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Moving from drought hazard to impact forecasts
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Present-day drought early warning systems provide the end-users information on the
ongoing and forecasted drought hazard (e.g. river flow deficit). However, information on the
forecasted drought impacts, which is a prerequisite for drought management, is still missing.
Here we present the first study assessing the feasibility of forecasting drought impacts, using
machine-learning to relate forecasted hydro-meteorological drought indices to reported
drought impacts. Results show that models, which were built with more than 50 months of
reported drought impacts, are able to forecast drought impacts a few months ahead. This
study highlights the importance of drought impact databases for developing drought impact
functions. Our findings recommend that institutions that provide operational drought early
warnings should not only forecast drought hazard, but also impacts after developing an
impact database.
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rought is one of the most damaging natural hazards in

terms of affected people and economic cost!=3. Between

1900 and 2010, worldwide two billion people were
affected and more than 10 million people passed away, because of
the impacts of drought®#, Such damages and losses are expected
to become greater due to the projected increase of drought in
multiple regions across the world under global warming®. To
reduce drought impacts, actions have been undertaken including
the development of drought monitoring and early warning sys-
tems’ . Yet, present Drought Early Warning Systems (DEWSs)
only produce early warning signal on the drought as a natural
hazard, with encouraging skill for the first 3 months depending
on the region and season!0-13. These systems do not directly
translate the drought hazard into the occurrence and severity of
drought impacts. This missing tangible information, however, is
crucial for water managers, stakeholders, and policy makers to
better understand and prepare to drought!4.

Links between reported drought impacts and drought hazards,
derived from standardized meteorological drought indices, e.g.
Standardized Precipitation Index (SPI) and Standardized Pre-
cipitation Evaporation Index (SPEI), have been established in
previous studies!>~17. Here, we have conducted the first study
that is moving one step forward from reconstructing historical
drought impacts and associated risks!>!8 to forecasting drought
impacts, up to a lead time (LT) of 7 months ahead. Here, first we
developed drought impact forecasting functions for European
administration regions (Nomenclature of Units for Territorial
Statistics, NUTS-1)!° using reported drought impacts obtained
from the European Drought Impact Inventory from 1990 to 2017
(EDII?Y, Supplementary Fig. 2), time series of drought hazard
indicators from 1990 to 2017, and a Random Forest machine-
learning algorithm?!. Gridded meteorological observations of
precipitation and evaporation were used to simulate runoff with a
state-of-the-art hydrological model LISFLOOD!%22. These
observations and simulations were used to define the historical
drought hazard using the drought indices SPI?3, SPEI?4, and
Standardized Runoff Index (SRI%?), with different temporal
aggregation periods (1, 3, 6, and 12 months). Finally, the devel-
oped drought impact functions were then utilized to translate the
re-forecasted drought hazards through the set of drought indices
from January 2002 to December 2010 into drought impact
forecasts for certain sectors (impact categories) and each month
with LTs of up to 7 months ahead and for 15 ensemble members
(see Method section).

We show that the developed drought impact functions are
capable of forecasting drought impacts months in advance with
considerable skill up to 3-4 months, depending on the number of
reported impacts, drought hazard severity, and drought duration.
Models, that were trained using reported impacts for more than
50 months, generated high skill. The prediction has higher skill
for longer drought events than short ones.

Results

Grouping the drought impacts. The credibility of drought
impact functions developed with, for example, the Random Forest
method largely depends on the completeness of the drought
impact database. Model performance is therefore related to the
quality and availability of its underlying data, as it is a well-known
weakness of any data-driven approach2®. By nature droughts are a
rare phenomena, making it difficult to obtain enough drought
impact data for a data-driven approach. Even though, we used the
well-populated drought impact database, namely the EDII for
Germany, large differences between the German NUTS-1 regions
occur in frequencies and impact categories (Supplementary Fig. 1
and 2). For example, Bremen (HB) only reported water quality

impact while no other impact categories were reported. One
should note that HB is a city-state that has no forest and agri-
culture fields. To address this shortcoming, we grouped the
impacts into four groups to produce more robust drought impact
forecast functions: Group 1 consists of agriculture and livestock
farming, and forestry; Group 2 consists of energy and industry,
water-borne transportation, and public water supply; Group 3
consists of water quality, freshwater ecosystem, and terrestrial
ecosystem; and Group 4 consists of wildfire, air quality, and
human health and public safety (see Supplementary notes).

