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Cognitive dysfunction in diabetic rats is
prevented hy pyridoxamine treatment. A
multidisciplinary investigation
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ABSTRACT

Objective: The impact of diabetes mellitus on the central nervous system is less widely studied than in the peripheral nervous system, but there
is increasing evidence that it elevates the risk of developing cognitive deficits. The aim of this study was to characterize the impact of exper-
imental diabetes on the proteome and metabolome of the hippocampus. We tested the hypothesis that the vitamin B6 isoform pyridoxamine is
protective against functional and molecular changes in diabetes.

Methods: We tested recognition memory using the novel object recognition (NOR) test in streptozotocin (STZ)-induced diabetic, age-matched
control, and pyridoxamine- or insulin-treated diabetic male Wistar rats. Comprehensive untargeted metabolomic and proteomic analyses, using
gas chromatography-mass spectrometry and iTRAQ-enabled protein quantitation respectively, were utilized to characterize the molecular
changes in the hippocampus in diabetes.

Results: We demonstrated diabetes-specific, long-term (but not short-term) recognition memory impairment and that this deficit was prevented
by insulin or pyridoxamine treatment. Metabolomic analysis showed diabetes-associated changes in 13/82 identified metabolites including polyol
pathway intermediates glucose (9.2-fold), fructose (4.9-fold) and sorbitol (5.2-fold). We identified and quantified 4807 hippocampal proteins; 806
were significantly altered in diabetes. Pathway analysis revealed significant alterations in cytoskeletal components associated with synaptic
plasticity, glutamatergic signaling, oxidative stress, DNA damage and FXR/RXR activation pathways in the diabetic rat hippocampus.
Conclusions: Our data indicate a protective effect of pyridoxamine against diabetes-induced cognitive deficits, and our comprehensive ‘omics

datasets provide insight into the pathogenesis of cognitive dysfunction enabling development of further mechanistic and therapeutic studies.
© 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION disease or other CNS disorders related to cognitive decline. Cognitive
deficits are observed in several domains including executive function,
reduced speed of information processing, attention, and impairments

in long-term memory (LTM) [6]. Impairments in memory can range

Diabetic neuropathy (DN) is a common secondary microvascular
complication of type 1 and type 2 diabetes mellitus [1,2]. The first

symptoms of DN typically manifest in a ‘glove and stocking’ distri-
bution, with distal die-back of sensory axons of the peripheral nervous
system (PNS) and associated neuropathic pain, allodynia, paraes-
thesia, and numbness [3]. Several metabolic perturbations have been
linked to the pathogenesis of peripheral DN (including hyperglycemia,
dyslipidemia, oxidative stress, altered levels of insulin and neurotrophic
factors, polyol-pathway flux, non-enzymatic glycation, and inflamma-
tory stress [4,5].

The impact of diabetes on the central nervous system (CNS) has been
less widely studied than the PNS, but it is increasingly evident that
people with diabetes have a higher risk of developing Alzheimer’s

from mild cognitive impairment to more chronic dementia, and are
collectively termed “diabetes-associated cognitive decline” (DACD).
Understandably this can negatively impact on the quality of life for
people with diabetes [6]. Understanding the underlying pathophysi-
ology of these deficits will lead to improved therapeutic strategies to
restore cognitive function, and thereby quality of life.

Preclinical studies have described memory and learning impairments,
including spatial memory and memory retention deficits in rodents with
streptozotocin (STZ)-induced diabetes [7,8]. A number of changes in
the hippocampus, a region associated with recognition memory for-
mation and consolidation, have also been described in STZ-diabetic
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Table 1 — Indices of Diabetes. Untreated-diabetic rats were significantly lighter than age-matched control rats by the end of the studies with reduced lean and
fat mass, higher blood glucose, free (Study 3) or total (Study 4) cholesterol and triglyceride levels. Pyridoxamine treatment did not alter hyperglycaemia.
Pyridoxamine-treated diabetic rats (1 g/L) were significantly lighter than age-matched untreated-diabetic rats, with reduced lean mass by the end of the study

(Study 4). However treatment with 400 mg/L pyridoxamine did not impact on end body weight or composition (Study 3). Both concentrations of pyridoxamine
reduced diabetes-associated hyperlipidemia. Data are expressed as mean + standard deviation and analyzed using one-way ANOVA followed by Tukey’s post-
hoc test. * denotes level of significant difference vs. control rats; # denotes level of significant difference vs. untreated-diabetic rats.

Experimental group (n numbers) Start body End body Terminal blood Fat mass (g)  Lean mass (g) Plasma Plasma
weight ()  weight ()  glucose (mmol/L) cholesterol triglyceride (mg/dl)
(mg/dl)
Study 1
Age-matched control (n = 10) 336 +15 457 +28 5.43
Untreated-diabetic (n = 70) 348 +7 403 + 26*** 28*+*
Insulin-diabetic (at 6 days 354 + 25 540 & 72 ####  17.97 #HH#
post-STZ) (n = 7)
Study 2
Age-matched control (n = 70) 383 £ 16 548 + 44 8.5
Untreated-diabetic (n = 9) 367 +22 379 + 42 544
Insulin-diabetic (at 6 weeks 358 + 15* 411 £ 40 33.5%* #HH
post-STZ) (n = 9)
Study 3 (400 mg/L)
12 week duration Age-matched 333 £ 14 557 + 33 10.13 69 + 25 431 + 29 30+ 5 175 £ 73
control (n= 12)
Body weight at 9 weeks post-STZ (g) 533 + 35
Untreated-diabetic (n = 70) 338 £ 14 392 + 41 30.4*+* 24 + 7 304 + 417 78 £+ 32 607 £+ 217
Body weight at 9 weeks post-STZ (g) 422 + 93**
Pyridoxamine-diabetic (400 mg/L) (n=9) 325 + 14 384 + 37 31.98*+** 23 £ 5 304 + 35%* 47 + 20# 289 + 2234t#
Body weight at 9 weeks post-STZ (g) 399 + 72+
Study 4 (1 g/L)
9 week duration
Age-matched control (n = 12) 365 +34 517 £ 66 71 64 + 22 406 + 44 208 + 52 189 + 137
Untreated-diabetic (n = 70) 389 + 18 408 + 44 35.88*** 22 £ 2% 311 £ 46™ 487 + 245™ 674 + 277"
Pyridoxamine-diabetic (1 g/L) (n = 14) 371 £28 354 + 23" # 33.3°** 18 £ 5% 260 £ 31** #### 291 + 176# 358 + 24244

