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pTuneos: prioritizing tumor neoantigens
from next-generation sequencing data
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Abstract

Background: Cancer neoantigens are expressed only in cancer cells and presented on the tumor cell surface in
complex with major histocompatibility complex (MHC) class | proteins for recognition by cytotoxic T cells. Accurate
and rapid identification of neoantigens play a pivotal role in cancer immunotherapy. Although several in silico tools
for neoantigen prediction have been presented, limitations of these tools exist.

Results: We developed pTuneos, a computational pipeline for prioritizing tumor neoantigens from next-generation
sequencing data. We tested the performance of pTuneos on the melanoma cancer vaccine cohort data and tumor-
infiltrating lymphocyte (TIL)-recognized neopeptide data. pTuneos is able to predict the MHC presentation and T
cell recognition ability of the candidate neoantigens, and the actual immunogenicity of single-nucleotide variant
(SNV)-based neopeptides considering their natural processing and presentation, surpassing the existing tools with a
comprehensive and quantitative benchmark of their neoantigen prioritization performance and running time.
pTuneos was further tested on The Cancer Genome Atlas (TCGA) cohort data as well as the melanoma and non-
small cell lung cancer (NSCLC) cohort data undergoing checkpoint blockade immunotherapy. The overall
neoantigen immunogenicity score proposed by pTuneos is demonstrated to be a powerful and pan-cancer marker
for survival prediction compared to traditional well-established biomarkers.

Conclusions: In summary, pTuneos provides the state-of-the-art one-stop and user-friendly solution for prioritizing
SNV-based candidate neoepitopes, which could help to advance research on next-generation cancer
immunotherapies and personalized cancer vaccines. pTuneos is available at https://github.com/bm2-lab/pTuneos,
with a Docker version for quick deployment at https://cloud.docker.com/u/bm?2lab/repository/docker/bm?2lab/

ptuneos.
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Background

Recent tumor immunotherapy studies demonstrated that
exploiting a patient’s own immune system is an ad-
vanced strategy for eliminating cancer cells [1]. Tumor-
specific neopeptides (so-called neoantigens), some of
which could be presented on the tumor cell surface
complexed with human leukocyte antigen (HLA) class I
protein, play an important role in this process. The
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recognition of peptide-major histocompatibility complex
(MHC)-I complexes by cytotoxic T cells can activate the
T cell response [2, 3]. Moreover, the tumor mutation
load and predicted neoantigen load are reported to
strongly correlate with the clinical response to immune
checkpoint inhibition in several cancer types [4—6].
Somatic mutations are largely heterogeneous across
different cancers and different patients. Therefore,
neoantigens must be identified and evaluated at a per-
sonalized level [7, 8]. In general, the prediction of neoan-
tigens based on next-generation sequencing (NGS) data
comprises three steps: (1) obtain a list of genomic som-
atic mutations from whole-exome sequence data and
convert it into mutation-containing “neopeptides” of
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appropriate lengths, (2) predict the binding affinity be-
tween the peptides and patient-specific HLA alleles, and
(3) evaluate the immunogenicity of the predicted pep-
tides [9, 10]. To date, several in silico tools for single-
nucleotide variant (SNV)-based candidate neoepitopes
prediction have been described, including pVAC-Seq
[11], MuPeXI [12], TSNAD [13], and Neopepsee [14].
pVAC-Seq and TSNAD focus on MHC-I binding affinity
and implement filter-based strategies to obtain the final
neopeptide without prioritization, which prevents its fur-
ther clinical utilization. MuPeXI prioritizes the candidate
peptide based on limited in vitro information. Neopepsee
constructs a machine-learning model based on the im-
munogenicity features of the peptide to optimize the
candidate neoepitope set. Among these tools, only Neo-
pepsee provides a learning-based measurement of neoe-
pitopes, but issues remain to be overcame: (1) features
used in Neopepsee might be irrelevant and difficult to in-
terpret biologically, (2) the training data used in Neopep-
see lack specificity as the peptides come from generic
antigens rather than true noeantigens with experimental
validation, and (3) the training data used in Neopepsee
are highly imbalanced. Such training data may induce
substantial bias in actual neoantigen identification. Fur-
thermore, all the available tools are developed based on
the data obtained from MHC multimer technology,
which stimulates patient-derived T cells with a synthetic
MHC-peptide complex, indicating that these tools are
mainly designed to predict the ability of MHC presenta-
tion and T cell recognition of the candidate neopeptide
in vitro. However, the actual immunogenicity of neoanti-
gen in patient tumor might be influenced not only by
the MHC presentation and T cell recognition, but also
by many other endogenous factors including neopeptide
cleavage probability, transporter associated with antigen
processing (TAP) transport efficiency, peptide expres-
sion level, mutation allele fraction, and neoantigen cellu-
lar prevalence. None of the existing tools provides a
quantitative and comprehensive metric to evaluate these
characteristics and the immunogenicity of the naturally
processed and presented neoantigen, which is the most
challenging issue for clinical application of these tools.
Here, we present a novel computational strategy to ad-
dress the abovementioned issues with its implementa-
tion. The program, called pTuneos (prioritizing tumor
neoantigens from next-generation sequencing data), pre-
sents an efficient in silico tool to predict the immuno-
genicity of SNV-based neopeptides based on
experimentally validated neoantigens, surpassing the
existing tools with a comprehensive and quantitative
benchmark of their neoantigen prioritization perform-
ance and running time. Together, pTuneos addresses the
above challenges with the following advantages: (1) pTu-
neos firstly presented a learning-based framework, i.e.,
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Pre&RecNeo to predict and prioritize neoepitopes recog-
nized by T cell. This module can be applied to predict
the MHC presentation and T cell recognition ability of
the neoantigens, and it is suitable for the evaluation of
the neopeptide in vitro immunogenicity. Then, pTuneos
presented a novel neoepitope scoring schema, i.e., Refi-
nedNeo to evaluate the naturally processed and pre-
sented neoepitope immunogenicity (defined as the
refined immunogenicity score), which was demonstrated
to successfully refine the neoepitope ranking list ob-
tained by the Pre&RecNeo model and filters out those
neoepitopes that could be recognized by T cell but could
not be naturally processed and presented. This module
can be applied to prioritize the in vivo immunogenicity
of the peptides. (2) The refined immunogenicity score is
demonstrated to be a powerful and pan-cancer marker
for survival analysis compared to traditional well-
established biomarkers on TCGA data. (3) The refined
immunogenicity score is demonstrated to be leveraged
to better predict survival in anti-CTLA-4-treated melan-
oma patients and anti-PD-1-treated lung cancer patients.
(4) A quantitative evaluation measurement is presented to
comprehensively evaluate the predicted neoantigen rank-
ing result based on the golden standard data. (5) An effi-
cient data synthesizing technique is applied to address the
data imbalance issue for model training. (6) Multiple
thread processing is implemented in pTuneos for running
speed acceleration, and (7) pTuneos can be quickly in-
stalled and deployed with the Docker version at https://
cloud.docker.com/u/bm2lab/repository/docker/bm2lab/
pTuneos.

