MUM1

GCB, ABC

Natkunam46 LMO2 GCB, ABC

Nyman47 MUM1
FOXP1

ABC, Other

Tally49 CD10
GCET1
MUM1
FOXP1

GCB, ABC

Visco-Young50 CD10
FOXP1
BCL6

GCB, non-GCB

Abbreviations: ABC, activated B cell-like; COO, cell-of-origin; GCB, germinal center B cell-like; IHC, immunohistochemistry.
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Table 4.
Next-generation sequencing studies in DLBCL.

Study Methods n

Reddy et al.9 Transcriptome and whole-exome sequencing; 
functional genomic analysis using CRISPR screen

1,001 newly diagnosed DLBCL patients treated with rituximab-
containing therapies

Schmitz et al.7 Transcriptome and exome sequencing; DNA copy-
number analysis; targeted amplicon resequencing

574 DLBCL biopsy samples (transcriptome and exome sequencing); 
374 genes (amplicon resequencing)

Chapuy et al.8 Whole-exome sequencing; consensus clustering 304 primary DLBCLs

Arthur et al.6 Integrative analysis of whole genomes, exomes, and 
transcriptomes

491 DLBCL tumor/normal pairs not previously exposed to rituximab 
(whole genome sequencing) compared with whole-exome-
sequencing data from > 1,000 DLBCL cases

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; DLBCL, diffuse large B-cell lymphoma.
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