The skill of drought impact forecasts. Using the reported
impacts for the grouped drought impact categories and the
forecasted impacts obtained from the drought hazards derived
from the re-forecasted drought indices, we calculated the per-
formance of the developed drought impact functions trained
using all data from 1990 to 2017 for each of the German NUTS-1
regions (Fig. 1). The performance of drought impact functions is
indicated with the Relative Operating Characteristic (ROC)
score?” (see method section). For the shorter LTs, the drought
impact functions show a reasonable skill with ROC values above
0.7 (greenish color). For the longer LTs, the models do not show
any skill in most situations with ROC values below 0.5. Figure 1
confirms that the skill of drought impact forecasts resembles the
skill of drought hazard forecasts, which is in general up to
3-4 months in advancel%-13, In some regions, however, a certain
drought impact can be predicted 7 months ahead, as shown by
green colors, e.g. in Baden-Wiirttemberg (BW) and Brandenburg
(BB) for impact Group 2 and Group 3, respectively. This is
especially the case for situations where prolonged drought impact
periods were observed.

Figure 1 also shows for which impact groups and regions
impacts can be forecasted, which is associated with the availability
of reported impacts. In BW and Bavaria (BV), where they have
more than 120 months and 150 months of reported impact,
respectively, and have a wide variety of impact types (Supple-
mentary Fig. 2), the drought impact function can be built for 3
impact groups, with skill up to 4 months. Other regions, where
the reported impacts are less than 50 months, the drought impact
function can be developed only for 2 impact groups, with skill up
to 3 months. This indicates that the development of drought
impact functions and its skill is region-impact group specific, and
that it is strongly depended on the amount of reported impacts
and types (total 18 out of 64).

Re-forecasted likelihood of impact occurrence (LIO). To illus-
trate the potential of the developed drought impact forecasting
functions, we show examples of the re-forecasted likelihood of
impact occurrence (LIO) modeled for each month and every LT
for the German NUTS-1 region Rheinland-Pfalz (RP) and
Brandenburg (BB) for drought impact Groups 2 and 3, respec-
tively, which are closely linked to hydrological drought (Fig. 2).
Figure 2 shows that the drought impact forecast functions have
evoked impact signals in 2003 and 2006. The EDII, however, does
not report impacts for Group 2 in 2006 for RP and LT = 1 month
(Fig. 2a). This can be either a false alarm or an absence of
reported drought impacts. Prediction based on the median
ensemble for LT= 3 months does not show a signal anymore for
drought impact in 2006 for RP. The amplitude of the drought
impact signal for 2003 has also been decreased, but it is still
visible. On the other hand, drought impacts in Group 3 in 2003
and 2006 for BB can be predicted well with the strong signal up to
5 months in advance (Fig. 2b). Overall, signals become weaker
with increasing lead times and the uncertainty of the predictions
becomes larger, denoted by the wider red-shaded area around the
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median. This likely is related to the larger uncertainty in drought
hazard forecasting beyond 3 months!!-13,

Drought in 2003 and 2006 are well-known drought events in
Europe because of the impacts and its associated heatwaves28-30,
To check whether drought occurred in RP in 2006, we plotted the
drought events from 2000 to 2010 using SPI-6 and SRI-6 to
approach hydrological drought (see Supplementary Fig. 3 and
Supplementary notes). Our analysis using SPI-6 indicates that
severe droughts occurred at RP and BB in 2003, 2006, and 2008.
Supplementary Fig. 3 shows that the drought in 2006 likely has
triggered impacts in both regions. The 2006 drought in RP had a
high severity and long duration. Moreover, drought has occurred
in those regions since 2003 and precipitation events in 2005
might not have completely alleviated the hydrological drought
(e.g., drought in streamflow and groundwater). Therefore, we
anticipate that likely impact occurred, but was not reported for
RP in 2006 (Fig. 2a). Long drought duration from 2003 to 2006
produced a stronger and more robust hydrological drought
impact signal in 2006 for BB.

