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Over the last few decades, the number of cases of non-melanoma skin can-

cer (NMSC) has risen to over 3 million cases every year worldwide. Mem-

bers of the ERBB receptor family are important regulators of skin

development and homeostasis and, when dysregulated, contribute to skin

pathogenesis. In this study, we investigated leucine-rich repeats and

immunoglobulin-like domains 2 (LRIG2), a transmembrane protein

involved in feedback loop regulation of the ERBB receptor family during

NMSC. LRIG2 was identified to be up-regulated in various types of squa-

mous cell carcinoma (SCC), but little is known about LRIG2 in cutaneous

SCC (cSCC). To investigate the function of LRIG2 in cSCC in vivo, we

generated a skin-specific LRIG2 overexpressing transgenic mouse line

(LRIG2-TG) using the Tet-Off system. We employed the 7,12-dimethyl-

benz(a)anthracene/12-O-tetra-decanoylphorbol-13-acetate (DMBA/TPA)

two-stage chemical carcinogenesis model and analyzed the skin during

homeostasis and tumorigenesis. LRIG2-TG mice did not exhibit alterations

in skin development or homeostasis but showed an interaction between

LRIG2 and thrombospondin-1, which is often involved in angiogenesis

and tumorigenesis. However, during carcinogenesis, transgenic animals

showed significantly increased tumor progression and a more rapid devel-

opment of cSCC. This was accompanied by changes in the ERBB system.

After a single TPA application, inflammation of the epidermis was

enhanced during LRIG2 overexpression. In human skin samples, LRIG2

expression was identified in the basal layer of the epidermis and in hair fol-

licles of normal skin, but also in cSCC samples. In conclusion, epidermal

LRIG2 excess is associated with activated EGFR/ERBB4-MAPK signaling

and accelerated tumor progression in experimentally induced NMSC, sug-

gesting LRIG2 as a potential oncoprotein in skin.
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1. Introduction

Excessive exposure to the sun and a history of sun-

burns are often linked to an increased incidence of

malignant skin lesions (Kim and He, 2014; Rosso

et al., 1996). Every third cancer diagnosis is skin can-

cer, the most common type of cancer among Cau-

casians, with up to three million new non-melanoma

skin cancer (NMSC) cases per year worldwide (WHO,

2019). Increasing NMSC incidences demand the devel-

opment of new therapies and prophylactic measures,

as well as the optimization of screenings. NMSC arises

from keratinocytes, and can be divided into basal cell

carcinoma or cutaneous squamous cell carcinoma

(cSCC) depending on the cell type from which tumors

develop (Lapouge et al., 2011; Sanchez-Danes and

Blanpain, 2018; Tan et al., 2018). Dysregulated growth

factors and their receptors have a deep impact on

tumor initiation and progression (Witsch et al., 2010).

The epidermal growth factor receptor (EGFR,

ERBB1, HER1) plays a crucial role in human cSCC

(Rittie et al., 2007). The EGFR and the other mem-

bers of the ERBB receptor family (ERBB2-4, HER2-4)

are widely expressed in human epidermis (Hoesl et al.,

2018) and regulate key processes of epidermal home-

ostasis, including proliferation, differentiation, and cell

death. The deletion of ERBB4 in murine skin results

in decreased epidermal thickness and keratinocyte pro-

liferation (Hoesl et al., 2018). Skin-specific ERBB2

(Dahlhoff et al., 2017) and ERBB3 (Dahlhoff et al.,

2015) knockout mice have been shown to play a major

role of both receptors in NMSC promotion, and

EGFR has been shown to play a crucial role in skin

carcinogenesis (Chan et al., 2004; Dahlhoff et al.,

2011; 2012). Signaling of the ERBB receptors is con-

trolled by negative or positive feedback loops (Avra-

ham and Yarden, 2011). During pathogenic processes,

the dysregulation of those pathways can also influence

ERBB signaling in a tumorigenic manner (Dahlhoff

et al., 2012). The leucine-rich repeats and

immunoglobulin-like domains (LRIG) family com-

prises three transmembrane proteins (LRIG1-3) (Guo

et al., 2004; Holmlund et al., 2004; Nilsson et al.,

2001; Suzuki et al., 1996) involved in the regulation of

receptor tyrosine kinases (RTKs) such as the ERBB

receptors (Guo et al., 2004; Rafidi et al., 2013). LRIG

proteins have attracted attention especially due to their

potential as prognostic markers in different cancer

types (Lindquist et al., 2014). In the skin, LRIG1 is

predominantly expressed in a stem cell pool of the hair

follicle (HF) (Jensen et al., 2009), similarly to its

expression in the intestine (Powell et al., 2012) and

stomach (Choi et al., 2018), whereas LRIG2 and

LRIG3 are expressed throughout the epidermis (Karls-

son et al., 2008). LRIG1 knockout mice develop psori-

asis-like skin lesions (Suzuki et al., 2002). It has been

shown that LRIG1 promotes EGFR, ERBB2, and

ERBB3 degradation from the cell surface in a negative

feedback loop (Gur et al., 2004; Laederich et al., 2004;

Rubin et al., 2005) and that the extracellular domain

of LRIG1 decreases EGFR signaling in a paracrine

manner (Yi et al., 2011). LRIG3 opposes the function

of LRIG1 and stabilizes the ERBB receptors at the

cell surface of HEK293 cells (Rafidi et al., 2013).