Implementation
Design of pTuneos pipeline
Data preprocessing

Processing of whole-genome or whole-exome sequencing
(WGS/WES) data Sequencing quality control was per-
formed using Trimmomatic-0.36 [15] to trim the read
below an average Phred score of 20 and cut out standard
adapters. Reads were aligned to the human genome
(hg38) using the Burrows-Wheeler Aligner version
0.7.12 [16]. A BAM file was sorted and produced with
the Picard version 2.3.0 SortSam, and duplicate reads
were marked and removed using the Picard tool Mark-
Duplicates. Base recalibration was performed with
GATK version 3.8.0 [17] to reduce false-positive variant
calls. SNV calls were performed with Mutect2 while
indel calls were created utilizing GATK Mutect2 version
3.8.0 [18], Varscan2 [19], and Strelka2 [20]. All muta-
tions with allelic fractions of less than 0.05 or coverage
of less than 10x were excluded to eliminate false-
positive sites. HLA alleles of each sample were inferred
from trimmed WGS or WES data using OptiType [21]
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with default settings that could achieve HLA typing with
~97% accuracy.

Processing of RNA-seq data Kallisto [22] was utilized
to quantify the abundance of gene isoforms from the
RNA-seq data. The reference transcriptome was down-
loaded from the Ensembl database for GRCh38 using
Ensembl genome browser version 89. The data were
indexed using the default read-length option of 100-
200 bp in the RNA-seq data. The abundance of gene iso-
forms was calculated as transcripts per kilobase million.

Candidate neoepitope identification

Mutation annotation and peptide extraction All the
mutations were annotated with Ensembl Variant Effect
Predictor [23] (VEP) to identify non-synonymous muta-
tions, including SNVs and indels. For SNVs, the genomic
change was directly applied to the proteome reference,
leading to a 21-mer mutant peptide and a normal peptide,
and the peptides were cut into 9—11-mer short peptides
that match the length of the neoantigen. For indels, the
mutant protein sequence was inferred by translating the
mutant ¢cDNA sequence and 9-11-mer short peptides
were also produced.

Epitope prediction Both mutant peptide binding affin-
ity and normal peptide binding affinity were predicted
between peptides and the (up to 6) patient-specific HLA
alleles using NetMHCpan version 4.0 [24] in the binding
affinity (BA) model. The percent rank score of binding
affinity was obtained for neoantigen filtering because this
metric is less biased than binding affinity when compar-
ing binding between multiple HLA alleles. Neopeptides
with a percent rank score greater than 2 were excluded
to obtain candidate neoantigens that could be confi-
dently presented by the MHC-I molecule.

Model building for MHC-presented and T cell-recognized
neoepitope prediction

Currently, MHC multimer analysis is the most popular
technology for detecting an antigen-specific T cell response
[25]. Patient-derived T cells such as peripheral blood
mononuclear cells were cultured in vitro, followed by
stimulation of a synthetic peptide-MHC complex, and pep-
tides that elicited T cell immunoreactivity were considered
experimentally validated immunogenic neoepitopes. We
considered the following five non-redundant features re-
lated with neoepitope presentation and recognition, includ-
ing mutant peptide-MHC affinity percentile rank, the
normal peptide-MHC affinity percentile rank, sequence
similarity between the normal and mutant peptides, the
peptide hydrophobicity score, and T cell recognition of the
peptide-MHC complex. We performed feature engineering
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to scale every feature to the same range considering the
biologic value.

Mutant and normal peptide percentile rank score
Percentile rank was used to measure MHC-I binding af-
finity instead of ICso because this percentile rank is less
biased than ICs, when comparing binding between mul-
tiple HLA alleles [26]. The percentile rank was scaled
from O to 1 by a negative logistic function as a binding
affinity score L(x), which is given by:

1

L(x) = 71 T eS(x—Z)

(1)

This function gives a value approaching 0 for a high
percentile rank, a midpoint at a percentile rank of 2, and
a value of 1 for a low percentile rank. The constant 2 de-
fines the inflection point, and it was selected as the rec-
ommended cutoff for possible peptide binding given by
NetMHCpan. The function was applied to both the mu-
tant peptide-MHC affinity percentile rank and the nor-
mal peptide-MHC affinity percentile rank, leading to a
mutant peptide percentile rank score and a normal pep-
tide percentile rank score.

Self-sequence similarity between normal and mutant
peptides Several studies demonstrated that sequence
similarity is an important feature of immunogenicity
[27]. Using the BLOSUMS62 matrix, the amino acids at
each position along the paired tumor and normal pep-
tides were obtained as an aggregate similarity score, with
higher scores indicating higher similarity. As these
scores vary depending on the amino acid composition of
the peptide tested, we performed a normalization by div-
iding the similarity score for a neoantigen compared
with another peptide by the similarity score of the
neoantigen tested against itself to produce self-similarity
scores, which gave a value between 0 and 1, where a
value of 1 indicates a perfect match.

Peptide hydrophobicity score The hydrophobicity of
amino acids at T cell receptor (TCR) contact residues is
a strong hallmark of CD8+ T cell-mediated immunity
[28]. We first collected all peptide MHCs with a positive
T-cell response classified as the immunogenic peptide
group and the nonimmunogenic self-peptide group,
which represents cell surface ligand-eluted MHC-I self-
peptides that were antigenically processed and MHC-
bound from Immune Epitope Database (IEDB, www.
iedb.org). Additional curation resulted in a final dataset
with 5018 9-11-mer immunogenic peptides and 8227
9-11-mer nonimmunogenic peptides. Next, we con-
structed three eXtreme Gradient Boosting (XGBoost)
algorithm-based machine-learning models to predict
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the probability of peptides recognized by T cells corre-
sponding to 9-mer, 10-mer, and 11-mer peptides, re-
spectively (Additional file 1: Figure S1. A). A 10-fold
cross-validation reaches an area under the curve (AUC)
score of 0.68, 0.77, and 0.77 corresponding to 9-mer, 10-
mer, and 11-mer peptides (Additional file 1: Figure SI.
B, C, D), respectively, which outperformed the model
trained by the three-layer neuron network reported by
Chowell et al. [28]. The output of each model represents
the T cell recognition probability ranging from 0 to 1.