Figure 3a presents an example of the median forecasted LIO
using re-forecast data for each month with LT =1-7 months
ahead from January 2002 to December 2010 for the BB region
and drought impact Group 3 (blue lines). This figure illustrates
the result of drought impact forecasting as if it would be
encapsulated in a drought EWS. For no-drought conditions, the
forecast functions produce low LIO values. LIO values increase
before drought events indicating that drought impact can be
predicted a few months before. We also notice some high LIO
values but no drought was reported, i.e. the drought year 2008
and 20102831, which could trigger unneeded preparation
measures. However, there is a clear difference between high LIOs
that led to drought impacts in 2003 and 2006, with high LIOs that
did not result in no drought impact (2008 and 2010). In 2003 and
2006, the LIO values increase from LT > 1 months, and later these
gradually decrease after drought impact occurred. For 2008, the
drought impact forecast functions only produce rather low and

short-lived LIOs, whereas, for 2010, the functions generate a high
LIO for LT =1, but it sharply decreases for LT >1. When
interpreting the forecasted drought impact signal, this exhibits
first, that an increasing LIO from LT = 1 to LT>1 is more
important than a decreasing LIO. Second, a sharp decreasing LIO
indicates a low probability of an impact occurrence. The duration
of the drought events in 2008 and 2010 might also have been too
short to create a noticeable impact in this region, hence it causes a
steep decrease of the LIO for LT > 1.

We find that the duration of reported impacts plays an
important role in how many months ahead drought impacts can
be forecasted. For reported short-lived impacts, e.g. the 2003-
drought, the drought impact Group 3 for the BB region could be
forecasted 2 months Prior To (PT) the observed impact (PT =2,
Fig. 3b). For long-lived impacts, e.g. the 2006 drought, however,
the drought impacts that were reported in March 2006, were
already forecasted starting from 7 months ahead (September
2005, PT =7, red color Fig. 3c). For this particular drought event,
all forecasts done at different months prior to the start of the
reported impact show a similar pattern of increasing LIOs, which
started with increased LIOs from January 2006 onwards. Drought
impact forecasts for the BB region demonstrate that drought
impact can be forecasted 2 months before for shorter-lived
reported impacts.

Discussion

A subset of the EDIT20 was used to build statistical relationships
between drought hazards using drought indices and its reported
impacts, as a basis for drought impact forecasts. There are some
uncertainties in the impact dataset, which affect the overall per-
formance of developed drought impact functions. Previous stu-
dies have shown temporal and geographical biases in the EDII
inventory (Supplementary Fig. 2)2032. Moreover, reported
drought impact information used in this study may not cover all
drought events and impacts that actually happened, for every
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Fig. 2 Examples of the re-forecasted Likelihood of Impact Occurrence (LIO). The figures show the examples of the re-forecasted LIO for three selected lead
times (LT =1, 3, and 5 months) for selected German NUTS-1 regions, i.e. Rheinland-Pfalz (RP) for impact Group 2 (a), and Brandenburg (BB) for impact
Group 3 (b). The red line indicates the median re-forecasted LIO. The red-shaded area around the median indicates the ranges in which all ensemble
members fall. The gray bars indicate periods with reported impacts (EDII20)
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Fig. 3 lllustration of the median re-forecasted LIO obtained from a drought early warning system. a Example of the re-forecasted LIO and reported drought
impact (EDII, gray bars) for a German NUTS-1 region Brandenburg (BB) for the drought impact Group 3. Blue lines are the re-forecasted median LIO done
for each month from January 2002 to December 2010 with LT =1-7 months. b Detailed overview of the 2003 drought until July (impact forecasts start in
November 2002), indicated by a red box in (a). ¢ Detailed overview of the 2006 drought until May (impact forecasts start in September 2005), indicated
by a red box in (a). The various colored lines give the forecasted LIO done at different times prior to (PT) the observed drought impact period for
different LTs
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region. The lack of impact report in the database can either means
the absence of a drought impact or that a drought impact was not
reported in the EDIL Both possibilities can differ regionally due
to e.g. reporting behavior, affected sector or research interest of
past studies. The forecasted drought impact for the RP region in
2006 might be an example of no reported impact (Fig. 2a)
although the drought indices (e.g., SPI-6 and SRI-6) shows long
drought duration at this region (Supplementary Fig. 3a and b,
respectively). We suggest to consider the vulnerabilities and
exposure of the impacts in each studied region, which can provide
a good measure for drought impact forecasting®3.

