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Abstract

Statistics GST′  and Jost’s D have been proposed for replacing FST as measures of genetic 

differentiation. A principal argument in favour of these statistics is the independence of their 

maximal values with respect to the subpopulation heterozygosity HS, a property not shared by FST. 

Nevertheless, it has been unclear if these alternative differentiation measures are constrained by 

other aspects of the allele frequencies. Here, for biallelic markers, we study the mathematical 

properties of the maximal values of GST′  and D, comparing them to those of FST. We show that 

GST′  and D exhibit the same peculiar frequency-dependence phenomena as FST, including a 

maximal value as a function of the frequency of the most frequent allele that lies well below one. 

Although the functions describing GST′ , D, and FST in terms of the frequency of the most frequent 

allele are different, the allele frequencies that maximize them are identical. Moreover, we show 

using coalescent simulations that when taking into account the specific maximal values of the 

three statistics, their behaviours become similar across a large range of migration rates. We use our 

results to explain two empirical patterns: the similar values of the three statistics among North 

American wolves, and the low D values compared to GST′  and FST in Atlantic salmon. The results 

suggest that the three statistics are often predictably similar, so that they can make quite similar 

contributions to data analysis. When they are not similar, the difference can be understood in 

relation to features of genetic diversity.
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1 INTRODUCTION

Assessing the level of genetic differentiation among subpopulations is a fundamental topic 

in population genetics, molecular ecology, and conservation genetics. Genetic differentiation 

is used, for example, to detect genes under natural selection in different subpopulations 

(Lewontin & Krakauer, 1973), to quantify effects of gene flow and hybridization (Slatkin, 

1993), and to detect effects of population fragmentation and to provide conservation 

recommendations (Frankham, Ballou, & Briscoe, 2002).

For decades, genetic differentiation has been measured most often using Wright’s fixation 

index FST (Wright, 1951). In an informative framework provided by Nei (1973), an additive 

partition divides the total heterozygosity HT into a within-subpopulation component, HS, 

and an among-subpopulation component, DST:

HT = HS + DST .

From DST, Nei derived the measure of differentiation

FST =
DST
HT

. (1)

Because the Wahlund effect (Wahlund, 1928) mathematically ensures that HT ≥ HS (as a 

consequence of the Cauchy-Schwarz inequality, Rosenberg & Calabrese, 2004), FST is 

restricted to lie in the unit interval from 0 to 1. Consequently, FST values are often 

interpreted using a scale from 0 to 1; for example, Wright (1978, p. 85) described the range 

0.15–0.25 as indicating “moderately great differentiation,” and the range 0.25–1 as 

indicating “very great differentiation.”

Many studies, however, challenge this common interpretation of FST. It has been shown that 

the maximal FST for a specific locus is not always one, but a smaller value that varies with 

aspects of the genetic diversity at a locus, as measured by HS (Balloux, Brunner, Lugon-

Moulin, Hausser, & Goudet, 2000; Hedrick, 1999, 2005; Hedrick & Kalinowski, 2000; Jost, 

2008; Long & Kittles, 2003; Maruki, Kumar, & Kim, 2012), HT (Edge & Rosenberg, 2014; 

Jakobsson, Edge, & Rosenberg, 2013), or other allele frequency statistics (Alcala & 

Rosenberg, 2017; Rosenberg, Li, Ward, & Pritchard, 2003). Consequently, interpreting FST
values requires consideration of the value of HS or other summary statistics rather than a 

fixed scale.

Some have proposed ways of addressing this perceived flaw of FST. Wang (2015) suggested 

assessing if FST values at a set of loci are influenced by HS by testing for a significant 

correlation between the two statistics. A significant correlation is interpreted as indicating 

that FST is constrained by HS values rather than reflecting the level of genetic differentiation 
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among populations. Although this test is promising for avoiding misinterpretations of FST
(Whitlock, 2015), frameworks are still needed for interpretation of FST in cases with a 

significant correlation between FST and HS.

Others have proposed replacing FST by an alternative genetic differentiation measure whose 

maximal value does not depend on HS. Hedrick (2005) proposed standardizing FST by its 

maximum value given the observed value of HS and the number of subpopulations FST,max = 

[(K − 1)(1 − HS)]/(K − 1 + HS). The resulting measure, denoted GST′ , is defined as:

GST′ =
FST

FST,max
. (2)

In a provocative and influential paper, Jost (2008) proposed another measure of genetic 

differentiation, relying on alternative measures of genetic diversity, the “effective numbers of 

alleles” within and among populations, denoted respectively by ΔS = 1/(1 − HS) and ΔT = 

1/(1 – HT), rather than within- and among-population heterozygosities HS and HT. He also 

advocated the use of a multiplicative partition of genetic diversity,

ΔT = ΔSΔST,

rather than the additive partitioning used in the derivation of FST. Considering a context 

applicable for any value for the number of distinct alleles, though proposed primarily for 

multiallelic markers, Jost then derived a new differentiation measure, denoted D, by 

normalizing 1/ΔST to lie between 0 and 1:

D = K
K − 1 1 − 1

ΔST
.

Jost’s D can also be expressed using heterozygosities:

D = K
K − 1

HT − HS
1 − HS

. (3)

For convenience, we henceforth use D to indicate Jost’s D as in Equation 3.

GST′  and D are statistics whose maxima are not constrained by HS in the sense that 

irrespective of the value of HS, they can range from 0 to 1. This property, however, does not 

ensure that they are unconstrained by other aspects of allele frequencies. In particular, recent 

studies have highlighted a dependence of the maximal FST on the frequency M of the most 

frequent allele in the total population at a locus.
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Rosenberg et al. (2003, Equation 8) showed that for biallelic markers and two 

subpopulations, the maximum FST decreases monotonically from 1 to 0 as a function of M 

(see also Maruki et al., 2012). Jakobsson et al. (2013) showed that for a value of M chosen 

uniformly between 0 and 1, the mean maximum FST is approximately 0.3585; this 

maximum can be even lower if the number of alleles at the locus is specified (Edge & 

Rosenberg, 2014). For biallelic loci, Alcala and Rosenberg (2017) generalized these results 

to the case of an arbitrary number of subpopulations K. We showed that FST continues to 

have a maximum less than 1 irrespective of the value of M, with exceptions only at finitely 

many choices for M.

