
RESEARCH Open Access

RapidPlan knowledge based planning:
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Abstract

Purpose: To determine if the performance of a knowledge based RapidPlan (RP) planning model could be improved
with an iterative learning process, i.e. if plans generated by an RP model could be used as new input to re-train the
model and achieve better performance.

Methods: Clinical VMAT plans from 83 patients presenting with head and neck cancer were selected to train an RP
model, CL-1. With this model, new plans on the same patients were generated, and subsequently used as input to
train a novel model, CL-2. Both models were validated on a cohort of 20 patients and dosimetric results compared.
Another set of 83 plans was realised on the same patients with different planning criteria, by using a simple template
with no attempt to manually improve the plan quality. Those plans were employed to train another model, TP-1. The
differences between the plans generated by CL-1 and TP-1 for the validation cohort of patients were compared with
respect to the differences between the original plans used to build the two models.

Results: The CL-2 model presented an improvement relative to CL-1, with higher R2 values and better regression plots.
The mean doses to parallel organs decreased with CL-2, while D1% to serial organs increased (but not significantly). The
different models CL-1 and TP-1 were able to yield plans according to each original strategy.

Conclusion: A refined RP model allowed the generation of plans with improved quality, mostly for parallel organs at
risk and, possibly, also the intrinsic model quality.
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Background
The clinical implementation of intensity modulated
radiotherapy (IMRT) and volumetric modulated arc
therapy (VMAT) techniques increased steadily in the last
two (IMRT) or one (VMAT) decades [1]. Both IMRT
and VMAT aim to deliver the optimal dose distribution
computed by means of an inverse planning process. To
achieve this, the optimization engines utilize numerical
objectives derived from clinical aims (dose-volume rela-
tions linked to the management of complication or con-
trol probabilities). In practice, the nature of the inverse
optimization, particularly for the presence of trade-offs

between conflicting objectives, might require several it-
erations, and could be time consuming and highly
dependent on operator’s skills [2, 3], inducing also high
variability in the plan quality [4]. Some of the planning
challenges relate to the difficulty in translating the clin-
ical aims into effective optimization objectives. The case
of IMRT (or VMAT) based treatment of locally ad-
vanced head and neck cancer is a paradigmatic example
presenting many complexities: from the dose prescrip-
tion to the presence of numerous critical structures very
close to, or overlapping the target volumes.
To simplify and speed up the treatment planning

process, while increasing the quality of the treatment
plans, different research paths were investigated in the
recent past, as the planning automation [5, 6], the know-
ledge based planning (KBP) [7, 8], or the multicriteria
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optimization [9, 10]. The KBP approach consists in the
elaboration of DVH predictive models based on statis-
tical analysis of historical data, i.e. treatment plans of
good quality [7, 8]. A training process aims to build a
mathematical model, which can be used to predict, for
any new case (patient) with its own specificity, the opti-
mal dose distribution. A comprehensive overview of the
different methods for intensity modulated planning
automation approaches, including KBP, has been pub-
lished by Hussein et al. [11].
Focusing the attention on the KBP process, its efficacy

relies on: i) the quality of the data used for the training,
ii) the regression applied to build the predictive models,
and iii) the consistency between the new case and the
population used for the training (i.e. the generalization
power of the model). The RapidPlan (RP) engine (Varian
Medical Systems, Palo Alto, USA) is one commercial
KBP tool, implemented in the Varian Eclipse treatment
planning system. It has been widely studied in recent
years, applied on different sites: liver [12], pelvis [2, 13],
oesophagus [14], head and neck [15, 16], breast [17],
lung SBRT [18], spine SBRT [19]. In summary, the evi-
dence derived from published studies, demonstrated that
the use of RP allowed a general improvement in the
inter-patient consistency of the treatment plans, their
intrinsic quality and the efficiency (time and workflow)
of the process. It was proven that with the RP KBP ap-
proach, it was also possible to harmonize the practice
among different centers (e.g. in a network) or among
planners with different skills [2, 3]. KBP methods were
explored also as a plan quality assurance tool, steering
plans to better adhere to clinical trial criteria aiming to
prevent poor clinical results [20–22].
RP is a machine learning process, and can assist the