We developed drought impact forecast functions including all
available hydro-meteorological drought indices with different
temporal accumulation periods (SPI-x, SPEI-x, and SRI-x, with x
=1, 3, 6, 12 months). The Random Forest algorithm was simply
used as a classifier without preceding predictor selection. This
means that we did not a priori exclude short accumulation per-
iods of meteorological drought indices (i.e., SPI-1 or SPEI-1) in
the Random Forest model as important predictors for hydro-
logical type of impacts, such as energy and industry, water-borne
transportation, and public water supply (Group 2) (also seen in
ref. 34). In our case, the best performing drought predictors are
region and impact group specific (see Supplementary Fig. 4 and
Supplementary notes). Our findings show that in general, SPEI
and SRI are better drought impact predictors than the SPI. Links
between accumulation periods of drought indices with certain
drought impacts suggest that short accumulation periods are best
associated with the meteorological type of drought impacts and
vice versa for the hydrological type of drought impacts3>3°,
Therefore, the Random Forest algorithm seems capable to dis-
tinguish these links, although it is a black box model. We used all
accumulation periods to develop the drought impact forecasting
functions. A priori selection of a number of accumulation periods
for a certain type of drought group might result into improved
impact forecasts, e.g. accumulation periods of 1 and 3 months for
agriculture, and accumulation periods of 6 and 12 months for
water-borne transportation, and public water supply.

We acknowledge that the performance of the drought impact
forecast functions depends on the completeness of its underlying
reported impact data. Besides Germany, drought impact forecast
functions may also be developed for other European regions,
which have sufficient drought impact data, such as the UK
(1855 reports), the Netherlands (219 reports), and France (525
reports)?%34. The European Drought Observatory’ and the
ANYWHERE Drought EWS are encouraged to develop and later
encapsulate the drought impact forecast functions for these
regions into their drought early warning systems since our study
shows that drought impacts can be forecasted a few months in
advance. Outside Europe, the US drought portal established by
Climate Prediction Center (NOAA)37 has the potential to develop
the drought impact functions by utilizing drought impact infor-
mation from the Drought Impact Reporter (DIR), launched by
the National Drought Mitigation Center (NDMC)38, In China,
drought impact forecast functions for agriculture impact could be
developed by using a seasonal hydrological forecasting system
that has been developed by ref. 3 and the agricultural drought
impact database collected by the China Meteorological Admin-
istration), However, this can only be done, if it appears that
sufficient drought impact data are available. Therefore, we high-
light the importance of an ample drought impact database for
developing drought impact functions. We encourage stakeholders
and water managers in each country to collect and collaborate in
providing comprehensive information on drought impacts.

Attempts to seasonal drought impact forecasting using
dynamic climate models in combination with deterministic
impact models (top-down approach) are already known for some

time for particular purposes, e.g. agricultural crop yields*!-44 or
navigation on main German rivers*>. Efforts are limited to spe-
cific crops, regions or rivers. Likely, a combination of a bottom-
approach, as described in this study, which has weaknesses in the
sense of completeness of impact reporting, with top-down
approaches is the best way forward on drought impact forecast-
ing. This is also advocated in climate change adaptation studies
(e.g., ref. 4). The top-down part of the combined approach for
drought impact forecasting could be broadened by implementing
experiences with integrated environmental modeling that are
being used for a wide range of scenario analyses*’, including
water resources systems*8:49,

This study is pioneering in linking reported drought impacts to
drought hazard forecasts. Drought impact forecast functions were
developed to predict the drought impacts with a lead-time of up
to 7 months ahead. Results from regions in Germany were used to
illustrate the forecasting. Our study demonstrates the importance
of comprehensive and complete drought impact databases and
the applicability of drought impact functions to forecast drought
impacts a few months in advance, depending on drought impact
duration. Therefore, we highly recommend the institutions that
provide operational drought early warning systems to encourage
developing a drought impact database and later to move one step
forward to provide drought hazard prediction as well as drought
impact forecasts. The information of predicted drought impacts
can be of great value for water managers, stakeholders, and policy
makers in understanding and planning drought management
responses in due time.