* denotes level of significant difference vs. control rats; ** (p < 0.01), ** (p < 0.001), *** (p < 0.0001), # denotes level of significant difference vs. untreated-diabetic rats; ## (p <

0.01), ### (p < 0.001), #### (p < 0.0001).

rodents. Zhang et al. (2008) showed both neurogenesis and neuronal
survival were markedly reduced in the hippocampal dentate gyrus of
STZ-diabetic rats [9]. Metabolic, structural, and functional modifica-
tions that may contribute to neuronal damage include impaired insulin
and growth factor signaling and altered signal-transduction pathways
[10,11]; formation of advanced glycation endproducts (AGE) [12];
deposition of neurofibrillary plaques and tangles [5]; and small vessel
disease [13]. Thoroughly validated preclinical rodent models are
essential to both elucidate pathogenic changes associated with
memory dysfunction and test new therapeutic strategies.
Pyridoxamine is one of the three interconvertible members of vitamin
B6, along with pyridoxine and pyridoxal. All three forms are bio-
transformed into physiologically active pyridoxal-5-phosphate which
has multiple functions. For example, it is an essential coenzyme/
cofactor in processes including metabolism of essential amino acids,
glycogen and lipid metabolism, and synthesis of neurotransmitters
such as serotonin, dopamine and GABA [14,15]. Pyridoxamine re-
duces hyperlipidemia [16] and is a post-Amadori inhibitor (sup-
pressing AGE formation and advanced lipoxidation endproduct
formation) [16]. Protective effects of pyridoxamine have previously
been described in a number of secondary complications including
diabetic cardiovascular disease [17], retinopathy [18], and ne-
phropathy [19] in STZ-diabetic rats.

Here, we describe the presence of long-term recognition memory
deficits in STZ-diabetic rats. We test the hypothesis that pyridoxamine
is protective against cognitive dysfunction in this context. Then, in
order to better understand the underlying molecular pathogenesis of
cognitive dysfunction in diabetes, we perform untargeted metabolomic
and proteomic analyses of the hippocampus and compare metabolite
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and protein profiles of age-matched control rats, diabetic rats and
diabetic rats treated with pyridoxamine.

2. MATERIALS AND METHODS

2.1. Animal studies

All reagents were purchased from Sigma—Aldrich (UK) unless other-
wise stated. All experiments were conducted using adult male Wistar
rats (start weight 300—400 g; Charles River, UK) in accordance with
the UK Animals (Scientific Procedures) Act 1986, EU-201063, the
ARRIVE guidelines, and ethical approval (University of Manchester).
For each study, rats were randomly allocated (by cage number) into an
age-matched control (naive), untreated-diabetic, or a diabetic-
treatment group. Diabetes was induced with an intraperitoneal injec-
tion of STZ (55 mg/kg in sterile saline) administered after an overnight
fast. Blood glucose levels in tail vein blood were measured 3 days
post-STZ using an Accu-chek® Aviva Blood Glucose Meter to confirm
hyperglycemia (>15 mmol/L). Rats were housed (controls 3—4; di-
abetics 2 per cage) at 21 °C in individually ventilated cages (Double-
decker cage, Techniplast, UK) under a 12:12hr light:dark cycle (lights
on at 7am), with access to standard laboratory chow (Special Diet
Services, UK) and water ad libitum. Sizzle nest and burrowing tubes
were used to provide environmental enrichment. Rats were checked
and weighed regularly, and maintained for 9 (Study 1, 2 and 4) or 12
weeks (Study 3). Treatment protocols: two slow-release insulin pellets
(~4U insulin/day; Linshin, Canada) were implanted subcutaneously
(under isoflurane anaesthesia, with 0.001 mg/kg post-operative
analgesic buprenorphine) to diabetic rats either at 6 days post-STZ
(Study 1) or 6 weeks post-STZ (Study 2). This significantly reduced
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hyperglycemia but did not restore to control levels (Table 1). Alterna-
tively rats were administered pyridoxamine dihydrochloride (Study 3;
400 mg/L Sigma, UK; Study 4; 1 g/L: Hubei Yuancheng Saichuang
Technology Co. Ltd, China) in their drinking water from 1 week post-
STZ (Table 1).

2.2. Novel object recognition test

NOR was conducted at 8 weeks post-STZ. Rats were acclimatized to
an empty square open-field testing arena for 10 min over 2 consec-
utive days (between 9am and 1pm). The next day, for the acquisition
phase, each rat was placed in the test arena now containing two
identical objects (weighted bottles or metal cans) positioned 6 cm in
from diagonal corners. The rat was filmed for 3 min then returned to its
home cage for an inter-trial interval (ITI) of either 3 min or 1 h. Both the
arena and objects were cleaned after each trial to remove olfactory
cues. Following the ITI, rats were returned to the arena which now
contained a triplicate of the familiar object from the acquisition phase
and a novel object (retention trial) and were filmed for 3 min. Behavior
was analyzed from coded video recordings by trained experimenters
blinded to the treatment groups. Exploration time of each object (time
spent sniffing or touching the object but not standing, sitting on, or
leaning against the object) was measured. The discrimination index
(Dl= (Tno — Tro)/(Tno + Tro)), Was calculated - where Tyg is the
exploration time of the novel object and Trg is the exploration time of
the familiar object®®. Locomotor activity was measured as the number
of floor gridlines crossed by the base of the rat’s tail.