Whereas tumor-suppressive functions of LRIG1 (Mao

et al., 2018) and LRIG3 (Guo et al., 2015) have been

reported in malignant glioma, LRIG2 seems to act

more as an oncoprotein (Holmlund et al., 2009; Ron-

dahl et al., 2013; Xiao et al., 2014). LRIG2 expression

correlates with poor prognosis in SCC of the cervix

and uterus, which show increased LRIG2 RNA levels

(Hedman et al., 2010). It has also been shown that

LRIG2 promotes EGFR signaling as a positive feed-

back loop in glioblastoma cells, supporting the

hypothesis that LRIG2 is acting as an oncoprotein

(Wang et al., 2009; Xiao et al., 2014; 2018). Impor-

tantly, although it is known that LRIG proteins can

promote and suppress tumor growth in a tissue-specific

manner (Hedman and Henriksson, 2007), the molecu-

lar mechanisms and their impact on tumorigenesis in

the skin are mostly unknown. The aim of this study

was therefore to investigate the function of LRIG2 in

the skin during development, homeostasis and tumori-

genesis, and in particular its impact on the ERBB sys-

tem. We consequently generated a skin-specific

transgenic (TG) mouse line overexpressing LRIG2

using the Tet-Off system. LRIG2-TG mice were viable

and showed no major phenotype during development

and homeostasis. When homeostasis was disrupted,

the overexpression of LRIG2, however, resulted in

increased inflammation, angiogenesis, tumor progres-

sion, and an early onset of cSCC, which affected the

ERBB signaling and components of the extracellular

matrix (ECM).

2. Materials and methods

2.1. Cell culture

HaCaT keratinocytes, A431, and A375 cells were pur-

chased from CLS (Cell lines service, Eppelheim, Ger-

many) no more than 4 months before the experiments

were performed. All human permanent cell lines in the

CLS cell bank have been authenticated using the STR

DNA profiling analysis. Mycoplasma testing is done
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every 6 months for all cultured cells using a myco-

plasma detection kit (PlasmoTest, InvivoGen, Tou-

louse, France). Cells were cultured in DMEM�
medium (Biochrom, Berlin, Germany) and supple-

mented with 10% fetal calf serum (FCS; Biochrom),

penicillin (100 U�mL�1), and streptomycin

(100 µg�mL�1) (Biochrom) in a humidified incubator

with 5% CO2 at 37 ˚C.

2.2. Human samples

Biopsy samples of cSCC were obtained from 10

patients ranging in age from 71 to 92 years, after writ-

ten informed consent had been obtained. They were

obtained at the Department of Dermatology, Univer-

sity Hospital W€urzburg, Germany, and taken from the

following anatomical sites: cheeks (3 patients), forehead

(3 patients), nose, ear, dorsum of the hand and lower

leg (1 patient each). Eight of these patients were diag-

nosed at stage I (pT1G1: 6 patients, pT1G2: 2 patients)

and two at stage II (pT2G2 and pT2G3: one patient

each) as classified according to the 8th Edition of the

staging manual of the American Joint Committee on

Cancer (AJCC-8) (Califano et al., 2017). Skin samples

from non-diseased skin of 10 individuals served as con-

trols. Analysis of human tissue samples was approved

by the Ethics Committee of the Medical Faculty,

University of W€urzburg, Germany (reference number

#169/12) and the study methodologies conformed to

the standards set by the Declaration of Helsinki.

2.3. Mice

Mice were maintained under specific-pathogen-free

conditions and had access to water and standard

rodent diet (V1534; Ssniff, Soest, Germany) ad libitum.

C57BL/6N mice expressing the tetracycline-regulated

transcriptional transactivator (tTA) under the keratin

5 (KRT5) promoter have been originally described

previously (Diamond et al., 2000). We cloned murine

Lrig2 cDNA into the pTRE-tight vector (Clontech,

Mountain View, CA, USA) (pTRE-tight-LRIG2-TG

mouse line) or fused Lrig2 cDNA with a sequence

encoding the human influenza hemagglutinin (HA)-epi-

tope C-terminally (pTRE-tight-HA-LRIG2-TG mouse

line), and used these constructs to generate two inde-

pendent TG mouse lines by pronuclear microinjection

into zygotes of C57BL/6N mice. To obtain two inde-

pendent TG KRT5-LRIG2 mouse lines expressing

transgenic LRIG2 skin-specifically, the KRT5-tTA

mouse line was mated with either the pTRE-tight-

LRIG2- or the pTRE-tight-HA-LRIG2-TG mouse

line. Mouse strains were maintained in the C57BL/6N

background. For further studies we used the HA-

tagged TG mouse line, referred to as LRIG2-TG. To

study proliferation rates of 12-month-old mice, 10 mM

bromodeoxyuridine (BrdU; Roche, Mannheim, Ger-

many) dissolved in PBS were injected intraperitoneal

into the mice (30 mg�kg�1 body weight) 3 hours before

dissection.

To inhibit LRIG2-TG expression, 3 mg�mL�1 doxy-

cycline (Dox) [Beladox 500 mg�g�1, bela-pharm (Leh-

necke 793-588), Schortens, Germany] and 5% sucrose

(Sigma, Taufkirchen, Germany) was added to the

drinking water for 2 weeks.

LRIG2-TG mice and controls (Co) were dissected at

indicated time points, skin samples were fixed in 4%

paraformaldehyde (PFA; Sigma), dehydrated, and

embedded in paraffin or snap-frozen and stored at

�80 °C until use. All murine experiments were

approved by the Committee on Animal Health and

Care of the local governmental body of the state of

Upper Bavaria (Regierung von Oberbayern), Ger-

many, and were performed in strict compliance with

the European Communities Council Directive (86/609/

EEC) recommendations for the care and use of labora-

tory animals.

2.4. Chemical skin carcinogenesis and TPA-

induced epidermal dysplasia

Chemical carcinogenesis was carried out according to

internationally accepted standards as described else-

where (Abel et al., 2009). For tumor initiation, the

carcinogen 7,12-dimethylbenz(a)anthracene (100 µL
DMBA dissolved in acetone, 400 nM; Sigma) was

applied once to the shaved back skin of 7-week-old

female LRIG2-TG mice and controls. Tumor promo-

tion was achieved by repeated application of the tumor

promoting agent 12-O-tetra-decanoylphorbol-13-ac-

etate (50 µL TPA dissolved in ethanol, 10 nM; Sigma)

twice a week for 24 weeks. Tumor development was

assessed weekly.