T cell recognition probability of the peptide-MHC
complex Early studies revealed that TCRs have relatively
low affinities for their peptide-MHC ligands, making stud-
ies of TCR:pepMHC binding prediction difficult [29]. Re-
cently, several methods measuring the T cell recognition
probability of peptide MHCs were proposed based on a se-
quence comparison analysis [14, 30, 31]. Here, we used the
computational model presented by Luksza et al. to calculate
the T cell recognition probability. The model gives R, the
probability that a neoantigen will be recognized by the TCR
repertoire, by alignment with a set of peptides retrieved
from Immune Epitope Database (IEDB). These peptides are
linear epitopes from human infectious diseases that are
positively recognized by T cells after class I MHC presenta-
tion. The model assumed that a neoantigen predicted to
cross-react with a TCR from this pool of immunogenic
peptides is a neoantigen that is more likely to be immuno-
genic itself, as members of the TCR repertoire both
recognize a high number of presented antigens and have in-
trinsic biases in their generation probability. R is defined by
a multistate thermodynamic model. In this model, se-
quence similarity is treated as a proxy for binding energy.
To assess the sequence similarity between a neoantigen
with peptide sequence s and an IEDB epitope e, a gapless
alignment between the two sequences with a BLOSUM62
amino acid similarity matrix was computed and their align-
ment scores were denoted as |s,e|]. Given these sequence
similarities, for a given neoepitope with peptide sequence s,
the probability that it will bind to a TCR specific to some
epitope e from the IEDB pool was calculated as:

R=2Z(k)" > exp(-k(a-|s.el) (2)

eclEDB

where a represents the horizontal displacement of the
binding curve, k sets the steepness of the curve at 4, and

Z(k) =1+ Y exp(-k(a-|s,e|)) (3)

eclEDB

which represents the partition function over the un-
bound state and the all-bound state. Here, k=4.87 and
a = 26, which were determined in the original study [31].
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Collection of training data and testing data for
model building Training data were gathered from 16
studies relating to cancer immunotherapy (Add-
itional file 2: Table S1). These studies assessed the im-
munogenicity of larger sets of neopeptides and
published lists of neopeptides that did or did not elicit a
T cell response in vitro. In 14 of 16 studies, both neo-
peptides and their corresponding unmutant peptides
were retrieved. In the other two studies, some neopep-
tides resulted from genomic frameshift indels and their
corresponding normal peptides were missing or partially
missing, and therefore, we identified the most similar
peptide by aligning the neopeptide to the reference hu-
man proteome with the BLOSUM62 amino acid similar-
ity matrix. The human reference sequence proteome
(release 89 based on genome GRCh38) was downloaded
from Ensembl. The final training dataset included 2191
peptides that were experimentally tested, 84 of which
could elicit a T cell response, resulting in 2107 negative
samples and 84 positive samples. The testing dataset was
obtained from Carreno et al. [32]. Nine of 21 tested pep-
tides were immunogenic (Additional file 3: Table S2).

Handling data imbalance issue As the training set was
extremely imbalanced (84 vs 2107), the classifier trained
on this kind of data would be biased; thus, the Synthetic
Minority Over-sampling Technique (SMOTE) was ap-
plied to the dataset to address this problem. SMOTE
[33] is an over-sampling approach in which the minority
class is over-sampled by creating “synthetic” examples
rather than by over-sampling with replacements and the
minority class is over-sampled by taking each minority
class sample and introducing synthetic examples along
the line segments joining any/all of the k minority class
nearest neighbors. We performed this process utilizing
python package imblearn with parameters k=4 and
kind = “borderlinel”, leading to a balanced dataset for
model training.

Model building Finally, we constructed two machine-
learning classifiers: eXtreme Gradient Boosting [34]
(XGBoost) and random forest (RF). XGBoost was built
using the xgboost package, and the learning rate, max-
imum tree depth, and other hyper-parameters were
tuned by built-in cross-validation coupled with a param-
eter grid search method. RF was built using the sklearn
ensemble package by adjusting the option of using out-
of-bag samples to estimate the generalization accuracy
(oob_score) to true. The performance of the two classi-
fiers was measured identically by 10-fold cross-validation
on the training set and testing set and reached a training
AUC of 0.987 and 0.998 and a testing AUC of 0.654 and
0.833, respectively. Therefore, RF was selected as the
final classifier in our model.
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Score scheme for neoepitope immunogenicity prioritizing
The model presented in the former section could predict
the MHC presentation and T cell recognition ability of
the neoepitope, but actual neoepitope immunogenicity
might be influenced by many other endogenous factors,
including neopeptide cleavage probability, TAP trans-
port efficiency, peptide expression level, mutation allele
fraction, and neoantigen cellular prevalence [32, 35, 36].
To this end, we proposed a quantitative score scheme,
i.e., the refined immunogenicity score based on several
previous studies [11, 12, 31, 37] to refine the immuno-
genicity of the neoepitopes identified above.

Refined immunogenicity score scheme For paired
peptides and MHC alleles, the following values were
obtained:

A = Allele fraction of the mutant gene corresponding
to the neoepitope

E = Expression level of the mutant gene, in transcript
per million (TPM)

N = Combined score of binding affinity, proteasomal
C terminal cleavage, and TAP transport efficiency, as
output by NetCTLpan [35]

C = Cellular prevalence measures the percentage of
tumor cells containing the identified neoantigen, as out-
put by PyClone [38]

R,, = % percentile rank of affinity of the mutant pep-
tide, obtained from NetMHCpan 4.0 [24]

R,, = % percentile rank of affinity of the normal pep-
tide, obtained from NetMHCpan 4.0 [24]

S = Sequence dissimilarity between the mutant peptide
and normal peptide, calculated by (1 minus sequence
similarity)

H = T cell recognition probability of the peptide-
MHC, determined by a machine-learning model using
peptide hydrophobicity information

R =T cell recognition probability of the peptide-MHC
complex, calculated by the formula 2

The refined immunogenicity score P was defined as:

P=1[Ax tan(E) x N x C|[L(Rn)(1-L(R,)/2) x S|[H % R]
(4)
where L(x) is a logistic function given by:

1

L(x) = =

(5)

As seen in formula (4), the refined immunogenicity
score is calculated based on the product of three
terms related to neoepitope processing, presentation,
and recognition, including neoepitope abundance,
neoepitope dissimilarity with a normal peptide, and
T cell recognition probability. The first term mea-
sures the abundance of neoepitopes; here, abundance
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means the probability of the peptide being naturally
expressed and processed before presentation by
MHC-1. The expression level (E) of all the tran-
scripts corresponding to the neoantigen is trans-
formed by a hyperbolic tangent function while
variant allele fraction (A), combined score (N) inte-
gratingbinding affinity, proteasomal C terminal cleav-
age and TAP transport efficiency, and cellular
prevalence (C) are not manipulated. The second
term is related to a potential decrease in immuno-
genicity of the peptide due to negative selection
against cross-reacting T cells, and a sigmoidal logis-
tic function is applied to rank the peptide-MHC
binding affinity. The third term is related to the T
cell recognition probability of the peptide MHC de-
termined by the peptide hydrophobicity information
and T cell cross-reacting immunogenicity, which are
elaborated and calculated in the “Model building for
MHC-presented and T cell-recognized neoepitope
prediction” section. Finally, the immune score gives
a value ranging from 0 to 1, with a higher score in-
dicating stronger immunogenicity. The candidate
neoepitope lists are then ranked by this score to ob-
tain the final neoepitope ranking.