2.3. Tissue harvest

At the end of the study, core blood glucose was measured from
terminally-anaesthetized rats (isoflurane) that were culled by decapi-
tation. A sample of core blood was also collected into lithium heparin
tubes (Greiner), centrifuged at 2500/3000rpm for 20 min at 4 °C and
plasma/serum supernatant stored at —80 °C. The composition of the
cadavers (Studies 3 and 4) was immediately assessed using an
EchoMRI system (Echo Medical Systems) to determine proportions of
fat and lean body mass. Whole brains or hippocampi were dissected,
snap-frozen, and stored at —80 °C. Free or total cholesterol and tri-
glyceride levels were determined using Cholesterol Fluorometric Assay
and Triglyceride Colorimetric Assay kits (Cayman Chemical, USA).

2.4, Statistical analysis
Exclusion criteria for in vivo experiments are shown in Table 2. Data
are presented as individual animal data, and as group mean

Table 2 — Exclusion Criteria for in vivo studies and analysis.

Rat culled/data excluded
from all analysis
Rat culled/data excluded
from all analysis

Reversion to normoglycaemia
(<16 mmol/L)

Evident morbidity and/or rapid
weight loss not controlled by
implantation of half-pellet of
slow-release insulin (~1U
insulin/day; Linshin, Canada;
under isoflurane anaesthesia,
with 0.001 mg/kg post-operative
analgesic buprenorphine) to
maintain welfare. This dose does
not correct hyperglycaemia.

Failed to explore one or both objects
in NOR acquisition or retention
trial

One of objects knocked down in
acquisition or retention phase

All NOR data for that rat
excluded from analysis

All NOR data for that rat
excluded from analysis
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(£standard deviation) or median (+interquartile range) as appropriate
for datasets. GraphPad Prism 7.0 was used for statistical analysis:
paired t-tests/Wilcoxon matched-pairs test, one-way ANOVA/Kruskal—
Wallis test, two-way ANOVA/Friedman test with appropriate post hoc
tests as stated in the text (**p < 0.5, #**p < 0.01, ##***p < 0,001,
Hlxx < 0.001).

2.5. Metabolomic analysis of the hippocampus

50-+5 mg hippocampal tissue (Study 3) were extracted in 800 pl of
cold 50:50 (v/v) choloroform:methanol containing a mixture of isoto-
pically labeled internal standards in methanol as previously described
[20]. Two extraction blanks (no sample) were also included. LC-MS
grade water (400 pl) was added to initiate phase separation, sam-
ples were vortexed and centrifuged (2400 g, 15 min). 200 i of the
polar (methanol:water) phase from each sample (individual animals)
was collected and quality control standards also prepared by pooling
200 pl from each sample. Samples and standards were dried using a
Savant Speedvac centrifugal concentrator (ThermoFisher Scientific,
UK) and stored at 4 °C.

2.6. GC—MS derivatisation and run

Polar phase samples, blanks and QC standards were chemically
derivatized as described previously®® to methoxime/trimethylsilyl
derivatives, then analyzed by GS-MS using a Agilent/J&W DB17-MS
column (30 m x 0.25 mm x 0.25 um), @ 3 m x 0.25 mm reten-
tion gap and helium carrier with a constant flow rate of 1.4 ml/min and
a Pegasus high-throughput time-of-flight mass spectrometer (LECO;
UK).

2.7. GC—MS data processing and analysis

The “Reference Compare” method was used to prepare the mass
spectral data for analysis using the ChromaTOF 4.5 software (LECO;
UK). Putative metabolites were identified from the NIST Mass Spectral
Reference Library (NIST08/2008; NIST, Gaithersburg, USA) and an in-
house library. GraphPad Prism 7.0 was used for statistical analysis.

2.8. Proteomic analysis of hippocampus

2.8.1. iTRAQ labeling peptide mixture preparation

Hippocampi from control, untreated-diabetic and pyridoxamine-
treated diabetic rats (study 4) were washed with PBS and lysed
in 400 pl 1M triethylammonium bicarbonate (TEAB) and 0.1% w/v
sodium dodecyl sulfate (SDS) using a TissueLyserll (3 min at
25 Hz). Samples were centrifuged (10 min at 4 °C, 12000rpm) and
supernatant collected. Protein concentrations were determined,
100 pg of protein from each sample was aliquoted and volumes
equalized to 30 pl with lysis buffer. Cysteine reduction, alkylation,
and digestion of proteins were conducted [21]. Resulting tryptic
digests were dried, resuspended in 20 pl 1M TEAB and peptides
labeled using 8-plex iTRAQ reagent according to the manufacturer’s
instructions (AB Sciex). Samples were dried for 15min to remove
ethanol, then 100 pl of loading buffer (2% acetonitrile, 0.1%
ammonium bicarbonate, pH > 10) was added to each sample.
Labeled samples were pooled, made up to 1.8 ml with loading
buffer and stored at —20 °C.

2.8.2. High-performance liquid chromatography

Samples were thawed, centrifuged, and peptides fractionated off-line
using high-pH reversed-phase chromatography on a 3 um Extend-C18
column (4.6 x 100mm; Agilent, UK) on an Agilent 1200 series LC
system at 45 °C using a 30 min gradient from 3% to 40% acetonitrile
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in 0.1% ammonium hydroxide at 0.75 ml/min 30-s fractions were
collected, dried, and stored at —20 °C until analysis.

For analysis by low-pH reversed-phase LC-tandem MS analysis, dried
fractions were resuspended in 10 pL 3% (v/v) acetonitrile and 0.1% (v/v)
trifluoroacetic acid, with 1 pL analyzed by low-pH reversed-phase chro-
matography using a nanoACQUITY UHPLC system (Waters) online to a
Triple-Tof 6600 mass spectrometer (AB Sciex) as previously described [21].

2.8.3. Proteomic analysis

Raw data files were analyzed using ProteinPilot 5.0 with default search
settings against a rat-specific Uniprot database (Uniprot_Rat_Nov17;
29,997 proteins) as described previously [22]. Identified peptides were
then coalesced to protein-level quantifications and statistical testing
for differential expression performed using v1.0.0 of the in-house
developed software ‘BayesProt’ (https://github.com/biospi/bayesprot/
releases/tag/v1.0.0). An earlier version of this technique was pre-
sented in Freeman et al. [22], which combined Protein-Pilot (AB SCIEX)
sample normalization (‘bias correction’) with a Bayesian linear mixed-
effects model implemented with the MCMCglmm R Package [Hadfield,
Jarrod D. “MCMC methods for multi-response generalized linear mixed
models: the MCMCglmm R package.” Journal of Statistical Software
33.2 (2010): 1—22.].