To investigate the effect of LRIG2 during early

hyperproliferative stages, shaved back skin of 9-week-

old LRIG2-TG mice and controls were exposed to a

single dose of TPA (50 µL TPA dissolved in ethanol,

10 nM; Sigma). Mice were euthanized 48 h after TPA

application. Skin samples were processed as described

above.

2.5. Co-immunoprecipitation and Western blot

analysis

Protein was extracted by using Laemmli extraction

buffer for skin samples or protein lysis buffer (0.05 M
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Hepes pH 7.5, 10% glycerol, 0.15 M NaCl, 1% Triton

X-100, 0.5 M EDTA, 0.5 M EGTA, 0.01 M NaF,

0.025 M b-glycerol phosphate, 0.01 M Na3Vo4, Phos-

phatase inhibitor cocktail; Roche) for cell lysates or

skin samples used for co-immunoprecipitation (IP)

experiments. Protein concentration was estimated by

bicinchoninic acid protein assay. About 300 µg of total

protein were used for co-IP with 1.8 µg HA-Tag anti-

body and Dynabeads� Protein G (Invitrogen, Carls-

bad, CA, USA). Protein lysates were pre-cleared with

Dynabeads� Protein G for 60 min at 4 °C and

immunoprecipitated with the HA-Tag antibody conju-

gated to the beads for 2 h at 4 °C. Samples were

washed and elution was done with 29 Laemmli extrac-

tion buffer by heating at 95 °C for 5 min. For Western

blot analysis, half of the co-IP eluate or 5-20 µg of

total protein were separated by SDS/PAGE, trans-

ferred to PVDF membranes (Millipore, Schwalbach,

Germany), and immunoblotted (IB) against antibodies

as indicated. For reference proteins as well as the total

proteins, to analyze the phosphorylated state, we

stripped the membranes by incubating them with a

stripping buffer [2% SDS, 62.5 mM Tris/HCl, pH 6.7

and 100 mM b-mercaptoethanol (BME)] for 40 min at

70 °C. Afterwards, membranes were washed, blocked,

and incubated with the second primary antibody. All

primary and secondary antibodies and their dilutions

are provided in Table S1. Densitometrical analysis was

done using IMAGEJ (http://rsb.info.nih.gov/ij).

2.6. Histology, immunohistochemistry, and

morphometric analysis

Skin samples were either embedded in paraffin or

snap-frozen on dry ice and embedded in Tissue-Tek�

O.C.T.TM Compound (Sakura Finetek, Alphen aan den

Rijn, the Netherlands). Giemsa or hematoxylin and

eosin (H&E)-staining, immunofluorescence, and

immunohistochemistry were performed as described

previously (Hoesl et al., 2018). Giemsa and H&E-

stained sections were employed for histological analy-

sis. Immunohistochemical staining was performed for

the analysis of LRIG2 expression in human tissue

samples and the detection of proliferating cells

(MKI67 or BrdU positive). Briefly, sections were

boiled in 10 mM sodium citrate buffer (pH 6.0) for

antigen retrieval, and the endogenous peroxidase was

blocked with 3% H2O2 for 15 min. Slides were

blocked with 5% serum from the secondary antibody

host and incubated overnight at 4 °C with indicated

antibodies. After being washed in Tris-buffered saline

solution, the slides were incubated for 1 h with appro-

priate secondary biotin-conjugated antibodies followed

by 30 min incubation with streptavidin-biotin complex

(Vector Laboratories, Burlingame, CA, USA).

ImmPACT� AMEC Red or DAB Peroxidase (HRP)

substrate (Vector Laboratories) were used as chro-

mogen. Counterstaining was performed with hema-

toxylin. Immunofluorescence stainings were performed

using the above protocol, but without blocking

endogenous peroxidase and without incubation with

the streptavidin-biotin complex. Additionally, the

M.O.M. Immunodetection Basic kit (Vector Laborato-

ries) was applied to murine sections if primary anti-

bodies were raised in mice. All primary and secondary

antibodies and their dilution are listed in Table S1.

For morphometric investigations, three different H&E-

or Giemsa-stained back skin sections were analyzed.

Per animal, 60 pictures covering a total length of

39.2 mm of back skin epidermis were taken with a

2009 magnification lens using a Leica DFC425C digi-

tal camera (Leica Microsystems, Wetzlar, Germany).

The area of all visible SGs was recorded with LAS soft-

ware version 3.8.0 (Leica Microsystems) and employed

to calculate the mean gland area. Epidermal thickness

was investigated on the same sections on three con-

stantly distributed measuring points per picture, result-

ing in a total of 180 measuring points per animal. To

analyze the epidermal proliferation rate, BrdU- or

MKI67-stained sections were evaluated and the total

number of epidermal nuclei and the total number of

BrdU or MKI67 positive nuclei were similarly deter-

mined on 60 images covering a length of 39.2 mm.

2.7. Gelatin zymography

Gelatin zymography was performed as described previ-

ously (Reiter et al., 2015). Briefly, protein samples

(50 µg) lysed in protein lysis buffer were separated on

an 8% acrylamide gel with 1% gelatin. Gels were incu-

bated in a renaturation-buffer (2.5% Triton X-100 in

H2O), followed by a 20 h developing step in the incu-

bation buffer (500 mM TRIS, 2 M NaCl, 50 mM CaCl2,

50 µM ZnCl2) at 37 °C, stained with Coomassie Bril-

liant Blue R, and washed with decolorizing solution

(5% methanol, 7% acetic acid). Proteinase activities

were determined by densitometrical analysis of the

inverse band intensities using IMAGEJ.