Calculation of the overall neoantigen immunogenicity
score We summed the refined immunogenicity score of
all neoepitopes that were predicted to be positive in the
Pre&RecNeo model as the so-called the overall neoanti-
gen immunogenicity score. This metric measures the total
immunogenicity of the neoantigen in a patient.

Benchmarking and comparison of pTuneos with existing
tools

A variant call format (VCF) file was generated by GATK
Mutect2 as input, and pTuneos Pre&RecNeo, MuPeXI,
and Neopepsee were run with default parameters, leading
to three distinct neoantigen ranking lists. To evaluate
the ranking performance of the three tools, the Rank-
CoverageScore was defined as:

Z rank,, Z rank,
RankCoverageScore = % X coverage (n)—% X coverage (p)
k
coverage (k) = w ke(n,p)

(6)

where T denotes the total neoepitope number identified
and p and 7 denote the set of positive and negative pep-
tides, respectively, that were experimentally validated
in vitro. The first term evaluates the rank of negative pep-
tides considering the average percentile rank and max-
imum rank percentile (coverage), whereas the second
term evaluates the rank of positive peptides considering
the same factors. It is preferred that a positive peptide has
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a smaller rank value and a negative peptide has a larger
rank value, indicating a better ranking result.

Application of pTuneos to The Cancer Genome Atlas
(TCGA) cohort study

Cohorts of patients with stomach adenocarcinoma
(STAD), lung adenocarcinoma (LUAD), and skin cuta-
neous melanoma (SKCM), which were the most con-
cerned cancers in cancer immunotherapy study, were
obtained from The Cancer Genome Atlas (TCGA) to
evaluate the association between our defined overall
neoantigen immunogenicity score and several well-
established immune infiltration measures including
microsatellite instability status (MSI), MHC-II expres-
sion signature, and cytolytic activity (CYT). Only sam-
ples with stage III/IV characteristic were retained.
Somatic mutation file in VCF format, expression profile
in FPKM, and SNP 6.0 microarray data were retrieved
from TCGA genomic data commons (GDC) portal. For
each sample, FPKM was normalized to TPM. Segment
copy number and tumor purity were estimated by
ASCAT from SNP 6.0 data. Samples were excluded due
to lack of accurate copy number estimation, leading to
101 LUAD samples, 166 STAD samples, and 191 SKCM
samples (Additional file 4: Table S3. A, B, C). pTuneos
was then applied to the three cohorts with mutation
profile, expression profile, and copy number profile as
input. For all three cohorts, MSI status of these samples
was retrieved from previous study [39], as there were no
samples with MSI status in SKCM and LUAD. We only
applied MSI status to STAD cohort for statistic and sur-
vival analysis. For all three cohorts, immune signature
associated with a 13-gene MHC II signature, which was
calculated as an average gene expression of all genes in
the list (Additional file 5: Table S4) [40]. Lymphocyte
score was obtained from previous study [41], and we
only applied this metric to SKCM cohort as the clini-
copathological annotation information from frozen
section slides of STAD and LUAD was not available
for us to calculate the lymphocyte score. For all three
cohorts, cytolytic activity (CYT) was calculated as the
log-average (geometric mean) of granzyme A (GZMA)
and perforin (PRFI) expression in transcripts per mil-
lion (TPM) [42]. The survival data of these cohorts
were also retrieved for survival analysis. We used the
log-rank test and Cox proportional hazard model test
to assess the correlation between all the biomarkers
and overall survival (OS). The median of each metric
was selected as a cutoff for high vs low separation in
all biomarkers including tumor neoantigen burden
(TNB), overall tumor neoantigen immunogenicity
score (TNS), mutation burden, and several well-
established immune infiltration measures.
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Application of pTuneos to immunotherapy-treated patient
cohort study

Further datasets of immunotherapy-treated patients included
a cohort with stage IV NSCLC treated with pembrolizumab
(cohort Rizvi) [4] and two cohorts with advanced melanoma
treated with anti-CTLA4 immunotherapies (cohort Snyder
and cohort Van Allen) [5, 6]. In cohort Rizvi, 3 patients
which did not reach 6 months’ follow-up were excluded. In
cohort Snyder and cohort Van Allen, 5 patients and 7 pa-
tients were excluded due to lack of accurate copy number es-
timation. Final cohorts consisted of n=31 Rizvi, n=59
Snyder, and # =103 Van Allen patients. Patient survival was
the outcome measure in these cohorts. For cohort Snyder
and cohort Vann Allen, overall survival (OS) was available.
For cohort Rizvi, only the progression-free survival (PFS) was
available. In this study, we used the log-rank test and Cox
proportional hazard model test to assess the correlation be-
tween neoantigen burden and PFS or OS. We used the log-
rank test and Cox proportional hazard model test to assess
the correlation between the neoantigen immune score and
PFS or OS. The median of each value was selected as a cutoff
for high vs low separation in biomarkers including tumor
neoantigen burden (TNB), overall tumor neoantigen im-
munogenicity score (TNS), and mutation burden. We used
Wilcoxon rank sum test to determine the neoantigen burden
difference between the durable clinical benefit (DCB) and no
durable benefit (NDB) groups.

Results

General pipeline of pTuneos

The pTuneos workflow consists of four steps (Fig. 1): data
preprocessing, candidate neoepitope identification, model-
based filtering, and neoepitope prioritization based on the
refined immunogenicity score.