Here, we show that despite the emphasis of the derivations of GST′  and D on eliminating the 

dependence of maximal values on HS, both quantities, like FST, have maxima less than 1 

when considered as functions of M. We derive the maximum and minimum values of GST′

and D in terms of M, for a biallelic marker and an arbitrary number of subpopulations K. We 

then compare the mathematical constraints on GST′  and D with analogous constraints on FST
from Alcala and Rosenberg (2017), as functions of the number of subpopulations K. We 

simulate the joint distributions of M and GST′  and of M and D, describing how GST′  and D 

values are distributed between their minimum and maximum values as functions of the 

migration rate and the number of subpopulations in an island migration model. We apply our 

results to show how they explain discrepancies among FST, GST′ , and D in two empirical 

examples: the population structure of wild North American wolves and that of Atlantic 

salmon. We use our results to provide recommendations on the use of the three statistics.

2 MATERIALS AND METHODS

Our goal is to derive the minimum and maximum values GST′  and D can take as functions of 

the frequency M of the most frequent allele for a biallelic marker, when the number of 

subpopulations K is a fixed finite value greater than or equal to 2. Following similar 

derivations for FST (Alcala & Rosenberg, 2017), we consider a polymorphic locus with two 

alleles, A and a, segregating in a total population subdivided into K subpopulations that all 

contribute equally to the total. We denote the frequency of allele A in subpopulation k by pk. 

The frequency of allele a in subpopulation k is 1 - pk. Each allele frequency pk lies in the 

interval [0,1].

The mean frequency of allele A across the subpopulations is M = (1/K)∑k = 1
K pk,, and the 

mean frequency of allele a is 1 - M.

We assume that allele A is the more frequent allele in the total population, so that M ≥ 1/2 ≥ 

1 − M. Because by assumption the locus is polymorphic, M ≄ 1. We denote the mean 

squared frequency of allele A across the subpopulations by S = (1/K)∑k = 1
K pk

2 .We assume 

that the allele frequencies M and pk are parametric allele frequencies of the total population 

and subpopulations, and not estimated values computed from data. In addition, we adopt an 
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interpretation of FST, GST′ , and D as “statistics” that provide mathematical descriptions of 

the apportionment of alleles among subpopulations, rather than as “parameters” of an 

implicit or explicit population-genetic model (Nei, 1986). For this study, the “statistic” 

interpretation of differentiation measures is favored because it enables descriptions of the 

relationships of FST, GST′ , and D with other “statistics” such as the frequency M of the most 

frequent allele. It also permits evaluation of the relative impact on resulting values of FST, 

GST′ , and D of mathematical relationships between statistics–which we interpret as 

mathematical “constraints”–separately from the impact of population-genetic models.

3 RESULTS

3.1 Mathematical constraints on FST, GST′ ,, and D

3.1.1 FST, GST′ ,, and D as functions of M—Equations 2 and 3 express GST′  and D as 

functions of the within- and among-subpopulation heterozygosities HS and HT. We express 

GST′  and D as functions of allele frequencies by substituting into Equations 2 and 3 the 

expressions for HS and HT (Nei, 1973):

HS = 1 − 1
K ∑

k = 1

K
pk

2 − 1
K ∑

k = 1

K
1 − pk

2, (4)

HT = 1 − M2 − (1 − M)2 . (5)

HS simplifies to HS = 2(M − S), and HT to HT = 2M(1 − M). Because we assume a 

polymorphic locus, 0 ≤ HS < 1 and 0 < HT < 1. We obtain:

FST = S − M2

M(1 − M) , (6)

GST′ =
(K − 1 − 2S + 2M) S − M2

(K − 1)(1 + 2S − 2M)M(1 − M) , (7)

D =
2K S − M2

(K − 1)(1 + 2S − 2M) . (8)

For a given value of M, we search for the values of p1, p2, …, pK that minimize and 

maximize GST′  and D across all possible sets of allele frequencies that produce mean 

frequency M for its most frequent allele. The minimal and maximal FST as functions of M 

are known from Alcala and Rosenberg (2017). We show in Appendix A that the minimal 

values of FST, GST′ ,, and D all equal 0 irrespective of M, for any value of the number of 
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subpopulations K, and that this minimum is reached when alleles have the same frequency in 

all subpopulations: p1 = p2= … = pK = M.

3.1.2 Maximal values of FST, GST′ ,, and D—From Alcala and Rosenberg (2017, 

Equation 5), letting x  denote the greatest integer less than or equal to x and writing 

x = x − x ,, the maximum of FST in terms of M is:

FST ≤ KM + KM 2 − KM2

KM(1 − M) . (9)

The derivations of the maxima of GST′  and D in terms of M proceed in three steps. (a) We 

show in Appendix B that GST′  and D are increasing functions of S. (b) We employ Theorem 

1 from Alcala and Rosenberg (2017), which provided the maximal S in terms of M used to 

obtain the maximal FST in terms of M (Alcala & Rosenberg, 2017, Equation 6). This 

theorem shows that S ≤ KM + KM 2 /K,, with equality requiring the most frequent allele 

to have frequency 1 or 0 in all subpopulations except at most one. (c) From (a) and (b), the 

maximal GST′  and D in terms of M are obtained by substituting the maximal S into Equations 

7 and 8:

GST′ ≤
[K(K − 1) + 2 KM (1 − KM )] KM + KM 2 − KM2

K(K − 1)[K − 2 KM (1 − KM )]M(1 − M) , (10)

D ≤
2K KM + KM 2 − KM2

(K − 1)[K − 2 KM (1 − KM )] . (11)

Interestingly, this derivation implies that for fixed M, FST, GST′ , and D are maximal under the 

same conditions: when the most frequent allele has frequency 1 or 0 in all except possibly 

one subpopulation, so that the locus is polymorphic in at most a single subpopulation. Thus, 

FST, GST′ , and D are all maximal when fixation is achieved in as many subpopulations as 

possible.