planner in achieving optimal dose distributions. Al-
though the today’s achieved plan quality with the use of
advanced technologies is of high level, any better un-
derstanding of the used technique that could lead to
some improvement, is worth to be explored. The pri-
mary aim of the present work was to determine if the
RP learning process could improve itself, i.e. if plans
generated by an RP model trained on a set of good clin-
ical plans, could be used as a new input set to re-train
the model (in an iterative process), ending with a kind
of optimized model with a manually driven feed-back
learning process. The second aim of the study was to
assess if models based on different input plans, opti-
mized with different strategical criteria, are able to gen-
erate plans according to the specific original plan
criteria. For this second point, models using the same
patients were configured, and plans were optimized
with different dose objectives reflecting the different
criteria. The study case adopted was locally advanced
head and neck cancer.

Materials and methods
The RapidPlan KBP approach implemented in the
Eclipse is briefly described in Appendix.

RapidPlan models, CL-1 and CL-2
Eighty-three patients presenting advanced HNC, stage III-
IV, treated from 2010 to 2014, were selected from the
department database. Sixteen had nasopharyngeal, 41 oro-
pharyngeal, 26 hypopharyngeal or laryngeal tumours. The
choice of those 83 patients was based on their plan quality,
that was considered, form the clinical viewpoint, as opti-
mal for the institutional strategy, both for target coverage
(as first priority) and critical structures sparing. A CT-
scan was acquired for each patient in supine position
(immobilized with a thermoplastic mask), with 3mm adja-
cent slice spacing. Clinical target volumes (CTV) for elect-
ive and boost regions were delineated according to
internationally accepted guidelines [23–25]. An isotropic
5mm margin was added to CTV to obtain the planning
target volumes (PTV). PTVs were finally cropped 4mm
inside the body contour. Organs at risk contouring was
checked for all the patients for consistency, apart of the
spinal cord length only, that was kept according to the
clinical routine way to work. All plans for all patients were
optimized for VMAT delivery (in the RapidArc form),
with two to four full arcs (with individualized collimator
angles, set according to the target and anatomical com-
plexity of the cases). The plans were optimized for photon
beams of 6 MV beam quality generated by Varian linacs
(either Edge, TrueBeam, Clinac, Unique) as available in
the department. For all the patients, the clinical plans
selected for the model training were optimized by means
of the Progressive Resolution Optimizer (PRO) engine
while the final calculations were made by means of the
Anisotropic Analytical Algorithm AAA (PRO and AAA
versions from 8.9 to 11). The dose was prescribed with a
simultaneous integrated boost, with 54.45 and 69.96 Gy to
the elective and the boost volumes, respectively, in 33
fractions. All the plans were normalized to the mean dose
to the boost planning target volume PTV_boost. The
treatment plans of those 83 patients were used to build an
RP model. Patient and their anatomical characteristics are
reported in Table 1.
The primary aim of this work was to determine if an

iterative learning process (in two steps) could improve
the RP performances; the following procedure was
adopted. The selected clinical plans were added to gen-
erate and train a baseline RP model, named CL-1, as de-
scribed in Fogliata et al. [16]. In brief: the OARs
included in the model were spinal cord, brain stem, oral
cavity, parotids, submandibular glands, larynx, thyroid,
eyes, mandible and constrictor muscles. Regarding the
targets, PTV_boost was the PTV receiving 69.96 Gy,
PTV_all was the whole PTV (whichever dose level),
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PTV_elective was the PTV_all deducted the PTV_boost
with 4 mm margin in the axial directions only (the plane
of gantry rotation). The optimization objectives used in
the model, and already published in [16], are summa-
rized in Table 2. Additionally, a manual normal tissue
objective (NTO) was also included in order to shape the
dose fall off outside the targets using the following pa-
rameters: distance from the target border 7 mm, fall off
start/end doses 105%/5%, fall-off 0.80, priority 120. The
choice of the 5% as end dose as NTO parameter allowed
to reduce the neck dose below the 50% of the prescrip-
tion dose with no additional structure delineation.
In the second step of the work, new 83 plans for the