In the first step, raw sequencing data (WGS/WES and/
or RNA-seq) are analyzed to identify somatic mutations
(SNVs and indels) in a VCF file and expression profile.
HLA alleles are determined from WGS/WES and/or
RNA-seq data by OptiType. Second, for SNVs, the nu-
cleotide change is translated into the corresponding
amino acid change, which is then applied to the prote-
ome reference, and nucleotide insertion and deletion
changes are applied directly to the cDNA reference and
translated into a 21-mer peptide containing variant sites.
The long peptide is then chopped up into 9-11-mer
long peptides. Peptide-MHC binding affinities for both
mutant and normal peptides are then determined by
NetMHCpan version 4.0. In addition, pTuneos adopts
several preliminary filtering strategies to obtain reliable
neo-epitopes: (1) sequence coverage and gene variant al-
lele frequency, (2) %rank affinity of mutant peptides, and
(3) gene expression level of corresponding mutant pep-
tides. Third, pTuneos constructs a random forest model,
Pre&RecNeo, to predict the MHC presentation and T



Zhou et al. Genome Medicine (2019) 11:67

Page 7 of 17

Q
=
7]
i
&8
ofr Whole exome sequencing RNA .
o Whole genome sequencing sequencing
o
Mutation calling and annotation Epitope prediction
g
SNV INDEL —_— HLA allele OptiType .
w ) ) XX DO DDA N <— DNA sequencing
= O chrl 948711 G-A chrs 640534 GAGC=G . ) e pan
£2 MHC-peptide binding
s T ERreTT ammiyprediton - [ [ [ [ [
Wic Apply mutation o to0 0
ZE SKSLQSRLACQQQHARE L]
w =z
E "
<A
e= b Binding affinit 9
3 * * g affinity %Rank < 2
b4 Extract peptide - T filtering
z : . poo
[ L
.~ Anchor residues removed\ Neo-peptide
(] Rl IAILKL Norma\A.A1 IDVYYV *
z Presented and W [ IAILKE [— Tumor— A IDVYYV B
& recognized peptide 0 61% similarity 100% similarity k PIHG Fiydrophobielybased XGboost
H 5 feature calculation P!
] Normal peptide  Mutant peptide Lo Tcell i
z : Hydrophobicity-based
8 é affinity rank affinity rank Paired sequence similarity ition riydrop! city- score
2
@ o
= peplide l Random forest model
a
g immunogenicity
prediction Neopeptides with high probability of MHC presented and T cell recognized

Refined immunogenicity
score scheme

P=[Axtan(E)x N x CI[L(R, )1~ L(R,)/2)x SI[H X R]

[neoanugen] { peptide ] { T cell ]
P= . N

NEOEPITOPE PRIORITIZATION
(RefinedNeo )

Ranking

=

Fig. 1 pTuneos comprises four steps: (1) Data preprocessing: raw sequencing data (WGS/WES and/or RNA-seq) are analyzed to identify somatic
mutations (SNVs and indels) in VCF files and expression profiles. (2) Candidate neoantigen identification: for single nucleotide variants, a
nucleotide change is translated into the corresponding amino acid change, which is then applied to the proteome reference, and nucleotide
insertion and deletion changes are applied directly to the cDNA reference and translated into a 21-mer peptide containing the variant sites. The
long peptide is then chopped up into 9-11-mer peptides. Peptide MHC binding affinities are then determined by NetMHCpan version 4.0 for
both the mutant and normal peptides. (3) Model-based filtering: pTuneos constructs a random forest model, Pre&RecNeo, to predict the MHC
presentation and T cell recognition probability of neopeptides based on five related features. (4) Neoepitope prioritization: pTuneos developed a
scoring model, RefinedNeo, to refine the rank the of neoepitope immunogenicity, which represents the probability of naturally processed, MHC-
presented, and T cell-recognized neopeptide and the actual immunologic effects of a neopeptide in clinical tumor treatment

Gene | HLA_allele
SEPN1 |HLA-A02:01
CSE1L [HLA-A02:01|GLFELPEDDAI 0.002
RPP30 [HLA-A02:01 | SLGSLQPLPL

Neo-peptide |Immuno_score|

SLQPRLPWL 0.003

0.0009

cell recognition probability of neopeptides based on five
related features. Finally, based on the candidate neoepi-
topes identified in the third step, we developed an effi-
cient scoring model, RefinedNeo, which calculates a
refined immunogenicity score reflecting the probability
of naturally processed, MHC-presented, and T cell-
recognized neopeptide and the actual immunologic ef-
fects of a neopeptide in clinical tumor treatment. Effi-
cient computational techniques were incorporated in
pTuneos including (1) the training of state-of-the-art
machine learning model for MHC-presented and T cell-
recognized neoepitope immunogenicity prediction; (2)
handling data imbalance issue in model building; (3)
defining a novel score scheme for naturally processed,
presented, and T cell-recognized neoepitope immuno-
genicity prioritizing; and (4) defining a quantitative
measurement for neoepitope prioritization performance

evaluation. Detailed information can be referred in the
“Implementation” section.

Neoepitope prioritization performance evaluation of
pTuneos in melanoma dataset

To evaluate the neoepitope prioritization performance
of pTuneos, we applied it to a public dataset contain-
ing three samples from a recent study that reported
experimentally confirmed immunogenic and non-
immunogenic peptides in melanoma [32]. The MHC-
Dextramer assay confirmed that 7 of 21 peptides can
induce T cell recognition, whereas the tandem mini-
gene constructs (TMC) transfection assay confirmed
that only 5 of 7 immunogenic peptides could be nat-
urally processed, presented, and recognized (Add-
itional file 3: Table S2).
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Firstly, the pTuneos Pre&RecNeo module, MuPeX],
and Neopepsee were all run on this dataset and led to
different numbers of candidate neopeptides (Add-
itional file 6: Table S5. A-I). We then defined a Rank-
CoverageScore (see the “Implementation” section) to
comprehensively and objectively evaluate the rank
results of the final neopeptide list derived from the
three tools. Among them, pTuneos Pre&RecNeo
obtained a higher RankCoverageScore than either
MuPeXI or Neopepsee (Fig. 2a), indicating that pTu-
neos Pre&RecNeo could identify MHC-presented and
T cell-recognized neopeptides more effectively than
existing in silico tools.

Secondly, the pTuneos RefinedNeo module was ap-
plied to the candidate neopeptides obtained from
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pTuneos Pre&RecNeo to evaluate their immunogen-
icity considering neopeptide naturally processed and
presented, leading to a refined rank of candidate
neoepitopes for in vivo clinical application. In the ori-
ginal study, the neopeptides OR8B3_T109I (identified
from sample MEL_38) and MRPS5_P59L (identified
from sample MEL_218) were not processed and pre-
sented from endogenously expressed proteins. In our
study, pTuneos RefinedNeo successfully refined the
rank of OR8B3_T109I from 16 to 31 (total 40) and
the rank of MRPS5 P59L from 3 to 58 (total 70)
(Additional file 7: Table S6. A, B), demonstrating that
pTuneos RefinedNeo could help to further filter out
those neopeptides not naturally processed and pre-
sented in cancer immunotherapy.