3.1.3 Comparison of the maximal values of FST, GST′ ,, and D—Figure 1 shows the 

maximal values of FST, GST′ , and D in terms of M for various values of K. These maximal 

values have shared properties. FST (Alcala & Rosenberg, 2017, p. 1583), GST′  (Supporting 

Information File S1.1), and D (Supporting Information File S1.2–S1.4) all have peaks at 

values i/K, where i is an integer ranging in K
2 , K − 1 , where it is possible for the allele to 

be fixed in all K subpopulations. The maximum, treated as a function of M, is not a 

differentiable function at the peaks i/K (Supporting Information File S1.5); it is smooth and 

strictly below one between them (Supporting Information File S1.1 and S1.2). If K is even, 
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then the maximal value has a local maximum at M = 1/2, whereas if K is odd, then M = 1/2 

is a local minimum (Supporting Information File S1.3).

The maximal values for the three statistics also have distinct properties. From Alcala and 

Rosenberg (2017, p. 1583), the peaks of the maximal FST reach one; the peaks of the 

maximal GST′  also reach one (Supporting Information File S1.1), whereas the peaks of the 

maximal D are lower than 1, except if K = 2 (Supporting Information File S1.2). These 

peaks reach KHT/(K − 1) = 2KM(1 − M)/(K − 1) (Supporting Information File S1.4). 

Consequently, FST and GST′  are only unconstrained within the unit interval for finitely many 

values of the frequency M of the most frequent allele, and D is only unconstrained for a 

single combination of values of K and M, namely (K, M) = (2, 1/2).

For K = 2, the maximal FST, GST′ , and D values are similar (Figure 1a–c): the maximum is 1 

at M = 1/2, decreasing monotonically to 0 at M = 1. The maximal GST′  is the highest of the 

statistics for all M (Appendix C); as a result, GST′  is the least constrained measure. The 

maximal D exceeds the maximal FST for M < 3/4 and is lower for M > 3/4 (Appendix C). 

Hence, D is less constrained than FST for lower M but more constrained for higher M.

The number of subpopulations K has different effects on the maximum values of FST, GST′ , 

and D. The maximum of GST′  tends to 1 when K → ∞ (Figure 1b,e,h,k,n and Supporting 

Information File S1.2), similarly to that of FST (Figure 1a,d,g,j,m; Alcala & Rosenberg, 

2017); thus, constraints of M on the values of GST′  disappear as K increases. By contrast, the 

maximal value of D tends to 2M(1 − M) = HT when K → ∞ (Figure 1c,f,i,l,o, and 

Supporting Information File S1.7): thus, constraints imposed by M on the values of D 
remain strong for all K.

3.1.4 Comparison of the range of possible values of FST, GST′ , and D—We can 

summarize how much M constrains the range of GST′  and D compared to FST by computing 

as functions of the number of subpopulations AG(K) and AD(K), the mean maximal GST′  and 

D across all possible values of M. AG(K) gives the area between the minimal and maximal 

values of GST′  as a function of M divided by the length of the domain of possible M values, 

1/2. This quantity is useful for comparing results with previous work on the constraints of 

FST (Alcala & Rosenberg, 2017; Edge & Rosenberg, 2014; Jakobsson et al., 2013). Values 

of AG(K) near one indicate that GST′  can range between 0 and 1 for most values of M, 

whereas small values indicate that GST′  values are constrained to a small interval. AD(K) and 

AF(K) describe corresponding computations for D and FST.

From Alcala and Rosenberg (2017, Equation 8), AF is:
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AF(K) = 1 − K + 2(K + 1)lnK − 4
K ∑

i = 2

K
ilni . (12)

We compute AG(K) and AD(K) from the upper bounds derived in the previous sections. 

Because the lower bound on GST′  and D is 0 for all M between 1/2 and 1, AG(K) and AD(K) 

correspond to the areas under their respective maximal values divided by 1/2, or twice the 

integrals of Equations 10 and 11 over M. We compute AG(K) in Supporting Information File 

S2.1 and AD(K) in Supporting Information File S2.3:

AG(K) = 1 − ∑
i = 1

K − 1
h1(K, i)arctan 1

2K − 1 + ∑
i = 1

K − 1
h2(K, i)log i

i + 1 (13)

AD(K) = 1 − 2 2K − 1
3 arctan 1

2K − 1 , (14)

where functions h1 and h2 follow Equations S2.6 and S2.7 in Supporting Information File 

S2.

In Figure 2, we compare AG(K) and AD(K) to the area between the minimal and maximal 

FST as functions of M (Alcala & Rosenberg, 2017, Equation 9), denoted AF. We can see in 

the figure that AG is greater than AF for all K, particularly when K is small, whereas AF and 

AG are similar for large K. Thus, GST′  is less constrained than FST by M when the number of 

subpopulations is small, and GST′  and FST are comparably constrained when it is large. AD is 

seen to be lower than both AF (except at K = 2) and AG, and thus, D is more constrained 

than the other two measures.

The pattern of change in AD(K) as a function of K is distinct from those of AF(K) and 

AG(K). AD(K) decreases with K (Supporting Information File S2.4), whereas AF(K) 

increases with K for all K ≥ 2 (Alcala & Rosenberg, 2017, Theorem 3), and AG(K) increases 

with K at least for K ranging from 2 to 10,000 (Supporting Information File S2.2). As K 
becomes large, AD tends to 1/3, whereas AF approaches 1 (Alcala & Rosenberg, 2017, 

Equation 9), as does AG (Supporting Information File S2.2). Thus, unlike FST and GST′ , D 

does not have a mean range extending over the whole unit interval when K is large. On the 

other hand, of the three statistics, AD(K) has the least change as a function of K, decreasing 

from (9 − π 3)/9 ≈ 0.39540 to 1/3 (Figure 2), whereas AF(K) increases from 2 log 2 − 1 ≈ 
0.38629 to 1 and AG(K) increases from (3–2 log 2)/3 ≈ 0.53790 to 1. Thus, the constraint 

imposed by M on D is more consistent across values of K than are the constraints on the 

other two measures.
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3.2 Simulation-based distributions of FST, GST′ , and D

To illustrate the mathematical properties of differentiation measures FST, GST′ , and D in the 

context of evolutionary models, we simulated the joint distribution of each quantity with M 
under an island migration model, and we compared the distribution to the mathematical 

minima and maxima of the statistics. This analysis considers allele frequency distributions 

generated by evolutionary models, rather than treating M as uniformly distributed in [1/2,1).