2.8. Mass spectrometry analysis

For mass spectrometry analysis reduced (8% BME)

and non-reduced protein samples of LRIG2-TG back

skin and controls were separated by SDS/PAGE. Gels

were stained with Coomassie Brilliant Blue R, and

protein bands above 300 kDa were excised. To reduce
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disulfide bonds, the gel slices were incubated in 45 mM

dithioerythritol/50 mM NH4HCO3 for 30 min at

55 °C. Free sulfhydryl groups were blocked using

0.1 M iodoacetamide in 50 mM NH4HCO3 at room

temperature for 2 9 15 min. For digestion, gel pieces

were minced and covered with 100 ng porcine trypsin

in 50 mM NH4HCO3 (Promega, Madison, WI, USA).

Peptides were separated on a C18 column (PepMap

RSLC, C18, 2 µm, 100A, 75 µm 9 50 cm; Thermo

Scientific, Rockford, IL, USA) at a flow rate of

200 nL�min�1 using an EASY-nLC 1000 system

(Thermo Scientific, Rockford, IL, USA). The gradients

consisted of a 120 min ramp from 2% to 25% B

(100% acetonitrile, 0.1% formic acid) and a consecu-

tive ramp to 50% B within 10 min. Mass spectra were

acquired using a top 5 data-dependent method on an

online coupled LTQ Orbitrap XL instrument (Thermo

Scientific, Rockford, IL, USA). Spectra were searched

using MASCOT V2.4 (Matrix Science Ltd, London, UK)

and the murine subset of the UniProt database. For

evaluation of the data, SCAFFOLD V 4.1 (Proteome Soft-

ware, Inc, Portland, OR, USA) was used.

2.9. RNA expression analysis

Organs were homogenized in TRIzol reagent (Invitro-

gen, Darmstadt, Germany) for RNA isolation. 3 µg
RNA were reverse-transcribed in a final volume of

30 µL using RevertAid Reverse Transcriptase (Thermo

Scientific, Schwerte, Germany) according to the manu-

facturer’s instructions. For qualitative analysis of

mRNA expression of HA-Lrig2, reverse transcription

PCR (RT-PCR) using reagents from Qiagen (Hilden,

Germany) was performed. The final reaction volume

was 20 lL, and cycle conditions were 94 °C for 5 min

followed by 35 cycles of 94 °C for 1 min, 60 °C for

1 min, and 72 °C for 1 min. The following primers

were employed: HA-Lrig2 forward primer 50-GAGG-

CAGGCAGCCATCAGC-30 and reverse primer 50-
TCAAGCGTAGTCTGGGACG-30 and Gapdh for-

ward primer 50-TCATCAACGGGAAGCCCATCAC-

30 and reverse primer 50-AGACTCCACGACATACT-

CAGCACCG-30.
Quantitative mRNA expression analysis was per-

formed by quantitative real-time PCR (qRT-PCR)

using the StepOnePlusTM Real-Time PCR System

(Applied Biosystems, Waltham, MA, USA) and the

PowerUpTM SYBR� Green Master Mix (Applied

Biosystems) according to the manufacturer’s instruc-

tions. The final primer concentration was 0.5 lM, and
the final reaction volume was 20 lL, and cycle condi-

tions were 95 °C for 2 min followed by 40 cycles of

95 °C for 15 s, 60 °C for 15 s, and 72 °C for 1 min.

Quantitative values were obtained from the threshold

cycle (CT) number, at which the increase in the signal

associated with the exponential growth of PCR prod-

ucts begins to be detected. Transcribed RNA (cDNA)

quantification was performed by using standard curves

generated with a plasmid containing the murine Lrig2

cDNA. We performed no-template control and no-RT

control assays, which produced negligible signals with

CT values that were greater than 35. Experiments were

performed in duplicates. The following primers were

used: Lrig2-Fw: 50-CACTGAAATACCTGAATTT-

GAGC-30, Lrig2-Rev: 50-TCAGTTCCAAGAACTG-

GAGATG-30.

2.10. Statistical analysis

Data are presented as mean � SEM and compared by

Student’s t-test (GRAPHPAD PRISM version 5.0 for Win-

dows; GraphPad Software, San Diego, CA, USA), and

in the case of more than two groups by ANOVA and

Tukey’s multiple comparison test. Incidence, papilloma

burden, and size were analyzed by 2-way ANOVA.

Group differences were considered to be statistically

significant if P < 0.05.

3. Results

3.1. LRIG2 is expressed in human skin cancer

To evaluate the significance of LRIG2 in human skin

homeostasis and tumorigenesis, we investigated LRIG2

expression in different human skin cell lines and tissue

samples of healthy individuals and patients with cSCC.

Western blot analysis revealed that LRIG2 expression

was significantly increased in human cSCC (A431) and

melanoma (A375) cell lines compared to human ker-

atinocytes (HaCaT) (Fig. 1A). In normal human skin

LRIG2 is predominantly expressed in the basal and

lower spinous layer of the epidermis and in HFs with

a mainly cytoplasmic pattern. In upper spinous layers,

LRIG2 is also located in nuclei. All cSCC samples (10

cSCC samples/10 LRIG2 positive cSCC samples)

revealed prominent LRIG2 expression in tumor cells

with a predominantly nuclear staining pattern

(Fig. 1B). These data indicate a role of LRIG2 during

the pathogenesis of cSCC in humans.

3.2. Overexpression of LRIG2 has no influence

on skin development and homeostasis

To investigate the function of LRIG2 in the skin, we

generated two independent skin-specific inducible
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transgenic mouse lines. We used the Tet-Off system to

induce the overexpression at a later time, in case a

fetal overexpression turns out to be lethal. Both lines

were mated with a keratin 5 promoter (KRT5-tTA)

driver mouse line. As both mouse lines showed no

phenotype, in spite of an overexpression of Lrig2 on

RNA level (data not shown), the LRIG2 transgenic

mouse line (LRIG2-TG) with a C-terminal HA-tag

was used for all experiments described in this manu-

script. LRIG2-TG mice were viable, showed no

macroscopic phenotype, and bred in a Mendelian ratio

(Fig. S1A). RT-PCR (Fig. S1B), qRT-PCR (Fig. S1D)

and Western blot analysis (Fig. S1C) confirmed skin-

specific overexpression of the transgene. Western blots

revealed that LRIG2-TG animals treated for 2 weeks

with doxycycline (Dox+) showed no transgene expres-

sion but endogenous LRIG2 levels comparable to

those of control mice (Fig. S1E). LRIG2-TG mice

showed no altered expression of the other LRIG fam-

ily members LRIG1 and LRIG3 (Fig. S1E).