-
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Fig. 2 a Rank coverage score (RCS) of the final rank list obtained from pTuneos Pre&RecNeo, MuPeXl, and Neopepsee, tested on the MEL dataset. b
Runtime efficiency comparison of pTuneos, MuPeX, pVAC-Seq, and Neopepsee tested on the MEL dataset. ¢ Rank coverage score (RCS) of the final

rank list obtained from pTuneos MuPeX|, and Neopepsee, tested on the TILs stimulation datasets
. J
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Runtime benchmark of pTuneos with existing tools
Runtime is an important issue for successful clinical applica-
tion of neoantigen-based vaccine design. As pTuneos imple-
mented multi-process programming, it completes the whole
candidate neoepitope identification and prioritization pro-
cedure in a short time. In this study, we benchmark the run-
time efficiency of pTuneos with existing in silico neoantigen
identification tools starting with the list of variants identified
by Mutect2 and the expression profile identified by Kallisto
from three melanoma patients (phs001005.v1.p1) (Fig. 2b).
The benchmark results indicated that pTuneos is compar-
able to MuPeXI and pVAC-Seq and is much faster than Neo-
pepsee. Specifically, pTuneos was 20 times faster than
Neopepsee, both taken as the model-based tools.

Performance evaluation of pTuneos using naturally
processed and presented neopeptides

We continue to evaluate the performance of pTuneos in 3
public datasets containing 7 samples from recent studies
that reported 16 MHC-I naturally processed and presented
neopeptides recognized by tumor-infiltrating lymphocytes
(TILs), which are obtained from tandem mini-gene con-
structs (TMC) transfection assays (Additional file 8: Table
S7) [43—-45]. pTuneos, MuPeXI, and Neopepsee were all run
on this dataset respectively and led to different numbers of
candidate neopeptides (Additional file 9: Table S8. A, B, C).
Here, we obtained the final rank of neopeptides firstly by
Pre&RecNeo module and refined by the RefinedNeo mod-
ule. We still utilized the RankCoverageScore (see the “Im-
plementation” section) to evaluate the rank results of the
final neopeptide list derived from these three tools. Among
them, pTuneos obtained a higher RankCoverageScore than
either MuPeXI or Neopepsee (Fig. 2¢), indicating that pTu-
neos could identify naturally processed, presented, and TIL-
recognized neopeptides more effectively than existing in
silico tools.

Application of pTuneos to TCGA cohort study

We first applied pTuneos to TCGA cancer cohorts with
stage III/IV stomach adenocarcinoma (STAD; n = 166/441),
stage III/IV lung adenocarcinoma (LUAD; n = 101/569), and
stage III/IV cutaneous melanoma (SKCM; n=191/470)
(Additional file 4: Table S3. A, B, C) to explore the relation-
ship among the overall neoantigen immunogenicity score
(defined by the sum of the refined immunogenicity score of
all identified neopeptides, see the “Implementation” section),
the identified neoantigen burden, microsatellite instability
status, and several immune infiltration measurements. The
overall survival (OS) prediction powers of these measure-
ments were also compared.

In STAD, several well-established markers have been re-
ported to correlate with the clinical outcome of immuno-
therapy. For example, MSI status has been shown to
correlate with a better clinical outcome [39]. Cytolytic
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activity (CYT) defined as the transcript levels of two key
cytolytic effectors, i.e., granzyme A (GZMA) and perforin
(PRF1), was also reported to be an indicator of CD8+ T cell
activation [42]. In our study, MSI status was found to show
a strong correlation with our identified neoantigen burden
and the overall neoantigen immunogenicity score calcu-
lated by pTuneos, while cytolytic activity did not (Fig. 3a).
Furthermore, high overall neoantigen immunogenicity
score (> median) was associated with the overall survival by
both the univariate and multivariate Cox regression ana-
lyses, while well-established markers including cytolytic ac-
tivity and MHC II expression were not significantly
associated with overall survival (Fig. 3b, c), indicating that
our defined overall neoantigen immunogenicity score is a
reliable predictive biomarker in STAD survival analysis.

In LUAD, a 13 gene MHC-II expression signature
was also reported to correlate with immune infiltra-
tion. This signature was presented to be a marker of
immune activity [40]. Based on TCGA RNA-
sequencing data, we explored the relationship
between MHC-II expression signature, the cytolytic
activity, and the overall neoantigen immunogenicity
score. Our study indicated that high MHC-II expres-
sion score (> median) is more significantly correlated
with low overall neoantigen immunogenicity score
(p =0.0007) than mutation burden and neoantigen
burden. Having stratified the cohort by cytolytic ac-
tivity score, cytolytic activity did not correlate with
mutation burden, neoantigen burden, or overall
neoantigen immunogenicity score (Fig. 4a). We found
that mutation burden, neoantigen burden, and the
overall neoantigen immunogenicity score (> median)
all exhibited certain prognosis ability while cytolytic
activity and MHC II expression were not significantly
associated with overall survival (Fig. 4b). In the Cox
regression analysis, the tumor neoantigen burden and
the overall neoantigen immunogenicity score calcu-
lated by pTuneos were all identified as two independ-
ent prognostic factors for overall survival analysis
(Fig. 4¢).

In SKCM, lymphocyte density and distribution were
previously measured to define a semi-quantitative
lymphocyte score representing lymphocyte infiltration
[41]. In our study, neither lymphocyte nor cytolytic ac-
tivity showed correlation with neoantigen burden or
overall neoantigen immunogenicity score (Fig. 5a).
Nevertheless, high neoantigen burden (> median) exhib-
ited improved overall survival in both univariate and
multivariate analyses, and the high overall neoantigen
immunogenicity score (>median) was associated with
overall survival in univariate analysis, while well-
established markers including cytolytic activity and
MHC II expression were not significantly associated with
overall survival (Fig. 5b, c).
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Fig. 3 a MSI status showed strong correlation with neoantigen burden and overall neoantigen immunogenicity score while cytolytic activity did
not in stomach adenocarcinoma. b Kaplan-Meier estimates of overall survival according to mutation burden, tumor neoantigen burden (TNB),
overall tumor neoantigen immunogenicity score (TNS), cytolytic activity, MSI status, and MHC Il expression. The median of each value was
selected as a cutoff for high vs low separation in all biomarkers except MSI status classified as MSI and MSS groups. ¢ Univariate and multivariate
Cox regression survival analyses of TCGA STAD data on different single biomarkers and all. TNB, tumor neoantigen burden; TNS, overall tumor
neoantigen immunogenicity score; MSI, microsatellite instability; MSS, microsatellite stability; HR, hazard ratio; Cl, confidence interval

Taking together, these results showed that
traditional well-established markers exhibited limita-
tions in survival prediction among different cancer
types, whereas only the overall neoantigen immuno-
genicity score calculated by pTuneos could be
predictive of survival in all three TCGA cohorts,
indicating the potential power of the overall

neoantigen immunogenicity score as a pan-cancer
predictive biomarker in cancer survival analysis.