We simulated independent single-nucleotide polymorphisms (SNPs) under the coalescent 

using the protocol of Alcala and Rosenberg (2017). Using the software ms (Hudson, 2002), 

we simulated a population of total size KN diploid individuals subdivided into K 
subpopulations of equal size N, with migration following the finite island model 

(Maruyama, 1970; Wakeley, 1998) with migration rate m in each direction between each 

pair of subpopulations. We examined three K values (2, 7, 40) and three 4Nm values (0.1, 1, 

10). We simulated conditional on producing one segregating site in each simulation. For 

each parameter pair (K,4Nm), we performed 100,000 replicate simulations, sampling 100 

lineages per subpopulation (corresponding to 50 diploid individuals) in each replicate. MS 

commands appear in Supporting Information File S3. Because we do not investigate 

estimation of allele frequencies from data, FST, GST′ , and D values were computed assuming 

that the empirical allele frequencies were parametric allele frequencies.

3.2.1 Weak migration for K = 2—As shown by Alcala and Rosenberg (2017), and seen 

here in Figure 3a, for K = 2, under weak migration (4Nm = 0.1), the joint density of M and 

FST is greatest near the maximum of FST as a function of M. We can see in Figure 3b,c that 

the joint densities of M and GST′  and of M and D are also highest near their respective 

maxima as functions of M. For the three statistics, most loci have M near 1/2, indicating that 

one allele is fixed in one subpopulation and the other is fixed in the second subpopulation, 

and FST, GST′ , and D are near 1 (orange areas in Figure 3a–c). The mean FST, GST′ , and D 

values in sliding windows for M (red dashed lines in Figure 3a–c) closely follow their 

respective maxima. Because the maximal values of the three statistics are similar for K = 2, 

the joint densities are also similar.

The conditions under which the maximal values of FST, GST′ , and D are reached provide an 

explanation of these observations. We showed that the maximal values of the three statistics 

are reached under the same condition–when alleles are fixed in one or sometimes both 

subpopulations. Under weak migration, we expect the derived allele to be trapped in its 

subpopulation of origin, and the ancestral allele to be fixed in the other subpopulation. This 

situation matches the conditions under which FST, GST′ , and D reach their maximal values as 

functions of M.

3.2.2 Intermediate migration for K = 2—For K = 2, under intermediate migration 

(4Nm = 1), the joint densities of M and FST, M and GST′ , and M and D are the highest 

between their respective minimum and maximum values as functions of M (Figure 3d–f). 
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The mean FST, GST′ , and D values in sliding windows for M are almost equidistant from the 

minimal and maximal values, approaching closer to the maximum when M nears 1 (red 

dashed line in Figure 3d–f).

Under intermediate migration, we expect the derived allele to segregate into the two 

subpopulations, but to still be at higher frequency in its subpopulation of origin. 

Consequently, the condition under which FST, GST′ , and D reach their maximum as a 

function of M is not attained. The condition under which the statistics reach their minimum–

equal allele frequencies in all subpopulations–is not expected to be attained either, resulting 

in FST, GST′ , and D between their minimum and maximum values.

3.2.3 Strong migration for K = 2—Continuing with K = 2, under strong migration 

(4Nm = 10), the three joint densities are the highest near their respective minima as 

functions of M (Figure 3g–i). The mean FST, GST′ , and D in sliding windows for M are near 

their minimal values (red dashed line in Figure 3g–i).

Under strong migration, we expect the derived allele to segregate into the two 

subpopulations approximately at the same frequency. Consequently, the condition under 

which FST, GST′ , and D reach their minima as functions of M–equal allele frequencies in all 

subpopulations–is attained.

3.2.4 Weak, intermediate, and strong migration for K > 2—For K = 7, the joint 

densities of M and FST, M and GST′ , and M and D follow a similar pattern to that seen for K 

= 2: the densities lie near the maximal value of their statistics under weak migration, 

between the minimum and maximum under intermediate migration, and near the minimum 

under strong migration (Figure 4). Under weak migration, most loci have M near 4/7, 5/7, or 

6/7, indicating allele fixation in all subpopulations. Nevertheless, because the maximal 

values of the three statistics differ greatly, their values under weak migration are quite 

different: most loci have FST ≈ 1 and GST′  ≈ 1, but D < 0.5.

For K = 40, the joint densities also lie near the maximum under weak migration, between the 

minimum and maximum under intermediate migration, and near the minimum under strong 

migration (Supporting Information Figure S1). Under weak migration, loci have M values 

that range from 1/2 to 1. Because the maxima of FST and GST′  are similar, their values under 

weak migration are also similar: most loci have FST ≈ 1 and GST′  ≈ 1. By contrast, D < 0.5.

Interestingly, comparing the densities of M and D under weak migration as a function of K, 

we can see that the values of D are more weakly influenced by K (Figures 3c, 4c, and 

Supporting Information Figure S1C). By contrast, the values of FST and GST′  are more 

strongly influenced by K (Figures 3a, 4a, and Supporting Information Figure S1a and 

Figures 3b, 4b, and Supporting Information Figure S1b).
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3.2.5 Proximity of FST, GST′ , and D to their maximum values—To measure the 

impact of evolutionary processes on FST, GST′ , and D values and to summarize Figures 3 and 

4 and Supporting Information Figure S1, we quantified the proximity of the joint densities of 

M and FST, M and GST′ , and M and D to their maximum value as a function of M across a 

range of migration rates and numbers of subpopulations.