Since iTRAQ measurements from Time-of-Flight instruments are
recorded as discrete ion counts, and technical/biological variation are
assumed log-normal, we adopted a Generalized Linear Mixed Model
(GLMM) with Poisson likelihood and log-link, where each protein was
modeled separately using peptide measurements unique to that pro-
tein. The sample normalization factors represent the mass spec-
trometer’s exposure to each sample, and hence were included as a
fixed offset within the model. The current version of BayesProt addi-
tionally (i) enables estimation of both biological and digestion variance
through the incorporation of multiple digests for a single sample (i.e.
the six reference pool digests), (i) negates the need for Protein-Pilot
normalization by implementing a two-stage GLMM and (jii) provides
a simplified Markov Chain Monte Carlo (MCMC) mixing criterion for
both stages.

In both stages: (a) for each peptide a separate random digest effect is
fitted, which has the effect of weighting each peptide’s contribution to
the protein-level quantification by its reproducibility across digests; (b)
the set of measurement channels within each iTRAQ spectrum are
each assigned (i) a baseline fixed effect to account for varying se-
lection/ionisation/fragmentation efficiencies across spectra, and (ii) an
independent log-normal residual variance to account for over-
dispersion due to background contamination and incorrectly identi-
fied spectra. In stage one, we also model the interaction between LC-
MS/MS run and iTRAQ channel as a fixed effect i.e. within each run, we
infer the protein-level log ratio between iTRAQ channel 113 and
channels 114, 115, 116, 117, 118, 119, and 121. For each channel
relative to 113, the result is a set of posterior probability distributions,
one for each protein in the study; these are combined to derive a
posterior distribution for the median log ratio for each channel relative
to 113, which is taken as the inferred sample normalization factors.

In stage two, rather than using point estimates of the normalization
factors as fixed sample offsets, a set of sample fixed effects are fitted
which have prior distributions set to the means and variances of the
inferred median log ratio distributions. In addition, in stage two, we
specify the full experimental design: (a) protein-level differential
expression fold change between cases and controls is fitted as a
condition fixed effect (with control as baseline); (b) a random effect is
fitted across samples. For the comparisons untreated-diabetic vs.
control and diabetic-pyridoxamine vs. untreated-diabetic, using the
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inferred posterior distribution of the condition fixed effect, for each
protein we based our one-sided significance test on the posterior
probability that the mean fold change was at least 5% above or below
control or diabetic untreated expression and defined a significant
difference in protein expression using a global false discovery rate
(FDR) threshold of 10% i.e. the largest set of proteins with an average
FDR <10% were deemed significant.

Residual variances were assigned inverse-Gamma priors, while
random effects were assigned parameter-expanded Cauchy priors.
The model was tested with different prior scale factors to establish
that the priors were not informative to the outcome. In stages one and
two, the model was run with 10 and 100 MCMC chains per protein,
respectively, each chain consisting of 10,000 samples preceded by
3,000 burn-in samples. Mixing was assessed using Warnes & Raf-
tery’s MCGibbsit run-length diagnostic, combining the estimate error-
bounding approach of Raftery and Lewis with the between chain
variance verses within chain variance approach of Gelman and Rubin
(https://cran.r-project.org/web/packages/mcgibbsit/index.html).
Following Bayesian analysis, protein lists were analyzed using In-
genuity Pathway Analysis (IPA; QIAGEN [www.giagen.com/ingenuity]).
To identify enrichment of pathways in our list of changes (global FDR
0.1) compared with the whole user input data set. STRING (Version
10.5) [23] was used to analyze pathway enrichments and physical
interactions between the significantly changed proteins.

3. RESULTS

3.1. Diabetic rats showed deficits in long—term (but not short
term) recognition memory which is ameliorated by treatment with
insulin

Here we utilized the ethologically relevant Novel Object Recognition
(NOR) test [24] to verify that STZ-diabetic rats develop diabetes-
associated cognitive deficits and investigate the effect of insulin
treatment. An NOR test of age-matched control, untreated-diabetic and
insulin-treated diabetic rats (Study 1) was conducted 8 weeks post-
STZ. Indices of diabetes are shown in Table 1. All experimental
groups explored both objects for similar amounts of time during the
acquisition phase (Figure 1A). Following a 3min ITI, all experimental
groups showed a significant preference for exploring the novel object
over the familiar one (Figure 1B,C). All experimental groups displayed
similar levels of locomotor activity (Figure 1D), no evidence of lethargy
and comparable total exploration times (Figure 1E) in both phases.
This result indicates that: 1) systemic administration of STZ has not
itself caused short-term memory (STM)-deficits (important since
intracerebroventricular administration of STZ has been used as a
preclinical model of sporadic Alzheimer’s disease with associated
cognitive deficits [25]); 2) diabetic rats can be used in the NOR testing
paradigm i.e. they have the physical and cognitive abilities to identify
and distinguish between familiar and novel objects; and 3) diabetic rats
have no STM deficits in object recognition.

Thereafter, we conducted the NOR test in a new group of rats at 8
weeks (Study 2: control, untreated-diabetic and diabetic rats treated
with insulin from 6 weeks post-STZ), using a 1 h ITI to assess longer-
term recognition memory. As in the previous study, rats showed no
evidence of object preference in the acquisition phase (Figure 2A).
Following the ITI control rats exhibited a preference for the novel object
(Figure 2B,C; p < 0.05). In contrast untreated-diabetic rats explored
both objects equally, showing no evidence of object recognition
(Figure 2B&C; p > 0.05). This recognition memory deficit was not
evident in the insulin-treated diabetic rats, which showed a preference
for the novel object (Figure 2B,C Discrimination Indices: control:
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0.22 £ 0.24; diabetic untreated: —0.16 + 0.4; diabetic insulin-
treated: 0.24 + 0.21). It is important to note that while the
untreated-diabetic rats displayed less locomotor activity compared to
age-matched control and insulin-treated diabetic rats in both phases of
this particular study (Figure 2D), the total object exploration times in
both phases were comparable between all groups of rats (Figure 2E).
This provides evidence that longer-term recognition memory deficits
occur in diabetic rats and that these deficits are diabetes-associated,
can be ameliorated by insulin treatment and are therefore not an in-
direct effect of STZ.