Application of pTuneos to the immunotherapy-treated
patient cohorts study

To further assess the effectiveness and robustness of
pTuneos, we also applied the whole pipeline to three
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Fig. 4 a High MHC-Il expression score (> median) is more significantly correlated with low overall neoantigen immunogenicity score (p = 0.0007)
than mutation burden and neoantigen burden, while cytolytic activity did not correlate with mutation burden, neoantigen burden, or overall
neoantigen immunogenicity score in lung adenocarcinoma. b Kaplan-Meier estimates of overall survival according to mutation burden, tumor
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TCGA LUAD data on different single biomarkers and all. TNB, tumor neoantigen burden; TNS, overall tumor neoantigen immunogenicity score;

HR, hazard ratio; Cl, confidence interval

independent datasets comprising anti-CTLA-4-treated
melanoma patients and anti-PD-1-treated lung cancer
patients to compare the identified neoantigen profile
with patient survival patterns [4—6].

We first explored the difference between tumor
neoantigen burden profile and the overall neoantigen

immunogenicity score profile (see the “Implementation”
section). For the cohort of 31 patients with lung cancer
treated with pembrolizumab (cohort Rizvi), 14 patients
had a durable clinical benefit (DCB) and 17 patients had
no durable benefit (NDB). pTuneos identified a median
of 41 candidate neoantigens per tumor (range 1-417),
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Fig. 5 a Neither lymphocyte nor cytolytic activity showed correlation with neoantigen burden or overall neoantigen immunogenicity score in
cutaneous melanoma. b Kaplan-Meier estimates of overall survival according to mutation burden, tumor neoantigen burden (TNB), overall tumor
neoantigen immunogenicity score (TNS), cytolytic activity, lymphocyte score, and MHC Il expression. The median of each value was selected as a
cutoff for high vs low separation in all biomarkers. ¢ Univariate and multivariate Cox regression survival analyses of TCGA SKCM data on different
single biomarkers and all. TNB, tumor neoantigen burden; TNS, overall tumor neoantigen immunogenicity score; HR, hazard ratio; Cl,

and the overall neoantigen immunogenicity score ranges
from 0 to 1.93 (Additional file 10: Table S9. A; Fig. 6a).
For a cohort of 59 patients with melanoma treated with
ipilimumab or tremelimumab (cohort Snyder), 36 pa-
tients had a DCB and 23 patients had NDB. pTuneos
identified a median of 384 candidate neoantigens per
tumor (range 0-3299), and the overall neoantigen im-
munogenicity score ranges from 0 to 8.6 (Add-
itional file 10: Table S9, B; Fig. 6a). For the cohort of

103 patients with melanoma treated by ipilimumab (co-
hort Van Allen), 21 patients had a DCB and 72 patients
had NDB. pTuneos identified a median of 74 candidate
neoantigens per tumor (range 0-2537) and the overall
neoantigen immunogenicity score ranges from 0 to
12.07 (Additional file 10: Table S9, C; Fig. 6a). In all
three cohorts, the neoantigen immunogenicity score
showed more difference than neoantigen burden be-
tween long benefit group and no benefit group (Fig. 6b).
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Fig. 6 (See legend on next page.)
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(See figure on previous page.)

Fig. 6 a Neoantigen burden and neoantigen immunogenicity score distribution in three immunotherapy-treated patient cohorts. b The overall
neoantigen immunogenicity score showed more difference than neoantigen burden between long benefit group and no benefit group. ¢ In
cohort Rizvi and Snyder, a high neoantigen burden (> median) was associated with improved progression-free survival (PFS) or overall survival
(OS) (cohort Rizvi: hazard ratio [HR] 0.32, 95% confidence interval [Cl] 0.13 to 0.78, log-rank P=0.01; cohort Snyder: HR 0.38, 95% CI 0.17 to 0.85,
log-rank P=0.01) whereas in cohort Van Allen, neoantigen burden was not associated with improved OS (HR 0.72, 95% Cl 0.48 to 1.08, log-rank
P=0.1). d High overall necantigen immunogenicity score (> median) shows more significant patient PFS or OS separations than those based
purely on neoantigen burden (cohort Rizvi: HR 0.27 [95% Cl, 0.11-0.69], log-rank P =0.006; cohort Snyder: HR 0.22 [95% Cl, 0.09-0.52], log-rank P=
0.0006; cohort Van Allen: HR 0.55 [95% Cl, 0.36-0.84], log-rank P = 0.006). e Univariate Cox regression and multivariate Cox regression analyses
showed that only overall necantigen immunogenicity score was associated with improved PFS or OS. NDB, no durable benefit; DCB, durable
clinical benefit; NB, no benefit; LB, long benefit; PFS, progression-free survival; OS, overall survival; TNB, tumor neoantigen burden; TNS, overall

tumor neoantigen immunogenicity score; HR, hazard ratio; Cl, confidence interval

Next, we evaluated the different survival prediction
power of the neoantigen burden, the overall neoantigen
immunogenicity score, and the MSI status. For cohort
Rizvi and Snyder, a high neoantigen burden (> median)
was associated with improved progression-free survival
(PFS) or overall survival (OS) (cohort Rizvi: hazard ratio
[HR] 0.32, 95% confidence interval [CI] 0.13 to 0.78, log-
rank P=0.01; cohort Snyder: HR 0.38, 95% CI 0.17 to
0.85, log-rank P =0.01), whereas in cohort Van Allen,
neoantigen burden was not associated with improved
overall survival (OS) (HR 0.72, 95% CI 0.48 to 1.08, log-
rank P=0.1) (Fig. 6c). Based on the above-identified
neoantigens, the overall neoantigen immunogenicity score
was calculated across the three cohorts of patients. In all
three cohorts, the overall neoantigen immunogenicity
score shows more significant patient progression-free sur-
vival (PFS) or overall survival (OS) separations than those
based purely on neoantigen burden (cohort Rizvi: HR 0.27
[95% CI, 0.11-0.69], log-rank P =0.006; cohort Snyder:
HR 0.22 [95% CI, 0.09-0.52], log-rank P =0.0006; cohort
Van Allen: HR 0.55 [95% CI, 0.36-0.84], log-rank P=
0.006; Fig. 6d). The MSI status was also calculated across
three cohorts. Univariate Cox regression and multivariate
Cox regression analyses showed that only overall neoanti-
gen immunogenicity score was associated with improved
progression-free survival (PFS) or overall survival (OS)
(Fig. 6e). These results not only validated the rationality of
the definition of the refined neoantigen immunogenicity
score, but also demonstrated that the overall neoantigen
immunogenicity score could be predictive of survival after
checkpoint blockade immunotherapy.