We denote by FST, GST′ , and D, and D the mean values of FST, FST, GST′ , and D across a set 

of Z loci, respectively. To be precise, these means are obtained by computing Fz, G’z, and 

Dz–the values of FST, GST′ , and D for biallelic loci z—for each z from 1 to Z, and averaging 

Fz, Fz, Gz′, and Dz across the Z loci (Equations D1 and D2 in Appendix D). The 

corresponding mean maximal FST, GST′ , and D across the Z loci are denoted 

Fmax, Gmax′ , and Dmax. They are computed by substituting the observed frequency Mz of the 

most frequent allele at loci z = 1, 2, …, Z into the expression for the maximal FST (Equation 

9), GST′  (Equation 10), and D (Equation 11), and averaging the values over the Z loci 

(Equations D3 and D4 in Appendix D). We computed FST/Fmax, GST′ /Gmax′ ,, and D/Dmax,, 

which we describe as normalized statistics, across a range of values of K (2, 10, and 100) 

and scaled migration rates (0.01–100; Figure 5).

Interestingly, for a fixed 4Nm, ratios are similar for the three measures across all values of K 
(Figure 5b). The largest difference between FST and GST′  values is 0.07 and is reached when 

4Nm = 1; the largest difference between D and GST′  is 0.06, also when 4Nm = 1. Thus, all 

three measures provide similar information once their mathematical constraints are taken 

into account.

3.3 Application to data

We now use two SNP data sets to illustrate how our findings can explain patterns in genomic 

data.

3.3.1 K = 2: wolf and dog—The first data set (Cronin, Cánovas, Bannasch, Oberbauer, 

& Medrano, 2015) consists of samples from 305 North American wild wolves (Canis lupus) 
and 91 dogs (Canis familiaris; 36 mixed-breed dogs, 53 poodles, one Australian shepherd, 

and one Border collie). The wolves and dogs are typed at 123,801 biallelic loci. This 

example illustrates the dependence of the constraints of the differentiation measures on M 
when performing pairwise comparisons.

The joint densities of M and FST, M and GST′ , and M and D appear in Figure 6a–c. Most loci 

have relatively large values of M, for which the differentiation statistics are tightly 

constrained. As we saw using coalescent simulations (Figure 3), values of FST, GST′ , and D 

are globally close; GST′  values are the largest of the three measures for all M, D exceeds FST
for intermediate M, and FST exceeds D for high M.
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In addition, we can see in Figure 6D that normalizing the mean FST, GST′ , and D increases 

their values considerably. As we observed in the simulations (Figure 5), GST′  values are 

slightly closer to their maxima than are FST and D values.

3.3.2 K > 2: Atlantic salmon—The second data set consists of 900 Atlantic salmon 

(Salmo salar) sampled from 26 populations (Bourret et al., 2013) and typed at 1,335 biallelic 

loci. This example illustrates the constraints of the measures when many subpopulations are 

considered.

The joint densities of M with FST, GST′ , and D appear in Figure 7a– c. As was seen in 

coalescent simulations (Figure 4), values of FST and GST′  are close, with larger GST′  ; D 

values are lower than both FST and GST′  for all M.

Figure 7d,e illustrate the impact of the number of subpopulations on values of FST, GST′ , and 

D. The figure represents the mean FST, GST′ , and D values across loci for sets of K salmon 

subpopulations among the 26 subpopulations, for K ranging from 2 to 26. For computational 

simplicity, when the number of possible sets exceeded 10,000, we randomly chose without 

replacement 10,000 sets to compute the three measures. We can see in Figure 7d that the 

values of FST and GST′  depend more strongly on the value of K, whereas the values of D are 

weakly affected by K. In addition, we can see in Figure 7e that even though the mean values 

of D are smaller than those of FST and GST′ , they are comparably close to the maximum 

value as the means of FST and GST′ . Also, as we showed with coalescent simulations (Figure 

5), GST′  values are slightly closer to their associated maximal values than are D and FST.

4 DISCUSSION

We have shown that for biallelic markers and arbitrary numbers of subpopulations K, the 

maximal values of GST′  and D are both lower than 1 for most frequencies M of the most 

frequent allele. We have described the properties of the maximal values of GST′  and D as 

functions of M, and compared them with that of FST. We have shown that GST′  is the least 

constrained by M, and that D is the most constrained. Despite these differences, the allele 

frequencies that minimize and maximize GST′  and D are the same. Using coalescent 

simulations and two data examples, we have shown that values of FST, GST′ , and D 

normalized by their respective maxima given M are more similar to each other than are their 

unnormalized counterparts.

Contrary to the claim of Jost (2008), D does not eliminate all counterintuitive phenomena 

observed with FST: we exhibit domains of M under which the maximal D is well below 1. 

One possible explanation of this discrepancy is that examples in Jost (2008) focused on 

cases with either many alleles or K = 2 subpopulations, whereas we find strong constraints 

on D in the case of a biallelic marker and K > 2. Moreover, despite the strong arguments of 
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Jost (2008) about the importance of “mathematical misconceptions” underlying the 

construction of FST, we find that FST, GST′ , and D have similar behaviour once we account 

for their respective maximal values as functions of M. Note that because HT = 2M(1 − M) 

for biallelic markers, M uniquely specifies HT and HT uniquely specifies M; thus, our results 

describing constraints on FST, GST′ , and D as functions of M can also be viewed as 

constraints as functions of HT.

Although GST′  and D are not constrained by the value of the within-subpopulation 

heterozygosity HS, we have shown that both statistics are constrained by allele frequencies 

in other ways. It does not follow that a measure that has no constraints in terms of HS has no 

constraints at all; the differentiation measures that have been proposed to supplant FST
present some degree of constraint in terms of M or HT and are thus subject to analogous 

criticism. Possibly, any differentiation measure would possess some constraint. This result 

accords with the conclusion of Meirmans and Hedrick (2011) that a summary statistic 

unconstrained in relation to all aspects of allele frequencies probably does not exist.