Methods

Data. A flowchart showing the data and methods used in this study is presented in
Supplementary Fig. 5. Three datasets were used in this study to develop the drought
impact forecasting functions: first, gridded meteorological data (box a, Supple-
mentary Fig. 5) and runoff data simulated by the LISFLOOD model fed by
observations (hereafter referred as proxy observed data, box d), second, re-forecast
hydro-meteorological datasets (box b and e), and third, reported drought impacts
taken from the European Drought Impact Inventory database (EDII, box c).

Information on drought impacts was extracted from the EDII database?’. This
is a database where thousands of reports on drought impacts (~10,000 reports) are
compiled from 33 European countries, which started as an initiative of the EU FP-7
project Drought RSPI. The information on drought impacts at German state level
from the EDII inventory was then transformed into a monthly binary time series of
impact and no impact for each impact category (box j). Please see ref. 20 for
detailed information on the EDII database.

A proxy of observed hydro-meteorological data was used to calculate drought
indices to represent the drought hazard. The proxy observed data (from 1990 to
2017) as well as re-forecast data (from 2002 to 2010), were provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF) as part of the
European Flood Awareness System (EFAS)22°0. In the EFAS, meteorological
observation data are collected from ground observations (>5000 synoptic stations),
obtained from various sources, such as the Global Telecommunication System of
the WMO, the Joint Research Center (JRC) meteorological database, and high-
resolution data received from the National member States institutions®!. These
meteorological data are precipitation, potential (reference) evapotranspiration rate
(PET) using the Penman-Monteith, potential evaporation rate from open water
and bare soil, and temperature. The re-forecasts of hydro-meteorological variables
have a lead-time of 215 days (circa 7 months) and consist of 15 ensemble
members®2. For this study, we used the re-forecast data run with ECMWF SEAS4.
Ref. 10 provides detailed information on proxy observed and re-forecasts data taken
from EFAS.

Standardized drought indices. Hydro-meteorological standardized drought
indices were used to identify the severity of the drought. These indices indicate the
degree of dryness by providing the deviation from the long-term mean, i.e. number
of standard deviations. In this study, we used the Standardized Precipitation Index
(SPI23), the Standardized Precipitation Evaporation Index (SPEI?4), and the
Standardized Runoff Index (SRI%) (box f). The SPI-x was calculated by fitting a
probabilistic distribution on monthly precipitation data, whereas the SPEI-x was
calculated by fitting a probabilistic distribution on the climatic water balance
(monthly precipitation minus potential evapotranspiration). The SRI-x was cal-
culated by fitting a probabilistic distribution on monthly runoff. In the present
study, SPI-x, SPEI-x, and SRI-x were calculated for the following accumulation
periods: x =1, 3, 6, and 12 months. The calculation of the standardized indices
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transforms the monthly hydro-meteorological data into 12 distributions for each
index, accumulation period, and for every month of the year. SPI and SRI were
calculated using the gamma distribution that can be described by two parameters: «
(the shape parameter) and f3 (the inverse scale parameter)2>2>, whereas SPEI was
calculated using the three-parameter log-logistic distributed variables , f8, and A
(origin parameters)?* (box g). The gamma distribution has quite a flexible shape
parameter, which is applicable to the wide range of accumulated precipitation in
EU>354, These distribution parameters then were used to calculate the observed
drought events (box h) and re-forecast drought events (box i). We used the same
data and method as in ref. > to calculate observed and forecasted drought events
using the standardized indices.