3.2. Pyridoxamine treatment prevented deficits in recognition
memory

We assessed the therapeutic potential of pyridoxamine to prevent
recognition memory deficits at 8 weeks post-STZ in two independent
trials, treating drinking water with either 400 mg or 1 g pyridoxamine/
L, from 1 week post-STZ. Neither concentration of pyridoxamine
altered diabetes-evoked hyperglycemia, but both reduced
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hyperlipidemia. Treatment with 400 mg/L pyridoxamine did not affect
the body weight of diabetic rats, but 1 g/L caused a reduction in lean
mass and the treated-diabetic rats weighed less than untreated-
diabetic rats at 9 weeks (Table 1).

All rats explored objects equally during the acquisition phase
(Figure 3A,B) and, following the 1 h ITl, control rats showed a signif-
icant preference for the novel object in both studies (Figure 3C—F).
Untreated-diabetic rats had no apparent preference for either object
(Figure 3E—F, p > 0.05), confirming the diabetes-associated LTM
deficit previously observed (Figure 2).

Interestingly, we found that diabetic rats treated with pyridoxamine
explored the novel object at a level similar to the control rats and
significantly different to the untreated-diabetic rats (Figure 3E: 400 mg/
L, Discrimination Index: Control 0.361 4 0.27; Untreated-
Diabetic —0.055 =+ 0.24; Diabetic-Pyridoxamine 0.206 + 0.11;
Figure 3F: 1 g/L, Discrimination Index: Control 0.493 + 0.23;
Untreated-Diabetic  0.159 4+  0.29;  Diabetic-Pyridoxamine
0.441 + 0.22) indicating protection against diabetes-induced
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Figure 1: Novel object recognition test analysis revealed no evidence of deficits in short-term recognition memory (3 min ITl) in STZ-diabetic rats (Study 1). A) All
experimental groups showed no evidence of object preference (L: left and R: right) during the 3 min acquisition (Ac) phase. B) Control (n = 10; **p < 0.01), diabetic-untreated rats
(n= 9 *p < 0.05) and insulin-treated diabetic rats (7 = 7, **p < 0.01) explored the novel object (N) for a significantly longer time than the familiar object (F) in the retention (R)
phase. C) The Discrimination Index reveals all experimental groups preferentially explored the novel object significantly more than the familiar object. All experimental groups
showed similar levels of D) locomotor activity and E) total exploration time in the Ac and R phases. All data are represented as median =+ interquartile range. Data are analyzed
using Wilcoxon matched-pairs test between L and R (A) or F and N (B) for each experimental group, Kruskal—Wallis test followed by Dunn’s post-hoc test (C) or Freidman test

followed by Dunn’s post hoc test (D&E).
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Figure 2: Novel object recognition test analysis showed a deficit in longer-term recognition memory in STZ-diabetic rats (ITl of 1 h) that was prevented by insulin treatment
(Study 2). A) All experimental groups showed no evidence of object preference (L:left and R:right) during the Acquisition (Ac) phase B) Control (7 = 70) and insulin-treated diabetic rats
(n= 7) explored the novel (N) object significantly more than the familiar (F) object (*p < 0.05), whereas the untreated-diabetic rats (n = 9) showed no evidence of object preference
during the retention (R) phase. C) The discrimination index reveals control and insulin-treated diabetic rats preferentially explored the novel object significantly more than the diabetic
untreated rats (*p < 0.05). D) In both phases the diabetic untreated rats displayed significantly reduced locomotor activity compared to control (*p < 0.05; ***p < 0.001) and insulin-
treated diabetic rats (**p < 0.01; ***p < 0.001). E) Total exploration time did not differ significantly between experimental groups. All data are represented as mean =+ standard deviation.
Data are analyzed by paired t-test between L and R (A) or F and N (B), one-way ANOVA followed by Tukey’s post-hoc test (C), or two-way ANOVA followed by Tukey’s post-hoc test (D&E).

recognition memory deficits. In both studies, there was similar cu-
mulative object exploration during both phases (Figure 3G,H).
Together these data indicate that diabetic rats exhibit DACD at 8 weeks
post-STZ, in the form of impaired longer-term recognition memory
processes, and that this deficit can be ameliorated by pyridoxamine
treatment. In order to explore the pathogenic changes which occur
within the hippocampus in diabetes and determine potential mecha-
nisms for the therapeutic role of pyridoxamine, we performed unbiased
comprehensive metabolomics and proteomic analysis of the
hippocampus.

3.3. Experimental diabetes was associated with metabolic
dysfunction in the hippocampus

Metabolomic analysis of hippocampus of age-matched control
(n = 6) and untreated-diabetic rats (n = 7; 12 weeks post-STZ)
identified and quantified 82 metabolite features (Figure 4A, all data
accessible at https://doi.org/10.17632/n62952352x.1). Of these
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metabolites, 13 were significantly altered - with 11 (13.4%) up-
regulated and 2 (2.4%) down-regulated in diabetes (Figure 4A).
Similar to our previous ‘omics study of the PNS in DN [22], metab-
olites involved in the polyol pathway — glucose (9.2-fold,
g = 0.0059), fructose (4.9-fold, g = 0.0019) and sorbitol 5.2-fold,
q = 0.0015) - showed the greatest increase (Figure 4B) with a 0.27-
fold decrease (q = 0.0252) observed in scyllo-inositol levels. Urea
(1.6-fold, g = 0.033) and members of the glycolysis pathway,
glucose-6-phosphate (4.6-fold, ¢ = 0.0159) and frucose-6-
phosphate (2.8-fold, g = 0.0419) were significantly increased in
the hippocampus (Figure 4B) indicating that parallels exist between
PNS and CNS metabolic dysfunction in diabetes.