Immunofluorescence staining against the HA-tag

revealed expression of LRIG2 in the epidermis and

HFs of transgenic animals (Fig. 2A). Histologically,

LRIG2 overexpression had no effect on skin at any

time under homeostatic conditions (Fig. 2B), not even

in a long-term study (up to 12 months). While the HF

cycle was not impaired in LRIG2-TG mice, they

showed significantly more HFs in the late catagen

phase VIII compared with controls on day P18

(Fig. S4). However, these changes seem to be transient,

as such a finding could not be confirmed at any other

time point. Epidermal thickness and sebaceous gland

size showed no differences (Fig. 2C) between LRIG2-

TG animals and control littermates. In addition, epi-

dermal differentiation and proliferation rate were

unchanged in LRIG2-TG mice (Fig. S2). Since LRIG

proteins are feedback loop regulators of the ERBB

receptor family, we analyzed ERBB expression and

activation in the skin of LRIG2-TG and control mice

as well as their main target kinases mitogen-activated

protein kinase 1/2 (MAPK1/2) and RAC-alpha serine/

threonine-protein kinase (AKT), but no differences

became apparent (Fig. S3). Thus, we conclude that

LRIG2 overexpression does not influence epidermal

and HF development or homeostasis.

3.3. LRIG2 binds thrombospondin-1

To identify potential interacting partners of the trans-

membrane protein LRIG2, we performed mass
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Fig. 1. LRIG2 is expressed in human skin,

cSCC, and human skin cell lines. (A)

Western blot analysis of LRIG2

expression in HaCaT, A431, and A375

cells. TUBA1A was used as reference

protein. Densitometric analysis of LRIG2

in relation to TUBA1A reveals that LRIG2

is significantly more highly expressed in

both tumor cell lines compared with

HaCaT keratinocytes. Data are presented

as mean + SEM and were analyzed by

ANOVA and Tukey’s multiple comparison

test. ***P < 0.001. (B)

Immunohistochemical visualization of

LRIG2 expression (in red) in normal

human skin and cSCC. Micrographs are

representative for 10 cSCCs (8 patients

with stage I and 2 patients with stage II

according to AJCC-8, Califano et al., 2017,

see Materials and methods for details)

and 10 normal skin samples.

Magnification as indicated in the

micrographs.
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spectrometry analysis and co-IPs. Investigation of

LRIG2 expression in adult LRIG2-TG and control

mice under reducing and non-reducing conditions by

Western blot, revealed transgenic LRIG2 with a size

of 120 kDa. Additionally, we detected a positive signal

at 300 kDa, but only in non-reduced LRIG2-TG pro-

tein samples (Fig. S5A), which indicates the presence

of proteins interacting with LRIG2. Corresponding

bands of transgenic and control animals were analyzed

by mass spectrometry to detect potential binding part-

ners. Besides LRIG2, 40 further proteins were exclu-

sively identified in transgenic animals and were sorted

by total spectral counts of the non-reduced LRIG2-

TG protein fraction. A table of the top 20 proteins is

shown in Fig. S5B. We identified several keratins but

also two glycoproteins, laminin subunit beta-1

(LAMB1) and thrombospondin-1 (THBS1), both con-

taining EGF-like motifs that possibly interact with

LRIG2. In contrast to LAMB1, THBS1 has previously

been shown to play a role in SCC and other cancers

(Huang et al., 2017). We therefore focused on THBS1

for further studies. THBS1 was exclusively identified in

LRIG2-TG samples by four individual peptides. Cor-

responding MS spectra and probability scores are

shown in Fig. S5C,D. THBS1 has an important role in

tyrosine kinase-dependent signaling, is involved in

angiogenesis and tumorigenesis, and mediates cell-to-

cell and cell-to-matrix interactions. Immunoprecipita-

tion revealed that THBS1 binds LRIG2, suggesting

that THBS1 could be an important interaction partner

of LRIG2 (Fig. 2D). While its expression was not

increased in LRIG2-TG animals, THBS1 may be sta-

bilized by LRIG2 binding (Fig. S3). THBS1 regulates

the matrix-metalloproteinases (MMPs) 2 and 9 (Don-

nini et al., 2004), which could be essential for tumor

progression. We therefore analyzed MMP2 and
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Fig. 2. Skin-specific overexpression of

LRIG2 causes no phenotypical alterations.

(A) Immunofluorescence staining against

HA-tag in the skin of a 12-month-old

LRIG2-TG animal demonstrates a strong

expression of LRIG2 in epidermis, hair

follicles, and sebaceous glands. HA-tag in

green and cell nuclei stained with DAPI

(blue). Scale bar: 50 µm. (B) H&E staining

of the skin of a 12-month-old LRIG2-TG

mouse and a control littermate. Scale

bars: 50 µm. (C) Morphometric analysis of

the epidermal thickness and sebaceous

gland area revealed no alterations (n = 4).

Data were analyzed by Student’s t-test.