same patients were obtained using the model CL-1.
From an operational point of view, the plans in this set
resulted from a double optimization run (the second
round was applied to the dose distribution from the first
round and was run from multiple resolution level 2)
with no human interaction. The optimization and the
dose calculation were performed by means of the Photon
Optimizer and the Acuros-XB engines in the Eclipse
13.6 environment. The 83 plans newly generated were
used to train a second model, named CL-2, as summa-
rized in Table 3. This second model was built with the
same optimization objectives as CL-1.
For all the models configured in this work, the follow-

ing steps were assessed before proceeding to the model
analysis. The structures or plans identified by the system

at the end of the model training as influential points, or
possible outliers (data that differs considerably, dosime-
trically or geometrically, from the whole training set)
were checked and evaluated case by case, as described in
[16], to eventually exclude possible real outliers. No
structures were excluded from any of the model. Then, a
short verification of the DVH estimation relative to the

Table 1 Patients’ characteristics

Model

Number of patients Patients 83

Tumour site Nasopharyngeal 16 patients

Oropharyngeal 41 patients

Hypopharyngeal and
laryngeal

26 patients

PTV_69.96Gy volume Mean ± SD [range], cm3 270.3 ± 15.0
[31.3, 641.9]

PTV_54.45Gy volume Mean ± SD [range], cm3 421.4 ± 18.4
[187.0, 1048.9]

Parotids volume Mean ± SD [range], cm3 27.7 ± 0.7
[11.8, 72.9]

Oral cavity volume Mean ± SD [range], cm3 126.1 ± 2.6
[37.0, 162.4]

Larynx volume Mean ± SD [range], cm3 50.2 ± 3.1
[15.8, 99.5]

Thyroid volume Mean ± SD [range], cm3 19.1 ± 1.5
[5.3, 59.9]

Spinal cord volume
Spinal cord length

Mean ± SD [range], cm3

Mean ± SD [range], cm
33.3 ± 1.1
[12.3–61.4]
20.5 ± 0.6
[12.9–37.2]

Brain stem volume Mean ± SD [range], cm3 21.6 ± 0.8
[9.4–37.0]

SD error of the mean

Table 2 Optimization objectives in the RapidPlan models
(according to [16]). The term ‘generated’ is not fixed a priori,
while it is determined by the model and estimated DVH

Structure Objective Volume [%] Dose Priority

PTV_all Lower 100 99 110

PTV_boost Upper 0 101 120

Upper 0 100 120

Lower 100 100 120

Lower 100 99 120

PTV_elective Upper 0 101 110

Upper 0 100 110

Lower 100 100 110

Lower 100 99 110

Brain stem Upper 0 Generated 90

Line Generated Generated Generated

Constrictors Line Generated Generated Generated

Eyes Mean – Generated Generated

Line Generated Generated Generated

Larynx Mean – Generated 60

Line Generated Generated Generated

Mandible Upper 5 Generated Generated

Line Generated Generated Generated

Oral cavity Mean – Generated 60

Line Generated Generated Generated

Parotids Mean – Generated 70

Line Generated Generated Generated

Spinal cord Upper 0 Generated 90

Line Generated Generated Generated

Submandibulars Line Generated Generated Generated

Thyroid Line Generated Generated Generated

Table 3 Brief description of the plans used to train the four
RapidPlan models. All are based on the same 83 head and neck
patients, using the same geometry as the clinical plans

Model Input plans for model training

CL-1 Clinical plans, manually optimized to achieve
the goals

CL-2 Plans generated with RapidPlan model CL-1

TP-1 Plans generated with a simple template, no
personalized optimization

TP-2 Plans generated with RapidPlan model TP-1
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input data was performed, both internally in the config-
uration program and with plans generated using the
model for the patients used for training (often called
closed-loop verification). Of those steps, no detailed re-
sults were here given, being a routine process of model
configuration, out of the scope of the current work.
The quality of the two models (model quality) was

analysed firstly by comparing the goodness-of-fit and
goodness-of-model statistical parameters obtained at the
end of the training phases. The relative performance
quality of the two models, CL-1 and CL-2, i.e. their abil-
ity to produce high quality plans (clinical outcome qual-
ity), was investigated by means of a validation process.
This consisted in a dose-plan comparison of the plans,
optimized with each model, for the 20 validation patients
chosen from the clinical database, presenting tumour
and anatomical characteristics consistent with the cases
used to train the models. The comparison was based on
averaged dose parameters among all the validation pa-
tients. The Shapiro-Wilk test was used to test the nor-
mality of the data, and the statistical significance was
evaluated with the two tailed paired Student t-test (the
level of significance was set to 0.05).
The CL-1 model has been extensively validated, and

detailed results on the validation phase have already
been published [16] and not repeated in this report: the
comparison between the original clinical plans and the
RP plans showed a significant plan quality improvement
with RP with reductions of 2, 5 and 10 Gy of the mean
doses to the parotids, oral cavity and larynx, with a glo-
bal normal tissue complication probability reduction of
about 7%.