Treatment with pyridoxamine (n = 4), significantly altered four (4.9%)
of the identified metabolites compared to untreated-diabetic rats with
two being up-regulated (2.6%; pyrophosphate and 2-pyrrolidinone)
and two down-regulated (2.6%; phenylalanine and tyrosine) in
pyridoxamine-treated rats (https://doi.org/10.17632/n62952352x.1).
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Figure 3: Pyridoxamine treatment improved recognition memory in diabetic rats. All experimental groups showed no evidence of object preference in the Acquisition phase
of study 3 (A) and study 4(B). Control (n = 77 study 3 and n = 712 study 4) and pyridoxamine-treated diabetic rats (n = 9 study 3; n = 14 study 4) explored the novel object
significantly more than the familiar one (C&D: **p < 0.01 study 3; ***p < 0.0001, ***p < 0.001 study 4), whereas the untreated-diabetic rats (n = 70 study 3 and n = 10 study
4) showed no evidence of object preference in the retention phase. Discrimination indices are shown (E&F: study 3 ***p < 0.001; *p < 0.05; study 4 **p < 0.001; *p < 0.05). All
experimental groups displayed significantly similar levels of exploratory activity in both the acquisition and retention phases (p > 0.05) for both studies (G&H). All data are
represented as mean =+ standard deviation. Acquisition phase (A&B) and retention phase (C&D) data analyzed using paired t-test between L and R (A&B) or F and N (C&D) for each
experimental group. Discrimination index (E, F) data analyzed using one-way ANOVA followed by Tukey’s post-hoc test. Total exploration time (G&H) data analyzed using two-way

ANOVA followed by Tukey’s post-hoc test.

3.4. Proteomic analysis revealed dysregulation in metabolic and
synaptic pathways in diabetic-rat hippocampus and alterations in
cytoskeletal associated proteins by pyridoxamine

Comprehensive iTRAQ proteomics of hippocampal protein extracts
from control (n = 4), untreated-diabetic (n = 6), and pyridoxamine-
treated diabetic rats (n = 6) was used to study differential protein
expression. We identified and quantified a total of 4807 proteins in the
samples (all data accessible at: https://doi.org/10.17632/72n3ds7hhg.
1) and of the 806 (17% total) proteins that were significantly changed

in diabetes - 368 (45.7%) were up-regulated and 438 (54.3%) were
down-regulated compared to controls (Figure 5A).

The top 3 KEGG pathways ‘metabolic pathways’ (FDR 0.000038),
‘glutamatergic synapse’ (FDR 0.000492) and ‘GABAergic synapse’
(FDR 0.0022) are shown in STRING network analysis (Figure 5B).
Ingenuity Pathway Analysis (IPA) revealed the overrepresented ca-
nonical pathways of significantly altered hippocampal proteins from
diabetic rats compared to controls. These include pathways related to
oxidative stress, DNA damage and FXR/RXR activation, with the most
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Figure 4: Metabolite changes in the hippocampus of rats 12 weeks post-STZ revealed a pattern of metabolic dysfunction characteristic of polyol pathway activation.
(A) The percentage of identified and quantified metabolites that were up-regulated in the hippocampus in diabetes are shown in red (and include glucose, fructose and sorbitol),
those down-regulated are shown in green (including scyllo-inositol) and in grey those not significantly changed (FDR>5%) between diabetic (7 = 7) and control (n = 6) rats (Study
3). (B) The significantly altered polar metabolites are shown as log10 ratio of fold change (diabetes/control) and Kruskal—Wallis test for each metabolite (with correction for multiple

comparisons; FDR of 5%, q value (D/C) according to the key).

significant alterations occurring in glutamate receptor signaling and
degradation related pathways (“Glutamate degradation Il via 4-
aminobutyrate” and ‘Huntington’s disease signaling’ Figure 5C;
p < 0.01). All differentially expressed proteins within these two most
significantly altered pathways are labeled on the Volcano plot
(Figure 5D).

Analysis of the 511 proteins that were significantly altered in
pyridoxamine-treated compared to untreated-diabetic rats revealed
that 272 (53.2%) were up-regulated and 239 (46.8%) down-
regulated (Figure 6A). The top 5 KEGG pathways ‘morphine addic-
tion’ (FDR 0.000709), ‘synaptic vesicle cycle’ (FDR 0.00266),
‘retrograde endocannabinoid signaling’ (FDR 0.00266), ‘gluta-
matergic synapse’ (FDR 0.00266) and ‘actin cytoskeleton’ (FDR
0.00266) are shown in STRING network analysis (Figure 6B). IPA
highlighted significant overrepresentation of pathways associated
with signal transduction (including PKA, RhoA and cAMP pathways)
and the most significant “Epithelial adherens junction signaling” a
pathway associated with cytoskeletal proteins (Figure 6C). Signifi-
cantly changed proteins from this pathway are highlighted on the
Volcano plot (Figure 6D).

Manual inspection of datasets revealed 82 proteins which were
significantly altered in both datasets (i.e. untreated-diabetic vs.
control and diabetic-pyridoxamine vs. untreated-diabetic, https:/
doi.org/10.17632/72n3ds7hhg.1). The greatest number of these
(38; 46%) were down-regulated in diabetes compared to control,
and up-regulated in pyridoxamine-treated compared to untreated-
diabetic rats. 21 proteins were up-regulated in diabetes and
down-regulated in pyridoxamine-treated rats, and the remaining 23
were either both significantly up- or down-regulated (Figure 6E).
The dynamic expression of these proteins may prove instructive in
elucidating the mechanism of protection afforded by pyridoxamine.
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4. DISCUSSION

Here we have shown that cognitive dysfunction occurred in rats with 8
weeks of chronic diabetes. Using the NOR test, we demonstrated that
diabetic rats have disturbed recognition memory after an ITl of 1 h, but
not 3 min, which indicated likely hippocampal dysfunction in diabetes.
We showed that this deficit is ameliorated by treatment with insulin or
pyridoxamine. We identified and quantified specific molecular changes
in metabolites and proteins within the hippocampus using a
comprehensive untargeted ‘omics approach and highlighted changes
in the polyol metabolic pathway and proteins associated with gluta-
matergic signaling and oxidative stress in diabetes. The effect of
pyridoxamine on metabolic profiles, cytoskeletal pathways and cell
signaling pathways in the hippocampus was also described.