(D) Co-immunoprecipitation (IP) of HA-tag

in a LRIG2-TG skin sample of a 12-month-

old mouse. Immunoblotting (IB) revealed

precipitation of LRIG2 and binding of

THBS1. (E) Gelatin zymography of skin

samples of 12-month-old LRIG2-TG mice

and controls (n = 4). Densitometric

analysis of gelatin zymography revealed

increased expression and activity of

MMP2. Data are presented as mean +

SEM and were analyzed by Student’s t-

test. *P < 0.01.
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MMP9 activity by zymography. LRIG2-TG mice

showed significantly increased levels of pro-MMP2

and active MMP2, whereas no changes of MMP9

levels were detected (Fig. 2E). In summary, we identi-

fied THBS1 as a binding partner of LRIG2 and

observed increased levels of pro- and active MMP2, an

important modulator of the ECM, in the skin of

LRIG2-TG mice.

3.4. LRIG2 has a significant impact on

progression of skin carcinogenesis

To determine whether LRIG2 affects skin tumorigene-

sis, we performed a two-stage chemical skin

carcinogenesis model with onetime application of

DMBA on the back skin of LRIG2-TG mice and con-

trol littermates causing tumor initiation followed by

TPA treatment twice a week. In both groups, the first

papillomata arose 4 weeks after DMBA treatment,

without differences in tumor incidence, papilloma bur-

den or size at this time. However, 10 weeks after

tumor initiation we noticed a less pronounced increase

of papilloma burden and papilloma size in LRIG2-TG

animals as compared with controls (Fig. 3B,C).

Instead of papillomata, LRIG2-TG mice developed a

cSCC-like phenotype on their backs, which started

6 weeks after tumor initiation (Fig. 3B). In all, 58% of

the transgenic animals but only 10% of control
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Fig. 3. Accelerated development of cSCC in LRIG2-TG mice in a chemically induced two-step model of skin tumorigenesis. (A) Macroscopic

pictures of the lower back skin of a representative LRIG2-TG animal and a control littermate at the final stage. Scale bars: 1 cm. (B) Papilloma

incidence, cSCC incidence, papilloma burden, and papilloma size of LRIG2-TG animals compared with control littermates (n = 21 Controls/ 15

LRIG2-TG). Data were analyzed by 2-way ANOVA, and error bars represent SEM. Interaction: ***P < 0.001. n.s.: not significant. (C) H&E

staining of a papilloma of a LRIG2-TG mouse and a control littermate. Scale bars: 500 µm. (D) H&E staining of cSCC of a LRIG2-TG mouse and

back skin of a control littermate. Arrow points to tissue vascularization, indicating angiogenesis in LRIG2-TG mice. Scale bars: 50 µm.
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littermates were affected (Fig. 3A,B). Histological and

immunofluorescence analysis of the skin lesions

revealed a phenotype resembling human cSCC. Atypi-

cal spindle-like tumor cells arising from the epidermis

protruded into the dermis and were accompanied by

an inflammatory infiltrate (Fig. 3D). Moreover, vascu-

larization appeared to be increased, which indicates

angiogenesis (arrow, Fig. 3D). Tumors were stained

for keratin 8 (KRT8), an established marker for cSCC

in mice (Larcher et al., 1992). The staining showed

that KRT8 was highly expressed in the cSCC-like

lesions of LRIG2-TG mice, but not in the controls

(Fig. 4B). Additionally, cSCC-like lesions of transgenic

mice were poorly differentiated. In transgenic animals,

the expression of epidermal differentiation markers

[keratin 5 (KRT5), keratin 6 (KRT6), keratin 10

(KRT10), and loricrin (LOR), see Fig. 4A] in the

cSCC-like lesions decreased significantly in comparison
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Fig. 4. Epidermal differentiation during chemical induced skin tumorigenesis. (A) Immunofluorescence stainings against epidermal

differentiation markers KRT5, KRT6, KRT10, and LOR (in green) (B) Immunofluorescence staining against CDH1, VIM, and KRT8 (in green).

Cell nuclei are stained with DAPI (blue). Skin was obtained 24 weeks after initiation of chemically induced tumorigenesis. Shown are

representative pictures of control skin including papillomata or close to papillomata and of LRIG2-TG skin at the transition from epidermis to

cSCC (white dashed line). Scale bars: 50 µm.
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with the adjacent epidermis, whereas the epidermis

around the papillomata of controls was still differen-

tiated. Moreover, epithelial polarity was lost. A

decrease of epidermal E-cadherin (CDH1) and a con-

comitant increase of vimentin (VIM) expression in

the dermis indicate an enhanced tumor invasiveness,

which might refer to epithelial–mesenchymal transi-

tion (EMT) (Fig. 4B). Altogether, our data suggest

that LRIG2 has a tumor promoting function in mur-

ine skin, which results in an accelerated onset of

cSCC development.

3.5. Increased EGFR and ERBB4 expression

during tumor progression upon LRIG2

overexpression

To investigate whether the tumor promoting activity

of LRIG2 is ERBB receptor-dependent, we analyzed

the expression of the latter and respective down-

stream targets in transgenic and control skin during

two-stage skin carcinogenesis. Immunofluorescence

and Western blot analyses revealed an increased

expression of EGFR and ERBB4 in the cSCC-like

lesions of LRIG2-TG mice (Fig. 5A,B). Concomi-

tantly, the intracellular domain (ICD) of ERBB4 was

significantly increased in LRIG2-TG mice (Fig. 5A),

which indicates that the receptor undergoes regulated

intramembrane proteolysis. Thus the ICD can

translocate to the nucleus and act as transcription

factor. Additionally, phosphorylated ERBB4 and

phospho-EGFR were significantly increased in

LRIG2-TG mice compared with control littermates.

We identified increased levels of AKT and phospho-

rylated AKT, a typical downstream target of the

ERBB receptors, and phosphorylation of MAPK1/2

was significantly increased in transgenic animals com-

pared with controls (Fig. 5C). The activity of other

downstream targets such as SHC-transforming pro-

tein 1 (SHC1), signal transducer and activator of

transcription 3 (STAT3), STAT5, and GTPase Ras

proteins (RAS) was unchanged (data not shown).