Focusing on the frequency M of the most frequent allele enables a coalescent interpretation 

of constraints on differentiation statistics. In a coalescent framework, for a locus at which 

alleles arise as unique mutations, fixing M corresponds to fixing the number of sampled 

lineages containing an allele, inducing a distribution of the time depth at which a mutation 

arose. Genetic differentiation statistics conditional on different values of M can then be 

viewed as examining constraints on differentiation for loci whose alleles have originated at 

different times. In this coalescent interpretation, normalization by the maximum value given 

M enables comparisons of the values of the statistics irrespective of the depth at which a 

mutation appeared in the gene tree. Thus, both the values of differentiation statistics 

conditionally on M and the values of those statistics normalized by their maxima given M 
are potentially useful in disentangling the relative impacts of ancient and recent evolutionary 

events on patterns of polymorphism. Note that this perspective is distinct from the usual 

coalescent-based interpretation of Slatkin (1991), in which FST statistics are computed in 

sequence regions rather than pointwise and have a more direct interpretation in relation to 

coalescence times.

We found that the three differentiation measures have similar values when comparing pairs 

of subpopulations (K = 2) using biallelic loci. Indeed, both the mathematical constraints and 

the distributions generated by common biological processes produce similar values of FST, 

GST′ , and D. Consequently, it appears that choosing one measure among the three is not very 

important when considering biallelic loci and performing pairwise population comparisons. 

This result contrasts with that of Table 1 of Jost (2008), which showed that FST and D can 

give very different results when K = 2, but considering multiallelic loci. Extending our 

results to the case of K = 2 and multiallelic loci using the framework laid out in Jakobsson et 

al. (2013) and Edge & Rosenberg (2014) could potentially solve this apparent discrepancy 

that the statistics are similar when considering a biallelic locus and K = 2 but different when 

considering a multiallelic locus and K = 2.
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We highlight a trade-off in the properties of differentiation statistics based on biallelic loci: 

D values are the least sensitive to the effect of the number of subpopulations K, but the most 

strongly constrained. Knowing this trade-off can potentially help users choose among 

statistics. For example, if the goal is to compare differentiation among species with various 

distinct numbers of subpopulations, then D could be the most useful, whereas FST and GST′

could be more suitable for providing a wider range of values in comparisons with the same 

value of K.

Modified FST statistics that incorporate the number of subpopulations have previously been 

suggested. In Supporting Information File S4, we examine two alternative statistics, GST,Nei′ , 

due to Nei (1987) and GST″  due to Meirmans and Hedrick (2011), designed as modified 

versions of FST and GST′ , respectively, and both incorporating a factor dependent on the 

number of subpopulations. We show that GST′  and GST′′ . are constrained by the value of M 

similarly to FST and GST′ , respectively, but to a slightly lesser degree (Supporting 

Information Figures S3–S5). These constraints are stronger if K = 2, decreasing as K 
increases (Supporting Information Figure S2). Along with computations by Alcala and 

Rosenberg (2017) showing constraints on the Weir-Cockerham estimator θ (Weir & 

Cockerham, 1984) as a function of M, these results suggest that mathematical constraints on 

FST-related statistics are pervasive, rather than features of particular formulations of the 

measure.

As a first step in analyzing a dataset, similarly to the proposal from Wang (2015), we 

suggest evaluating FST, GST′ , and D in relation to another statistic dependent on allele 

frequencies. This exploratory step ensures that dependencies among statistics are identified. 

In addition, we suggest displaying the maximal values of the statistics (Equations 9–11). 

Indeed, we showed that when correcting for the mathematical maximum in terms of M, all 

measures provide similar information. This result accords with that of Heller and 

Siegismund (2009), who found a strong correlation among empirically reported FST, GST′ , 

and D values. Meirmans and Hedrick (2011) further highlighted theoretical connections 

among them, showing that limK ∞ GST′ /FST = 1/ 1 − HS . In agreement with their result, 

we found that maximal FST and GST′  values are particularly close when K is large and when 

an allele is fixed in each subpopulation–producing HS = 0. Meirmans and Hedrick (2011) 

also showed that limK ∞ D/GST′ = HT,, which accords with our result that the maximal D 

approaches HT when K is large, and the maximal GST′  approaches 1.

FST and other genetic differentiation statistics are often used to search for loci responsible 

for local adaptation. Following from the initial approach of Lewontin and Krakauer (1973), 

many tests compute the distribution of FST in a set of genotyped loci and consider loci with 

FST values above a threshold as candidates for local adaptation (see e.g., OutFLANK, 

Whitlock & Lotterhos, 2015 for a modern implementation). FST bounds in terms of M 
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demonstrate that if such methods do not account for the frequency of the most frequent 

allele, certain loci will be undetectable even if they contribute to local adaptation: 

irrespective of the threshold chosen, there exist large M values for which the upper bound on 

FST lies below the threshold.

Some outlier studies of adaptation eliminate loci from consideration based on a cutoff such 

as M = 0.95 (Whitlock & Lotterhos, 2015). Because the value of M above which associated 

FST values necessary lie below a threshold Fthreshold depends on Fthreshold’ depending on the 

threshold and the cutoff for M, filtering loci according to a cutoff for M could either 

eliminate loci for which FST outliers could potentially be detected or retain loci for which 

FST outliers could never be detected. Importantly, because of their similar behavior in 

relation to M, GST′  and D would have the same limitation.

In this context, normalizing the differentiation statistic of interest by its maximum given M 
could produce a measure that does not have the limitation that some loci would be 

undetectable by outlier tests. However, because the variability of the statistic across 

locidepends on M, such a normalization would inflate the variance of the statistic, 

potentially interfering with the ability of outlier tests to identify the loci of greatest interest. 

By contrast, methods that consider the joint distribution of differentiation statistics such as 

FST and other variables, such as heterozygosity statistics (Beaumont & Nichols, 1996), 

potentially avoid this concern.