Control rats tend to spontaneously explore new objects and can
discriminate between novel and familiar objects. This exploratory
behavior has been used to assess deficits in recognition memory in
multiple disease models [26], since it can be inferred that the rat
formed a memory of previously exploring the familiar object during the
acquisition phase. The NOR test was chosen as it is simple,
ethologically-relevant, does not require training, rewards or food/water
deprivation, and thus is particularly well-suited for diabetic rodents and
supports the 3Rs and ARRIVE guidelines. One caveat is that blinding of
control versus diabetic rats may not be entirely possible, due to the
evident size difference between the groups. The ability of STZ-diabetic
rats to distinguish the familiar from novel object after a 3 min ITl in-
dicates that the localized cortical regions involved in the temporary
storage of STM (e.g. prefrontal cortex), via transient modifications of
pre-existing synaptic connections e.g. the alteration of neurotrans-
mitter release, are not significantly impacted by diabetes. It also
demonstrates that diabetic rats have the maintained visual acuity,
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Figure 5: Proteomic pathway analysis revealed dysregulation in glutamatergic, oxidative and nitrative stress and inflammatory pathways in the diabetic rat hip-
pocampus. A) Of the 4807 identified and quantified proteins 17% were significantly altered (FDR<10%) in the hippocampus of diabetic (7 = 6) vs. control (n = 4) rats (Study 4;
up-regulated (red) or down-regulated (green)). B) STRING Network analysis highlights interaction networks for significantly altered proteins and the proteins in most significant
KEGG pathways are represented as colored nodes (Red: ‘Metabolic pathways', Blue: ‘Glutamatergic synapse’ and Green: ‘GABAergic synapse’). C) Ingenuity Pathway Analysis
reveals 9 significantly overrepresented pathways organized by P value (shown on top x-axis); the bars show percentage of proteins in each pathway (bottom x-axis) that are up-
regulated (red) or down-regulated (green), total number of proteins within each named pathway is shown on the right-hand Y axis. D) Volcano plot showing the distribution of total
protein expression arranged by log,-fold change and FDR. Significantly changed proteins (FDR<10%) are colored blue and the proteins from the top 2 canonical pathways in the
IPA analysis (C: “Glutamate degradation I’ and “Huntington’s Disease signaling”) are labeled in red (as their gene names).

MOLECULAR METABOLISM 28 (2019) 107—119 © 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 115

www.molecularmetabolism.com


http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com

Original Article

Diabetic pyridoxamine vs. Diabetic untreated

A B

[¢

a0 aQ /
¢

¢

e

Total proteins indentified=4807

e

B Upregulated

Downregulated

Not significant

p-value

0.00 0.1 002 0.03 0.04 0.05
C 0 0 0 0 0

ithelial adk junction si

Cardiac B-adrenergic signalling

c-AMP mediated signalling:

Role of Oct4 in mammalian embryonic stem cell pluripotency
Protein kinase A signalling:

RhoA signalling

Sertoli cell-sertoli cell junction signalling:

I % upregulated
[0 % downregulated

Ubiquinol-10 biosynthesis (eukaryotic)

A

Relaxin signalling

RhoGDI signalling:

S
Number in pathway

©
[ BRI

+ p-value

w

Actin nucleation by ARP-WASP complex
D-myo-inositol-5

elling of epithelial adk

3
3

IS
©

@
X

Signaling by Rho family GTPases

a
@

Cellular effects of Sildenafil (Viagra)

.
©
o

G-protein coupled receptor signalling

.
©

Intrinsic pi i ivation pathway

2

2
.

3

0 20 40 60 80
% proteins in pathway

=
o
S

W)
m

Significance

~

©  Not Significant
® GlobalFDR<0.1
©  GlobalFDR<0.1 named

FDR-value (-log10)

Diabetic
untreated — s—3

Diabetic
pyridoxamine

0
Fold change (log2)
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curiosity to investigate, and ability to recognize the familiar object
despite their disease state. It will be interesting however, to explore the
use of additional assays of memory and behavior (e.g. spatial recog-
nition memory in the Y maze) in future studies.

We found that insulin-treated diabetic rats have the ability to recognize
the familiar object, therefore enabling us to ascertain that the cognitive
deficit is a consequence of the diabetic phenotype (e.g. hyperglycemia,
hyperlipidemia and/or hypoinsulinemia), rather than an off-target ac-
tion of STZ. As well as its peripheral role in glucose utilization, insulin is
pivotal to multiple central processes, including information processing
essential for cognition. Impaired insulin signal transduction and tau
hyperphosphorylation in whole brain homogenates have been asso-
ciated with cognitive deficits in mice (9 weeks post-STZ [11]). During
memory encoding and retrieval insulin-receptor signaling can modu-
late glutamatergic (via NMDA receptor potentiation) and GABAergic (via
GABA receptor recruitment to the postsynaptic membrane) trans-
mission,  thereby regulating synaptic plasticity in the
hippocampus [27].

To our knowledge, our study is the first unbiased and untargeted
approach using GC—MS metabolomic profiling of the STZ-diabetic rat
hippocampus, although a previous 'H NMR-based metabolomic
analysis of 13 metabolites in different brain regions revealed the
hippocampus to be susceptible to hyperglycemia associated damage
with changes noted in metabolites of neurotransmitter synthesis and
metabolism (choline, aspartate and lactate) [28]. The metabolomic
profile of the hippocampus of diabetic rats resembles the pattern of
abnormal glucose utilization observed in our previous characterization
of PNS tissue (sciatic nerve, dorsal root ganglia, and trigeminal ganglia)
of STZ-diabetic rats [22] and interestingly is also similar to studies of
post-mortem brain samples from people with Alzheimer’s disease [29]
and Huntington’s disease [30], potentially highlighting similar pathol-
ogies and an important risk factor for cognitive decline.