The phosphorylation of phosphatidylinositol 3,4,5-

triphosphate 3-phosphatase and dual specificity pro-

tein phosphatase PTEN (PTEN) was significantly

increased, whereas total PTEN was decreased. This

implies the loss of the tumor-suppressive function of

PTEN (Fig. 5C). Western blot analysis of THBS1

and zymography analysis for MMP2 and MMP9

revealed no differences between LRIG2-TG and con-

trol animals (data not shown). In summary, these

data indicate that during tumorigenesis LRIG2

increases skin tumor progression, associated with acti-

vation of EGFR/ERBB4-MAPK signaling.

3.6. LRIG2 impairs TPA-induced epidermal

hyperplasia

Our data suggest that LRIG2 is involved in tumor

progression and accelerates tumorigenesis. To investi-

gate an early point of time we induced epidermal

hyperplasia by application of a single dose of TPA. In

comparison with control mice, the increase of epider-

mal thickness upon TPA treatment was less pro-

nounced in LRIG2-TG animals (Fig. 6A,B). These,

however, developed a more prominent neutrophil-

dominated inflammation (Fig. 6A). Western blot anal-

ysis revealed that the proinflammatory cytokine inter-

leukin-1-alpha (IL1A) was significantly increased in

LRIG2-TG mice, whereas interleukin-6 (IL6) was

unchanged (Fig. 6C,I). As previously observed in our

carcinogenesis model, ERBB4 was up-regulated in the

back skin of LRIG2-TG mice 48 h after TPA treat-

ment, but the fraction of phosphorylated ERBB4 was

reduced. The other ERBB receptors were unchanged –
with the exception of ERBB2, which exhibited higher

expression in LRIG2-TG mice compared with control

littermates after TPA treatment (Fig. 6C,F). Addition-

ally, we found increased activation of MAPK1 in

LRIG2-TG TPA-treated skin, whereas MAPK2 was

not affected (Fig. 6C,H). Importantly, PTEN expres-

sion levels were increased in LRIG2-TG mice, but

appeared to be phosphorylated and therefore inacti-

vated (Fig. 6C,G). In accordance with a less prominent

increase of epidermal thickness we found significantly

increased levels of cleaved caspase-3 (CASP3) in the

skin of TPA-treated LRIG2-TG mice than in controls

(Fig. 6C,G), whereas the proliferation rate was

unchanged (Fig. 6C,D,G). Moreover, LRIG2-TG mice

revealed a significant increase in THBS1 expression

(Fig. 6C,G) and a significant up-regulation of pro-

MMP9 (Fig. 6E). Unlike the findings under homeo-

static conditions, however, MMP2 activity was not

affected by LRIG2 overexpression due to TPA treat-

ment (Fig. 6E). In summary, LRIG2 overexpression

leads to an increased inflammatory response after TPA

treatment, which might contribute to tumorigenesis.

4. Discussion

LRIG proteins are important regulators of different

RTKs and are involved in negative and positive feed-

back loops of the ERBB receptor family (Avraham

and Yarden, 2011). LRIG1 and LRIG3 show mostly

tumor-suppressive function, whereas LRIG2 frequently

seems to act as an oncoprotein (Lindquist et al., 2014).

Increased LRIG2 expression correlates with a poorer

prognosis in patients with oligodendroglioma
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(Holmlund et al., 2009), cervical SCC (Hedman et al.,

2010), non-small cell lung cancer (Wang et al., 2014),

and glioblastoma (Wang et al., 2009). Ubiquitous

LRIG2 knockout mice were protected against glioblas-

toma, demonstrating that LRIG2 plays a crucial role

in glioblastoma initiation and progression (Rondahl

et al., 2013). It has been shown that the extracellular

domain of the transmembrane LRIG2 protein is the

part of the protein that is required to mediate the pro-

liferative effect during glioblastoma progression (Xiao

et al., 2014). This is an important finding, as the extra-

cellular domain of a protein is usually a more amen-

able drug target. Nevertheless, tumorigenic activity of

LRIG proteins is often tissue-specific (Hedman et al.,

2010; Holmlund et al., 2009; Lindquist et al., 2014)

and nothing is known about the function of LRIG2 in

the skin and skin tumorigenesis. We identified LRIG2

expression in a human keratinocyte cell line (HaCaT),

in an epidermal tumor cell line (A431), in a human

melanoma cell line (A375), and in human tissue sam-

ples of cSCC patients and normal skin. Our study

revealed increased LRIG2 expression in cancer cells

in vitro, indicating a tumorigenic function of LRIG2.

Interestingly, LRIG2 expression is mostly cytoplasmic

in normal, basal epidermis, but nuclear in more differ-

entiated epidermal layers and in cancer cells. LRIG

proteins show an altered localization in psoriasis

(Karlsson et al., 2008). The nuclear localization of

LRIG2 in our cSCC tissue samples may also indicate

a proliferative and pathogenic function.

To investigate the impact of LRIG2 during skin

development, homeostasis, and tumorigenesis in vivo,

we generated a skin-specific LRIG2-TG mouse model.

Long-term studies of the mouse line revealed no

major phenotypical changes under homeostatic condi-

tions. LRIG2 had no impact on epidermal thickness,

sebaceous gland size, epidermal differentiation or pro-

liferation. By employing proteomic analysis, we identi-

fied THBS1 as a potential binding partner of LRIG2.

THBS1 attracted our attention because of its EGF-

like motifs (Carlson et al., 2008), its function in the

modulation of the ECM, angiogenesis, and its implica-

tion in SCC and other types of cancer (Donnini et al.,

2004; Huang et al., 2017; Qian et al., 1997; Tan and

Lawler, 2009). The binding of THBS1 could be related

to an increase of pro-MMP2 and active MMP2, which

is essential for tumor cell invasion, inflammation, and

neovascularization (Hernandez-Perez et al., 2012).