Drought impact function derived from random forest. Random Forest (RF) is a
Machine Learning algorithm that is based on classification and regression trees?!
and it is a powerful algorithm to develop a predictive model. Some studies have
utilized RF to monitor and predict meteorological drought hazard based on his-
torical data®0-58, References 1034 are the first that employed RF to link drought
indices and reports from the EDIIL These studies, however, have not used RF for
the drought impact forecasting. We selected RF amongst many other machine
learning algorithms because RF produces randomly numerous independent tress as
an ensemble to avoid overfitting and sensitivity to training data configuration (in
our case 2000 trees), the predictive performance of RF has similar performance as
the best-supervised learning algorithms, RF efficiently estimates the test error
without incurring the cost of repeated model training associated with cross-vali-
dation, RF is flexible and has very high accuracy, and last but not least RF has been
widely used for drought studies and produces better performance compared to
other Machine Learning approached (e.g., Boosted regression trees, cubist, decision
trees, Hurdle, and logistic regression!6-26:8),

The binary time series of the standardized drought indices (predictor variable)
together with the reported drought impacts (response variable) were used to
translate drought hazards into the likelihood of drought impact occurrences using
the RF algorithm?! (box k). A random forest model was created for every German
NUTS-1 region and a specific drought impact group. The Random Forest creates a
multitude of randomly uncorrelated decision trees. Each tree is constructed based
on a bootstrapped subsample of the data. Predictions are made by the mean
prediction of the individual trees. The Random Forest method was performed
using the Random Forest package in R studio®®. There was no prior predictor
selection in the Random Forest algorithm and therefore we used SPI-x, SPEI-x,
SRI-x, month, and year as the predictors. To identify the best set of drought
indicators linked to the impact occurrences, the Caret feature was used®. This
feature uses the prediction accuracy on the out-of-bag portion for both the full
models and after permuting each predictor variable. The differences between the
two models were then averaged over all trees, and normalized by the standard
error. We assessed the descriptive power of the model using observational data
from 1990 to 2017. For this analysis, the models were trained on a subset of
observed data from 1990 to 2017. The observed data from 1990 to 2015 were used
for testing purposes and the validation was carried out using data from 2016 to
2017 and the EDII reports. In our manuscript, however, we only presented the
drought impact forecasts from 2002 to 2010 (reforecast data) simulated using the
models that were trained using historical observed data from 1990 to 2017.
Likelihood of Impact Occurrence (LIO) was estimated by calculating the
probability of the number of tress (Ni) that indicated impact. For each NUTS-1
region in Germany and for each impact group, drought impact functions were
derived using the Random Forest analysis based on the standardized drought
indices using proxy hydro-meteorological data and drought impact time series (box
1). The Random Forest algorithm used to build drought impact forecasting
functions is explained in more detail in refs. 1634, These functions were then used
to predict drought impacts using re-forecasted drought indices (box m).

The drought impact forecasting skill score. The skill of the drought impact
forecasts was evaluated by comparing the re-forecasted drought impact against the
observed drought impacts taken from the EDII database for the period 2002 to
2010 (box n). Time series of the observed impacts and re-forecasted drought
impacts were therefore translated into binary time series of impact or no impact
occurrence for the calculation of drought impact forecasting skill score. The skill/
performance of the developed drought impact functions to forecast drought
impacts was assessed using a commonly used method called the Relative Operating
Characteristic (ROC)?’. This skill score has been used among many studies dealing
with probabilistic forecasts!’>13. The ROC curve was used as a criterion to measure
the discriminate ability between two outcomes. The ROC curve gives the relation
between the true positive rate (sensitivity) and the false positive rate (specificity).
The Area Under the Curve (AUC) was calculated to measure the accuracy of the
forecast. The larger the area, the more accurate the forecast will be. The AUC has a
range from [1,0] where 1 is a perfect score. All values beneath AUC = 0.5 indicate
no skill. A color-coding was applied to divide the forecast skill into 4 categories.
Red color stands for fail (ROC < 0.5), orange color stands for poor performance
(0.5 <ROC <0.7), light green color stands for fair performance (0.7 <ROC <0.8),
and green color stands for good performance (ROC > 0.8)01.

Data availability

The historical forcing data and seasonal re-forecasts from EFAS are accessible through
the MARS archive at ECMWF (https://apps.ecmwf.int/mars-catalogue/?class=c3) under
a COPERNICUS open data license. Other data generated and/or analyzed during this
study are available from the corresponding author on request (S.J.S.).

Code availability
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