RapidPlan models, TP-1 and TP-2
A third step in the study was the assessment of the rele-
vance (if any) of the planning strategy adopted in the
generation of the initial training set. To exploit this
topic, for each of the original 83 patients, a third set of
baseline plans was generated using the following simple
static (not patient-tailored) dose-volume constraints
template (defined as a list of predefined optimization ob-
jectives): parotids mean dose < 25 Gy with priority 70,
oral cavity mean dose < 35 Gy priority 70 (only for non-
oral cavity tumours), thyroid mean dose < 40 Gy priority
60, spinal cord max dose < 35 Gy priority 90, brain stem
max dose < 54 Gy priority 80, targets minimum and
maximum doses equal to the specific prescriptions with
priority 100, automatic NTO priority 120. No attempt to
improve the plan quality (no human interaction) was ap-
plied. In principle, the use of a fixed template for all
cases might result in some sub-optimality of the plans
but, in general, the plan quality achieved was considered
clinically acceptable for all 83 cases. The PO and

Acuros-XB (versions 13.6) engines were used for this
phase.
This third cohort of 83 plans was used to configure

and train a new RP model, named TP-1 (see Table 3).
The differences of the 83 manually adjusted clinical
plans used to configure the model CL-1, and this set of
manual template-based plans for TP-1 were evaluated
and reported to describe the relative figure of merit of
the two planning strategies (the clinical one, and that ac-
cording to the template).
To compare the clinical performances of the two

models, CL-1 and TP-1, a validation experiment was
carried out on the same 20 validation cases.
Finally, similarly to CL-2, a fourth model, TP-2, was

built based on the plans generated with the TP-1 model
(Table 3). Both TP-1 and TP-2 had the same set of
optimization objectives as the previous CL models.
Then, TP-1 and TP-2 models were compared, similarly
to CL-1 and CL-2, on the same cohort of 20 validation
patients.

Results
CL-1 to CL-2: the intrinsic model quality
The parameters summarizing the intrinsic model quality
in mathematical terms are reported by the Model Con-
figuration engine at the end of the model training. To
present the goodness of the models, the R2 and MSE pa-
rameters described in the Appendix have been reported
in Table 4. The same parameters of TP-1 and TP-2 are
also included for comparison and completeness.
The data reported in Table 4 showed on average an

improvement for the CL-2 model with respect to CL-1
for what concerns the goodness-of-fit, R2; this is also
reflected in a general improvement of the goodness-of-
estimation parameter MSE, although not with the same
intensity.
A deeper, although qualitative, evaluation of the re-

gression plots is presented in Fig. 1 for the most salient
OARs, where the data and regression fit of the geometric
(abscissa in the plots) and dosimetric (ordinate in the
plots) features of all the four models are presented for
some of the OARs trained in the models. Data were
exported through the Model Analytics cloud-based tool
for DVH estimation model analysis.
Comparing CL-1 and CL-2 plots (first two columns in

the figure), the difference in the geometric features (ab-
scissa) used for the regression phase is noticeable, being
the same (principal component score PCS-1) in all the
CL-2 cases, while for larynx, parotids and spinal cord in
the CL-1 model, it was a mix of two different geomet-
rical features. In particular, the CL-1 larynx regression
plot presented the points (the features from the input
plans) sparsely spread in the ordinate axis (dosimetric
feature) and clustered at low abscissa values, with the
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combined geometrical feature of target volume and
OAR overlap volume to target. This clustering effect is
not anymore present in CL-2, where the geometric dis-
tribution PCS1 is instead used as single geometric fea-
ture. In the model analysis from CL-1 to CL-2, the
larynx showed an improved R2, and in particular a rather
poor MSE (> 0.01) for CL-1, dropped down to < 0.01
with CL-2. The MSE reduction should firstly translate
into a narrower DVH estimation bound using CL-2.
The spinal cord can be considered in a different way:

CL-1 presented a mixed geometric feature, where also
the OAR volume was included. The contouring defin-
ition of this structure is quite difficult for what concerns
its length: it is not fully delineated, and its contour could
extend few centimetres below the target delineation, or
caudally toward the abdominal region, and its delinea-
tion in terms of length was not made homogeneous in
this study, to reflect the clinical practice. It is a serial
organ and the major concern is the maximum dose,
while the entire volume is of very limited clinical inter-
est. The inclusion of the OAR volume as geometric fea-
ture for spinal cord could mislead the clinical approach.
To consider is that the PCA is not used to analyse the
regions of the OAR out of the radiation fields (where a
simpler approach is used instead); in the particular case
of the spinal cord, were a non negligible amount of the
structure is not seen by the fields, the use of the OAR
volume as geometrical feature in the model might be
considered as suboptimal for the clinical outcome. Any-
way, in CL-2, the OAR volume was not anymore part of
the geometric feature, with an improvement in the re-
gression plot (visual), R2, and especially MSE, suggesting
a better management of the geometrical feature in this
refined model.
Similar evaluations are valid for the TP models. Of no-

tice, the TP-1 model presented for the thyroid structure

a decreasing regression line for a mixed geometric fea-
ture, with clustered data (although the R2 presented a
value of 0.722). Moving from TP-1 to TP-2 the model
improved: no more descending regression, non-clustered
distribution, and increased R2 values.

CL-1 to CL-2: the dosimetric validation of the models’
performance
The dosimetric evaluation of the results is here reported
for the OARs considered most salient in our clinical
strategy, for the non-target tissue (patient contour from
the whole CT dataset excluding all targets) and for the
targets. In Table 5, the dose differences between various
RP models for some parameters and structures were
presented averaged over the 20 validation cases, together
with their statistical significance. The specific dose
values are reported for all the RP models in Fig. 2a for
the OARs, for which the DVH estimation is part of the
optimization process, and in Fig. 2b for the targets and
the non-target tissue, where only the optimization objec-
tives and the NTO are active in the plan optimization
phase.
In a more clinical perspective of the validation phase,

the analysis of the plans generated by CL-1 and CL-2
did not present a considerable improvement in their
quality. In particular, for the serial organs, brain stem
and spinal cord, an average increase of the D1% of 3–4%
was shown, although not significant. For those struc-
tures, the strongest optimization objective in the model
was an upper objective with fixed high priority. This
upper objective tends to force the reduction of the vol-
ume receiving a single dose value, not acting on the en-
tire DVH dose range where the DVH estimation (and
subsequent line optimization objective) is working. This
could be a possible reason of missing improvement, if
not deterioration, although the model parameters R2 and

Table 4 Goodness of models parameters of all the four models, CL-1 and CL-2, TP-1 and TP-2. Description and interpretation of the
parameters is given in Appendix

Goodness-of-fit: R2 Goodness-of-estimation: MSE

CL-1 CL-2 TP-1 TP-2 CL-1 CL-2 TP-1 TP-2

Brain Stem 0.606 0.901 0.893 0.839 0.0211 0.0040 0.0045 0.0039

Constrictors 0.659 0.793 0.666 0.727 0.0256 0.0262 0.0189 0.0206

Eyes 0.743 0.781 0.866 0.805 0.0073 0.0010 0.0054 0.0087

Larynx 0.534 0.756 0.619 0.684 0.0131 0.0044 0.0069 0.0051

Mandible 0.747 0.836 0.763 0.835 0.0050 0.0029 0.0047 0.0034

Oral Cavity 0.599 0.866 0.474 0.818 0.0047 0.0028 0.0031 0.0030

Parotids 0.541 0.634 0.437 0.602 0.0037 0.0053 0.0029 0.0027

Spinal Cord 0.204 0.731 0.475 0.398 0.0256 0.0074 0.0029 0.0053

Submandibulars 0.582 0.744 0.596 0.721 0.0282 0.0289 0.0301 0.0271

Thyroid 0.706 0.892 0.722 0.809 0.0079 0.0043 0.0043 0.0055
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MSE improved, as is the case of the brain stem. On the
contrary, the parallel organs presented lower mean doses
of about 1%, with the larynx showing a mean dose re-
duction using CL-2 of about 5% in average (highly sig-
nificant). This dosimetric effect on mean OAR dose
could be seen in relation with the model improvement
as MSE parameter for the specific structure. A higher