The process by which we assess the position of FST, GST′ , and D values between their 

minimal and maximal values–computing the ratio of the values of each differentiation 

measure to a maximum value given a variable (here M)–is similar to the derivation of 

standardized differentiation statistics (Hedrick, 1999, 2005; Meirmans, 2006). This result 

shows that we can perform other kinds of standardizations, by the maximum value of the 

statistics given M rather than by the maximum given HS. Our work refines the classification 

of differentiation statistics from Meirmans and Hedrick (2011), which included three 

classes–F statistics, standardized statistics such as GST′ , and D-like statistics–making 

standardized statistics based on HS a subclass among a plethora of other possible 

standardizations, each of which would lead to specific behaviours. Because summary 

statistics unconstrained in relation to all potentially interesting aspects of allele frequencies 

probably do not exist, however, we caution that sequentially multiplying normalizations 

might not be the best approach to understand genetic differentiation. Rather, plotting 

observations of a genetic differentiation statistic as a function of a variable of interest such 

as M, as in Figures 3–7, while highlighting the maximal values of the statistic, enables an 

enlightened interpretation. If a normalization is desired, performing a normalization of FST
by its maximum value given M provides results similar to those obtained by normalizing 

GST′ , which is already normalized by its maximum value given HS.

We used normalization to show that taking into account the maximal values of the three 

statistics, they are similarly affected by migration. Under the island model of migration and 
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considering a multiallelic locus with an infinite alleles mutation model, Whitlock (2011) and 

Alcala, Goudet, and Vuilleumier (2014) found that for a fixed value of the migration rate, 

unnormalized values of FST, GST′ , and D can be very different. We confirmed these results 

under the same migration model but using a biallelic infinite sites mutation model. 

Nevertheless, we showed that normalized statistics are strikingly similarly affected by 

migration. Finding such strong similarities rather than differences among the three statistics 

is a first step to reconcile their results, emphasizing that the different measures have more 

features in common than might be apparent from the existence of strong arguments in favour 

of one or another among them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: The minimal values of GST′ and D

In this appendix, we show that the only allelic configuration for which GST′ = 0 is p1 = p2 = 

… = pK = M. This configuration is also the only configuration for which D = 0.

From Equation 7, GST′ = 0 if and only if either K − 1 + HS = K − 1 − 2S + 2M = 0 or K(S - 

M2) = 0. Because HS ≥ 0 and K > 1, K − 1 + HS ≥ K − 1 > 0. From Alcala and Rosenberg 

(2017, “Lower bound” subsection), K(S − M2) = 0 if and only if pk = M in all 

subpopulations k. Similarly, from Equation 8, D = 0 if and only if K(S − M2) = 0.

Consequently, p1 = p2 = … = pK = M is the only allele frequency vector that yields GST′ = 0

and the only vector that yields D = 0; this configuration can be reached for all M ∈ [1/2, 1). 

Because from Alcala and Rosenberg (2017, “Lower bound” subsection), p1 = p2 = … = pK = 

M is also the only configuration that yields FST = 0, we can conclude that the minimal 

values of FST, GST′ , and D are the same and equal to 0 irrespective of M, for any value of the 

number of subpopulations K.

APPENDIX B: GST′ and D as functions of S

In this appendix, we show that both GST′  (Equation 2) and D (Equation 3) are increasing 

functions of S = 1
K ∑k = 1

K pk
2,, with pk ∈ [0, 1] for all k.

We take the derivatives of Equations 7 and 8 with respect to S:
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dGST′
dS = K[1 − 2M(1 − M)] − (1 + 2S − 2M)2

(K − 1)M(1 − M)(1 + 2S − 2M)2 , (B1)

dD
dS = 2K[1 − 2M(1 − M)]

(K − 1)(1 + 2S − 2M)2 . (B2)

The denominator in Equation B1 is positive because 1 + 2S − 2M = 1 − HS > 0 (using 

Equation 4). The sign of dGST′ /dS is therefore determined by the sign of its numerator. 

Because from Equation 5, HT = 2M(1 − M), the numerator of Equation B1 is

K[1 − 2M(1 − M)] − (1 + 2S − 2M)2

= K 1 − HT − 1 − HS
2

= K 1 − HT − 1 − HS + HS 1 − HS .
(B3)

From Hedrick (2005, p. 1634), HT ≤ (HS + K − 1)/K and hence 1 − HT ≥ (1 − HS)/K, 

equality requiring that each allele be present only in a single subpopulation. Thus, K(1 − HT) 

≥ 1 − HS. Because 0 ≤ HS < 1, we also have HS(1 − HS) ≥ 0, equality requiring HS = 0. 

Consequently, Equation B3 is nonnegative, as is the numerator of dGST′ /dS We conclude that 

dG’ST/dS is nonnegative, with equality possible only at the point S = M, and that GST′  is an 

increasing function of S.

The denominator in Equation B2 is also positive, so the sign of dD/dS is determined by the 

sign of its numerator. The numerator equals 2K(1 − HT) and hence is positive, as 0 < HT < 1 

for polymorphic loci. Consequently, dD/dS is positive, and we conclude that D is an 

increasing function of S.

APPENDIX C: Upper bounds for the case of K = 2

In the case of K = 2, because 1/2 ≤ M < 1, KM = 1, and {KM} = KM − KM = 2M − 1. 

Equations 9–11 then simplify:

FST ≤ 1 − M
M (C1)

GST ≤
(1 − M) −4M2 + 6M − 1

M 4M2 − 6M + 3
(C2)

D ≤ 4(1 − M)2

4M2 − 6M + 3
. (C3)

Alcala and Rosenberg Page 17

Mol Ecol. Author manuscript; available in PMC 2019 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Denoting the upper bounds in Equations 9–11 by F*(M), G*(M), and D*(M), respectively, 

for the case of K = 2, Equations C1–C3 give

G*(M) − F*(M) = 4(1 − M)2(2M − 1)
M 4M2 − 6M + 3 (C4)

F*(M) − D*(M) = (1 − M)(2M − 1)(4M − 3)
M 4M2 − 6M + 3 (C5)

G*(M) − D*(M) = (1 − M)(2M − 1)
M 4M2 − 6M + 3

. (C6)

The denominator in Equations C4–C6 is positive in the permissible range for M, as 4M2 

− 6M + 3 has no real roots. We can then observe that G*(M) ≥ F*(M) and G*(M) ≥ D*(M), 

with equality in both cases if and only if M = 1/2. We also have F*(M) < D*(M) for 1/2 < M 
< 3/4, F*(M) > D*(M) for 3/4 < M < 1, and F*(M) = D*(M) for M = 1/2 and M = 3/4.