Although these effects of LRIG2 have no obvious

impact on skin homeostasis, LRIG2-TG mice showed

an increased tumor progression compared with control

littermates during two-stage chemical skin carcinogen-

esis. Animals showed no differences in tumor initia-

tion, but at the end of the experiment 58% of all

LRIG2-TG mice, compared with only 10% of all con-

trols, developed skin tumors resembling human cSCC.

LRIG2-TG mice showed downward invasion of atypi-

cal cells, neovascularization, and inflammation,

accompanied by KRT8 expression and the loss of epi-

dermal differentiation markers. Additionally, the

decreased expression of CDH1 and concomitant

increase of VIM suggest an EMT (Kang and Mas-

sague, 2004; Navarro et al., 1991) in LRIG2-TG ani-

mals, a process essential for cell–cell interaction and

cSCC progression. Analysis of ERBB receptor expres-

sion revealed an increase of EGFR and ERBB4 and

their downstream targets MAPK and AKT. The

autonomous EGFR and ERBB4 receptors are impor-

tant for tissue development and homeostasis, but they

also play a major role in tumorigenesis, particularly in

skin cancer (Citri and Yarden, 2006; Holbro and

Hynes, 2004; Yarden and Sliwkowski, 2001). Addi-

tionally, we found the ICD of ERBB4 increased in

cSCC tissue samples of LRIG2-TG mice, which may

act as a transcription factor and have an important

impact on tumorigenesis (Haskins et al., 2014; Maatta

et al., 2006). Increased levels of phosphorylated

MAPK and AKT and the concomitant loss of PTEN

phosphatase activity are often observed in rapid and

aggressive tumorigenesis (Segrelles et al., 2002; Yang

et al., 2015). LRIG2 overexpression seems to influence

tumor suppressor PTEN activity, which may explain

the dramatic phenotype during skin carcinogenesis

and the absence of effects in skin homeostasis. Phos-

phorylation and thus inactivation of PTEN at residues

Ser380/Thr382/383 is significantly increased in

LRIG2-TG mice 24 weeks after initiation of chemi-

cally induced tumorigenesis (Yang et al., 2015). As the

altered molecular signaling may reflect the differences

between papillomata and cSCC tissue, we additionally

analyzed tumor initiation in the transgenic LRIG2

model. To investigate the very early tumor initiation

Fig. 5. ERBB receptor expression during chemically induced skin tumorigenesis. (A) Western blot and densitometric analysis of phosphorylated

ERBB receptors and ERBB receptors in skin samples obtained 24 weeks after initiation of chemically induced tumorigenesis. TUBA1A was

used as reference protein (n = 6). (B) Immunofluorescence staining against ERBB1-4 receptors (in green) using back skin sections from the

carcinogenesis experiment of control and LRIG2-TG mice. Scale bars: 50 µm. (C) Western blot and densitometric analysis of phosphorylated

and total downstream targets of ERBB receptors (MAPK1/2, AKT, and PTEN). GAPDH was used as reference protein (n = 6). Data are

presented as mean + SEM and were analyzed by Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001.
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in more detail, we performed an epidermal hyperplasia

experiment with a single TPA application. LRIG2-TG

mice showed increased inflammatory cell infiltration

and neovascularization, which can be an indication for

tumor promotion and progression. These findings were

additionally confirmed by an increase of IL1A expres-

sion (Salven et al., 2002) and the up-regulation of

ERBB2 and ERBB4 in the skin of LRIG2-TG mice.

EGFR, however, was not increasingly expressed or

phosphorylated at this early stage, but the increased

expression of PTEN seems to be phosphorylated and

thus inactivated. Inactivation of PTEN plays an impor-

tant role in human cSCC development (Darido et al.,

2018; Hertzler-Schaefer et al., 2014), consequently the

loss of PTEN tumor-suppressive function might be an

important element of LRIG2-mediated tumor progres-

sion during skin cancer. Furthermore, it was shown

that THBS1 up-regulates MMP9 expression in

endothelial cells and promotes tumor cell invasion

(Qian et al., 1997). We found the expression of THBS1

and MMP9 to be increased in LRIG2-TG mice 48 h

after TPA application, assuming that THBS1 expres-

sion could be involved in LRIG2-mediated tumor initi-

ation and progression (Tan and Lawler, 2009). THBS1

may induce angiogenesis in tumors, influence tumor

cell adhesion, migration, invasion, and metastasis both

in vitro and in vivo (Tuszynski and Nicosia, 1996).

Additionally, THBS1 is expressed in tumor cells, show-

ing tumor progressive function. THBS1 also induces

auto-phosphorylation of EGFR in A431 cells (Liu

et al., 2009). The above supports a relationship with

the ERBB receptor system. The increase of inflamma-

tory cells such as macrophages and monocytes, how-

ever, may also have led to the increase of THBS1

(Lopez-Dee et al., 2011). Our findings during early

hyperproliferative stages point to a tumor-promoting

influence of LRIG2 excess. In contrast, we found no

alterations in THBS1 or MMP levels during skin car-

cinogenesis. The up-regulation of pro-MMP9 during

TPA approach and the increase of pro- and active

MMP2 may be overlaid by a general increase of

MMP2 and MMP9 in cSCC as previously described

(Dumas et al., 1999).

5. Conclusions

In conclusion, our study reveals an important function

of LRIG2 during skin carcinogenesis. In human skin,

LRIG2 is expressed in the HF and in the basal layer

of the epidermis, and our preliminary data indicate

that its expression is increased in skin cancer cell lines.

Furthermore, we detected LRIG2-positive cells as a

frequent feature of human cSCC samples. Even though

LRIG2 overexpression has no obvious major impact

on skin development and homeostasis, LRIG2 may

promote tumor growth and induce a more severe car-

cinogenic phenotype, possibly by inactivating the

tumor suppressor PTEN. Our results show an early

onset of cSCC in LRIG2-TG mice during two-stage

chemical skin carcinogenesis accompanied by altered

ERBB signaling.
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