MSE implies a better DVH estimation with the model;
an improved DVH estimation would generate more
achievable optimization objects; since the optimization
objects are located below the DVH estimation bound,
the clinical result of the model (the plan quality) might
be improved relative to the estimation (as the case of the
larynx).

Fig. 1 Regression plots for different OARs in the 4 models. In the rows, different OARs are represented, while in the column they refer to the
different models: CL-1, CL-2, TP-1, TP-2, for a visual comparison
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Table 5 Dose differences (averaged over the 20 validation patients) for some structures and target parameters, using different
RapidPlan models. Error is reported as standard error of the mean. In parenthesis the p values. Targets and non-targe tissue have no
DVH estimation from the RP process

CL-2 – CL-1 TP-2 – TP-1 CL-1 – TP-1

BrainStem, D1% (Gy) 3.8% ± 1.8% (0.054) −8.8% ± 1.7% (< 0.001) −29.6% ± 4.7% (< 0.001)

SpinalCord, D1% (Gy) 2.7% ± 1.6% (0.119) −5.5% ± 1.2% (< 0.001) −19.0% ± 2.2% (< 0.001)

Parotids, Mean (Gy) −0.5% ± 0.4% (0.159) −0.9% ± 0.4% (0.029) −1.8% ± 0.4% (< 0.001)

OralCavity, Mean (Gy) −1.0% ± 0.3% (0.007) 0.1% ± 0.3% (0.713) 0.8% ± 0.2% (0.008)

Larynx, Mean (Gy) − 5.1% ± 0.8 (< 0.001) −11.5% ± 1.6% (< 0.001) − 14.1% ± 1.8 (< 0.001)

Thyroid, Mean (Gy) −0.5% ± 0.4% (0.277) 1.9% ± 0.4% (< 0.001) 1.1% ± 0.5% (0.042)

PTV_boost, D2% (Gy) 0.0% ± 0.1% (0.881) 0.0% ± 0.1% (0.209) 0.0% ± 0.1% (0.431)

PTV_boost, D98% (Gy) −0.1% ± 0.1% (0.130) −0.1% ± 0.1% (0.244) 0.0% ± 0.1% (0.551)

PTV_boost, St.Dev. (Gy) 1.1 ± 0.8% (0.208) 0.8% ± 0.7% (0.269) −0.4% ± 1.0% (0.661)

PTV_elective, D5% (Gy) 0.1% ± 0.1% (0.093) 0.0% ± 0.1% (0.396) 0.1% ± 0.1% (0.077)

PTV_elective, D95% (Gy) −0.1% ± 0.1% (0.092) −0.1% ± 0.1% (0.307) −0.7% ± 0.1% (< 0.001)

PTV_elective, St.Dev. (Gy) 1.8% ± 0.7% (0.021) 0.9% ± 0.7% (0.198) 6.6% ± 0.7% (< 0.001)

Non-target tissue, Mean (Gy) 0.4% ± 0.2% (0.094) −0.1% ± 0.1% (0.647) −18.6% ± 6.9% (0.017)

Fig. 2 Dosimetric results, averaged on the 20 validation cases, for the four studied RapidPlan models (CL-1 and CL-2, TP-1 and TP-2). (a) Near-to-
maximum (D1%) or mean doses to the most salient OARs and non-target tissue. (b) D2% and D98% for PTV_boost, D5% and D95% for PTV_elective,
and standard deviation of the dose in the two targets, to evaluate the targets dose homogeneity
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CL and TP models
The quality of the two plan cohorts used to build the
CL-1 and TP-1 models are summarized in Table 6, as
dosimetric parameters of the most relevant structures. A
higher quality of the plans was assessed according to the
trade-off strategies adopted in our institution in the CL-
1 cohort, while the plans denoted for the TP-1 model
were not optimized following any balance of OAR irradi-
ation since the optimizer runs a simple static template
with no human direction. The results of the single OARs
cannot give a complete overview of the plan, whose
quality depends also on the dose to any tissue surround-
ing the targets. For example, the non-target tissue
volume receiving more than 40 Gy, reported in Table 6,
is more than 50% higher for the TP plans, confirming
the increased attention in the manual clinical plan
optimization. However, the template gave to the oral
cavity and the thyroid mean doses lower than the mean
doses achieved by the CL plans, while all the other struc-
tures received higher doses (mimicking a different
strategy).
To evaluate if the differences reported in Table 6