APPENDIX D: Normalized mean GST′ and D

This appendix provides the formulas to compute the normalized means, GST′ /Gmax′  and 

D/Dmax,, used in Figures 5–7.

Given a set of Z loci, we denote by Gz′, Dz, Dz, and Mz the values of GST′ , D, and M at locus 

z. The mean GST′  and D for the set, denoted by and D, are

GST′ = 1
Z ∑

z = 1

Z
Gz′ (D1)

D = 1
Z ∑

z = 1

Z
Dz . (D2)

From Equations 10 and 11, the corresponding mean maximal values given the observed Mz 

at the Z loci are denoted by G′max and Dmax:

G′max = 1
Z ∑

z = 1

Z K(K − 1) + 2 KMz 1 − KMz
K(K − 1) K − 2 KMz 1 − KMz

×
( KMz + KMz

2 − KMz
2

Mz 1 − Mz

(D3)
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Dmax = 1
Z ∑

z = 1

z 2K KMz + KMz
2 − KMz

2

(K − 1) K − 2 KMz 1 − KMz
. (D4)
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FIGURE 1. 
Range of possible values of FST, GST′ , and D as functions of the frequency M of the most 

frequent allele, for different numbers of subpopulations K. The shaded region represents the 

space between the minimal and maximal values. The maximal FST, GST′ , and D are 

computed from Equations 9–11, respectively. The dashed line represents 1 for FST and GST′ , 

and 2KM(1 − M)/(K − 1) for D (Equation S1.4 in Supporting Information File S1); the 
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maximum value touches the dashed line when M = i/K for integers i in K
2 , K − 1 . For 

FST, GST′ , and D, for each K, the minimum value is 0 for all values of M
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FIGURE 2. 
The means AF, AG, and AD of the maximal values of FST, GST′ , and D, respectively, over the 

interval M ∈ [1/2, 1), as functions of the number of subpopulations K. AF(K) is computed 

from Equation 12, AG(K) from Equation 13, and AD(K) from Equation 14. The x-axis is 

plotted on a logarithmic scale

Alcala and Rosenberg Page 23

Mol Ecol. Author manuscript; available in PMC 2019 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Joint density of the frequency M of the most frequent allele and statistics FST, GST′ , and D, 

for different scaled migration rates 4Nm, considering K = 2 subpopulations. The black solid 

line represents the maximum value of FST, GST′ , or D in terms of M (Equations 9–11); the 

red dashed line represents the mean FST, GST′ , and D in sliding windows of M of size 0.02 

(plotted from 0.51 to 0.99). Colours represent the density of loci, estimated using a Gaussian 

kernel density estimate with a bandwidth of 0.007, with density set to 0 outside the 

minimum and maximum values. Loci are simulated using coalescent software MS, assuming 

an island model of migration and conditioning on one segregating site. Each panel considers 

100,000 replicate simulations, with 100 lineages sampled per subpopulation
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FIGURE 4. 
Joint density of the frequency M of the most frequent allele and statistics FST, GST′ , and D, 

for different scaled migration rates 4Nm, considering K = 7 subpopulations. The simulation 

procedure and figure design follow Figure 3
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FIGURE 5. 
Mean FST, GST′ , and D across biallelic loci. (a) Unnormalized means FST, GST′ , and D. (b) 

Normalized means FST/Fmax, GST′ /Gmax′  and D/Dmax, the ratio of the mean value to the mean 

maximal value given the observed frequency M of the most frequent allele. Both plots show 

quantities as functions of the number of subpopulations K and the scaled migration rate 

4Nm. Colours represent the different statistics. Line types represent values of K: 2 (solid), 7 

(dashed), and 40 (dotted). Values are computed from coalescent simulations using software 

ms as in Figure 3, with 1,000 replicate biallelic loci and 100 lineages per subpopulation. 

Fmax, Gmax′  and < Dmax are respectively computed from equation 11 of Alcala and Rosenberg 

(2017) and Equations D3 and D4 in Appendix D
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FIGURE 6. 
Joint density of the frequency M of the most frequent allele and three differentiation 

measures (FST, GST′ , and D), and unnormalized and normalized mean values of the 

differentiation measures across loci, for 305 wolves and 91 dogs from North America, using 

123,801 SNPs. (a) M and FST. (b) M and GST′ . (c) M and D. (d) Unnormalized mean values 

of FST, GST′ , and D across SNPs, and the mean values of FST, GST′ , and D across SNPs 

normalized by the mean of their maximal values. In (a-c), the figure design follows Figure 3. 

In (d), Fmax, Gmax′ , and Dmax are respectively computed from equation 11 of Alcala and 

Rosenberg (2017) and Equations D3 and D4 in Appendix D
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FIGURE 7. 
Joint density of the frequency M of the most frequent allele and three differentiation 

measures (FST, GST′ , and D), and unnormalized and normalized mean values of the 

differentiation measures across loci, for 900 Atlantic salmon from 26 populations, using 

1,335 SNPs. Sample sizes range from 25 to 40 per population. (a) M and FST. (b) M and 

GST′ . (c) M and D. (d) Mean values of FST, GST′ , and D across SNPs, for sets of geographic 

regions as a function of K, the number of regions considered. (e) Ratio of mean values of 

FST, GST′ , and D across SNPs to their maximal mean values as functions of K. In (a-c), the 

figure design follows Figure 3. Coloured bars in (d) and (e) represent 2.5 and 97.5 quantiles 

of distributions of values across sets of size K. In (e), Fmax, Gmax′ , and Dmax are respectively 

computed from equation 11 of Alcala and Rosenberg (2017) and Equations D3 and D4 in 

Appendix D
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