Pathway analysis of proteomic data revealed a significant up-
regulation of pro-inflammatory pathway proteins (“IL-12 signaling
and production in macrophages” and “FXR/RXR activation” of the
acute phase response, as well as mechanisms of oxidative stress
(“Production of nitric oxide and reactive oxygen species in macro-
phages” and “Valine degradation”) in the diabetic rat hippocampus.
Activation and infiltration of macrophages is associated with ischemia
and axonal degeneration in STZ-diabetic sciatic-tibial nerves [31]. It
has also been shown that reducing inflammatory macrophages in the
brains of STZ-diabetic rats inhibits the decrease in antioxidant de-
fences, thereby suggesting that macrophages play a role in promoting
oxidative stress [32]. The likely increased production of free radicals
and the reduction in antioxidant defences in our rats could thereby
hinder the brains ability to modulate damage leading to central
dysfunction in diabetes.

There are similarities between the changes seen in STZ-diabetic rats
and brain samples from people with Alzheimer’s disease i.e. AP
accumulation and associated neuroinflammation (via the activation of
microglia and astrocytes which produce pro-inflammatory cytokines)
causing neuronal injury and ultimately cognitive decline [8].

Our analyses highlighted glutamatergic disruption in the hippocampus
of diabetic rats. The critical role of glutamate in learning and memory is
well-established, particularly in the facilitation of synaptic transmission
[33] and induction and maintenance of long-term potentiation in
hippocampal neurons [34]. Glutamate degradation (to gamma-
aminobutyrate (GABA)) may be markedly increased in the hippocam-
pus of diabetic rats. Namely, levels of GAD1 and GAD2 (glutamate
decarboxylase) were increased, a characteristic of “GABA shunt”
activation (an alternative pathway of energy production typically
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activated during cellular stress [35]). Members of the solute carrier
family membrane proteins of the “Glutamate receptor signaling
pathway” including SLC17A6 and 7 (vesicular glutamate transporters
[36]) and SLC1A2 and 4 (high affinity glutamate transporters [37]) were
significantly down-regulated indicative of altered glutamate signaling
and thus disruption of synaptic plasticity [38]. Similar alterations in
glutamate signaling are reported in rodent models of Alzheimer’s
disease [39,40] and schizophrenia (glutamatergic dysfunction in the
cortex and hippocampus has been identified as an important mediator
of impaired cognition [41]).

The biocatalytically active form of pyridoxamine (pyridoxal-5-
phosphate) is essential to many biochemical pathways [42]. Pyridox-
amine may prevent object recognition deficits by either protecting
against diabetes-associated damage or by enhancing memory
consolidation processes. There are thus numerous potential mecha-
nisms through which pyridoxamine treatment could correct early LTM
recognition deficits, e.g. counteracting (1) glucose-related metabolic
dysfunction; (2) aberrant insulin signaling; (3) anti-inflammatory ac-
tions; (4) synaptic modifications; (5) anti-oxidative, anti-glycation ef-
fects and/or suppression of lipid modification; and/or (6) dysregulation
of neurotransmitter synthesis.

Pyridoxamine treatment did not impact on systemic blood glucose
levels but did reduce the plasma hyperlipidemia observed in diabetic
rats, in agreement with other studies [16,43]. Metabolomic analysis
did not show any correction of the altered sugar and lipid metabolism
pathways by pyridoxamine, but pyrophosphate and 2-pyrrolidinone
were significantly up-regulated. 2-pyrrolidinone is a cyclization prod-
uct of GABA [44] and has been shown to facilitate synaptic trans-
mission in rat hippocampal slices by amplification of PKC and nicotinic
o7 acetylcholine receptor activity [45]. Since .7 receptors modulate
hippocampal activity (through release of glutamate and GABA) and o7
agonists and positive allosteric modulators can restore cognitive per-
formance in a number of preclinical models for Alzheimer’s disease
[46] and schizophrenia [47], it would be interesting to investigate the
effects of o7 agonists in diabetic rats in future studies.

IPA analysis revealed alterations in numerous pathways including
‘Epithelial adherens junction signaling’ which largely includes actin-
and tubulin-associated cytoskeletal molecules and may indicate altered
neuronal plasticity in pyridoxamine-treated rats. By manually exam-
ining proteomic datasets, we found 82 protein targets whose levels
were significantly changed in both datasets. Hippocampal proteins
down-regulated in diabetes and up-regulated by pyridoxamine, include
beta-actin and synaptopodin. In the hippocampus, synaptopodin is
expressed in the dendritic spine neck of principal cells, and is
considered critical to dendritic spine plasticity [48,49]. Dendritic spines
remodel their structure to adapt to changes in synaptic activity during
learning and memory processing. The morphological adaptation occurs
secondary to SYNPO-induced rearrangements in the postsynaptic actin
cytoskeleton [49], which, in part, involves the association of the actin
cytoskeleton with smooth endoplasmic reticulum calcium stores. The
subsequent release of calcium leads to SYNPO-dependent delivery of
AMPA receptor GluRl into dendritic spines, thereby increasing dendritic
spine branching and motility [50]. Interestingly, our recent data found
significant down-regulation of synaptopodin in the brains of people with
Alzheimer’s disease [51]. A similar diabetes-associated decrease in
synaptopodin in the kidneys has also been described in db/db mice and
this was also normalized by pyridoxamine treatment [52].

In conclusion we have demonstrated in multiple studies that robust
recognition memory deficits in diabetic rats are correlated with
dysfunction in brain metabolism, and altered protein expression
(especially in pathways associated with synaptic plasticity and
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neurotransmission) in the hippocampus. Interestingly we found that
pyridoxamine treatment prevented these recognition memory deficits,
potentially by modulating neurotransmitter regulation and synaptic
modification, although further investigation is needed. Our accessible
datasets provide a valuable resource for researchers to search for
particular proteins of interest and also for future mechanistic studies to
elucidate the mechanisms by which the cognitive deficits have
occurred in diabetes.
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