affected the RP model training and were reflected into
the optimization of new cases, the comparison of the
validation phases between CL-1 and TP-1 was per-
formed and reported in the last column of Table 5. Both
oral cavity and thyroid received (slightly) lower doses
using the TP-1 model relative to the CL-1 model, ac-
cording to the input plans. The largest differences in the
plans obtained with the CL-1 model relative to the TP-1
model were the near-to-maximum dose to the brain
stem and spinal cord, and the mean dose to the larynx,
the organs that had a higher sparing in the initial plans
feeding the CL-1 model. In summary, the model was
able to yield plans according to the dosimetric strategy
of the original input plans. A subsequent generation of a

new model based on RP plans (CL-2 or TP-2) could, on
the other hand, improve the specific model.

Discussion
Different knowledge based predictive RP models were
generated and analysed in the current work, in the frame
of advanced head and neck cancer VMAT treatment.
The first objective of this work aimed to determine if
the performance of an RP model could be improved by
re-training it with a set of plans originated by itself in an
iterative learning process.
Many publications on RP models showed that, in

various anatomical sites, the quality of KBP plans, on
average, outperformed that of the corresponding clinic-
ally accepted plans [2, 12–18, 20]. The improvement
observed in all the studies was, in part, due to the use of
the line optimization objectives defined slightly below
the estimated DVH lower bound, i.e. attempting to drive
the optimization towards the best estimated DVH. Given
this fact, the plans generated by RP could systematically
result in better plan quality than the corresponding clin-
ical plans used to train the model.
The experiments summarized in the present report

showed that a general improvement in the intrinsic
model quality, from the mathematical point of view, was
obtained with CL-2 presenting overall better R2 and
MSE values, and improved regression plots when com-
pared to CL-1. This step of the model quality evaluation
is a preamble needed to assess the model performance
as quality of the plans generated by the models. In par-
ticular, attention could be paid in the interpretation of
the results related to the goodness of model parameters.
For example, the possible risk of overfitting should be
considered: an R2 value too close to unity could be a
symptom of overfitting. In this case, the model would
present optimal goodness-of-fit parameters, but may not

Table 6 Dosimetric comparison between plans used to train CL-1 (clinical plans) and TP-1 (from simple template) models. Errors
refer to the standard deviation of the mean. p is the significance value according to the Student t-test

Organ Parameter Plans for CL-1 Plans for TP-1 p Difference TP-CL (%)