We finally checked the 3 neoepitopes which were vali-
dated using multimer or restimulation assays in the cohort
Rizvi and cohort Snyder in the identified neoantigen list ob-
tained from pTuneos. In the cohort Rizvi, the neopeptide
ASNASSAAK derived from HERCI (p.P3278S) mutation in
patient CA9903 was revealed to elicit T cell response using
multimer assays. In the identified neoantigen list obtained
from pTuneos Pre&RecNeo module, this neopeptide ranked
in the first place (Additional file 11: Table S10. A). In the
cohort Snyder, there are two neopeptides which were found
to have polyfunctional T cell responses using intracellular

cytokine staining (ICS) assay. The first neopeptide
TESPEEQHI results from FAM3C (p.K193E) mutation in
patient CR9306. In the identified neoantigen list obtained
from pTuneos Pre&RecNeo module, this neopeptide ranked
in the second place (Additional file 11: Table S10. B). The
second neopeptide GLEREGFTF results from CSMDI
(p-G3446E) mutation in patient CR0095. However, we
could not find this peptide in the final list from pTuneos
Pre&RecNeo module (Additional file 11: Table S10. C). We
found that the predicted MHC class I binding affinity
%rank between GLEREGFTF and MHC-I alleles (A0201,
A3101, B3502, B3906, C0401, C0702) was all greater than 2
predicted by NetMHCpan 4.0, which means that it could
not be presented by MHC-I molecules and it was filtered
by pTuneos in the epitope identification step. Taking to-
gether, pTuneos could identify 2 out of 3 validated neoanti-
gen and rank them at the top of final list, demonstrating its
effectiveness. Notably, in the original study [5], researchers
also found that all the predicted MHC class I affinity of this
neopeptide are greater than 500 nM by NetMHC 3.4. These
results indicated that the sensitivity of peptide-MHC-I
binding affinity prediction methods such as NetMHC and
NetMHCpan is needed to be improved, and the low pre-
dicted binding affinity of peptide-MHC-I does not neces-
sarily indicate that they could not activate T cell response.

Discussion

In the neoantigen profile analysis of TCGA cohorts, the
overall tumor neoantigen immunogenicity score (TNS)
was demonstrated to be an efficient survival predictive
biomarker in all three cancer types through univariate
analysis. However, in LUAD, TNS barely reached signifi-
cance in univariate analysis (p = 0.049; Fig. 4b, c) and did
not reach a significance in multivariate analysis while
tumor neoantigen burden (TNB) was significantly asso-
ciated with overall survival. Similarly, in SKCM, TNS did
not achieve a significance in multivariate analysis and
underperformed in univariate analysis compared with
tumor neoantigen burden (TNB) (Fig. 5b, c). These find-
ings suggested that although TNS is predictive of sur-
vival for TCGA patient cohorts, TNB is a better
biomarker of overall survival in LUAD and SKCM.
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It is anticipated that MSI correlated with neoantigen
burden and overall neoantigen immunogenicity in STAD
as MSI status contributes to the generation of gene muta-
tion and leads to production of more potential neoanti-
gens, while cytolytic activity, which reflects the activity of
immune infiltrate T cells, did not exhibit this correlation.
This could be explained by the model for evolution of
tumor-immune associations proposed by Rooney et al.
[42]. In the early stage of tumor development, intrinsic
tumor factors such as neoantigens or viruses induce local
immune infiltrates. These factors are expected to be corre-
lated with CYT. However, with the development of tumor
and the accumulation of resistance mutation such as p53,
ALOX, and IDOI, these mutations would suppress the
immune infiltrate, leading to a low CYT or even showing
no correlation between neoantigens burden and CYT. In
our analysis, we only selected those samples with stage III/
IV characteristic, and these samples are at late stage of
tumor progression. According to the model proposed by
Rooney et al,, it is reasonable that neoantigen burden and
overall neoantigen immunogenicity did not correlate with
cytolytic activity in our study. Kim et al. [14] also found
that cytolytic activity was not associated with survival
prognosis in STAD.

Future development of pTuneos will include four main
aspects: (1) Currently, pTuneos predicts the presentation
and recognition probability of neopeptide utilizing ma-
chine learning model based on peptides retrieved from
MHC multimer assays and defined a refined immuno-
genicity score to evaluate the immunogenicity of the nat-
urally processed and presented neoantigens. As more
and more datasets are available containing confirmed
immunogenic peptides that are naturally processed, pre-
sented, and TIL-recognized utilizing tandem mini-gene
constructs (TMC) transfection assay [46], the future up-
dates of pTuneos is to build a learning model to identify
such neopeptides; (2) investigation of MHC-II binding
peptide identification and evaluation [47-49]; (3) incorp-
oration of mass spectroscopy data processing into the
pipeline for further filtering of neoantigen candidates;
and (4) identification of other types of neoantigens be-
sides SNV-based neoantigens [55], like gene fusion-
based [50], RNA alternative splicing-based [51], and
RNA editing-based neoantigens [52, 53].

Conclusions

In summary, pTuneos was demonstrated to be a state-of-
the-art one-stop in silico prediction tool for identifying and
prioritizing cancer neoantigens compared with other avail-
able tools in terms of neoantigen prioritization performance
and runtime efficiency. Based on the putative neoantigens
obtained by high-peptide-MHC binding affinity, pTuneos
implemented a two-step filtering and ranking strategy to
prioritize neoantigens. In addition, the pTuneos Pre&RecNeo
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module could eliminate neoantigens which were not pre-
sented and T cell-recognized, and the pTuneos RefinedNeo
module could refine the ranking list by prioritizing the
actual neoantigen immunogenicity. We validated the
reasonability of this strategy by applying it to an independ-
ent dataset containing three samples from a recent study
with experimentally confirmed immunogenic and non-
immunogenic peptides in melanoma. We also validated its
ability by evaluating the immunogenicity of naturally proc-
essed and presented neoantigens with TIL recognitions from
three additional datasets. We further demonstrated the
utility of pTuneos by applying it to TCGA cohorts and three
cohorts undergoing checkpoint blockade immunotherapy
and revealed that the overall neoantigen immunogenicity
score was more predictive of patient survival than the
neoantigen burden and other well-established markers. Tak-
ing together, pTuneos will enable the efficient identification
and prioritization of personal neoantigens for improved per-
sonalized vaccine design in cancer immunotherapy.

Availability and requirements
Project name: pTuneos
Project home page: https://github.com/bm2-lab/pTuneos
Operating system(s): Linux
Programming language: python 2.7, R 3.4
Other requirements: Java 1.8 or higher
License: GNU license - GPL 2.0 (GNU General Public Li-
cense. version 2) (https://opensource.org/licenses/GPL-2.0)
Any restrictions to use by non-academics: none
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