Brain Stem D1% (Gy) 29.1 ± 1.7 46.2 ± 1.4 < 0.001 + 58.8

Spinal Cord D1% (Gy) 31.7 ± 0.8 36.5 ± 0.9 0.008 + 15.1

Parotids Mean (Gy) 25.9 ± 0.7 27.9 ± 0.5 < 0.001 + 7.7

Oral Cavity Mean (Gy) 44.1 ± 1.0 40.7 ± 0.8 < 0.001 −7.7

Larynx Mean (Gy) 38.5 ± 1.7 50.2 ± 1.5 < 0.001 + 30.4

Thyroid Mean (Gy) 46.5 ± 1.1 44.5 ± 0.9 0.001 − 4.3

Non-target tissue Mean (Gy) 7.6 ± 0.4 9.1 ± 0.4 < 0.001 + 19.7

V40Gy (cm
3) 666 ± 23 1031 ± 28 < 0.001 + 54.8

PTV_boost D5% (%) 102.6 ± 0.6 103.0 ± 1.2 0.001

D95% (%) 95.6 ± 1.0 94.9 ± 2.4 0.009

PTV_elective D5% (%) 104.7 ± 1.2 104.4 ± 1.3 0.100

D95% (%) 95.8 ± 1.1 96.9 ± 1.5 < 0.001
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necessarily be able to generate good clinical treatment
plans for patients other than the cohort used to train the
model. Further models, say CL-n, might potentially in-
duce a sort of overfitting, in the sense that every further
model would lead to plans more and more similar to
themselves, reducing the cohort plan variability. This
risk could be avoided by using a large number of initial
plans on patients with a wide spectrum of anatomical
differences. This choice would also account for interor-
gan dependency, whose effect could change the model
prediction performance, since machine learning algo-
rithms approaches are data-driven, and data provenance
and choice are hence of primarily importance [27].
The features identified in a model should capture the

interpatient OAR variability, both in terms of anatomy
and dose distribution. The anatomical interorgan vari-
ability is a matter of fact, and for this reason it is funda-
mental to cover the largest possible knowledge on a
wide anatomical spectrum. On the contrary, the dosi-
metric variability is a consequence of the planning strat-
egy: different plans from the clinical practice could
follow different trade-offs between dose sparing goals of
different OARs. Such a dosimetric variability cannot be
simply expressed in the model. When the plans in the
training process present the same strategy/trade-offs, the
geometric and dosimetric features from the GED and
DVH should be sufficient to predict consistent DVH,
since the model input data well describe the goal in
many situations. When there is a variation in the trade-
offs (for example from interplanner or interorgan vari-
ability), the data from the DVH and GED could be not
anymore sufficient to properly predict the DVH, and
mixed geometric features are then used. In this sense,
mixed geometric features in a model could be the symp-
tom of a set of plans not fully binded in a common plan-
ning strategy (or structure delineation strategy, as it was
the case of the spinal cord). A second iterative model, as
CL-2 or TP-2, having input plans generated according to
a strategy translated and summarized in the first model
(CL-1 or TP-1), will possibly be able to not use patient
specific anatomical features to predict the new DVH. In
this sense, the iterative model could reduce the interpati-
ent/interplan variability of the initial dataset. However,
attention has to be paid also to a good description of the
organ specific contouring. A comprehensive study on
interpatient variation on OAR dose sparing is well de-
scribed by Yuan et al. [28] from the Duke University
group, whose studies are among the founding works of
the DVH estimation as implemented in RP.
More relevant from the clinical viewpoint is the quality

of the RP plans (model performance): the plans gener-
ated with the CL-2 model were superior to those from
the CL-1 model in terms of the mean doses to the
OARs, while for the near-to-maximum doses to the

serial organs the data showed a small detriment. How-
ever, although in many cases significant, the specific dif-
ferences were modest in absolute terms and should be
correlated to limited clinical risks.
A plan quality improvement was also observed in

some structures when TP-1 and TP-2 models were
compared in the validation tests. The degree of plan im-
provement between those two models, the first gener-
ated with a simple template based plans and the second
with RP plans as input, might depend on the distance of
the input plans from an ideal Pareto surface. In the case
of a model training performed with a set of input plans
truly proximal to the Pareto surface, only small improve-
ments could be possible, at a price of other organs’ ir-
radiation. Indeed, this was confirmed (inversely) by the
analysis of the TP based plans, which were not opti-
mized case by case. The dosimetric results in the valid-
ation showed a larger variation between TP-1 and TP-2
for the structures that were less demanding in the ob-
jective template. This concept is similar to what pub-
lished by Cagni et al. [29], where the authors assessed
the RP accuracy of predicting DVH by training models
with automatically generated Pareto optimal plans, in
the attempt of minimizing the quality inconsistency of
manually generated plans, or, as in the example of the
current work, of plans generated without patient specific
care, like the TP based plans.
Summarizing the first aim of this work, a second, it-

erative model could improve from the mathematical
point of view, leading to a model potentially better pre-
dicting the DVH, although of no clinical clear impact. It
might be worth to generate a second iterative model in
case the first model presents mixed geometrical features.
The second objective of the present work aimed to

clarify the planning strategy impact, by comparing a
careful “manual” optimization with lots of human inter-
action and a rigid template-based optimization with no
interactions to improve the plan quality: the RP model
translated the dose distribution of the input plans into
the quality of the new plans optimized prospectively
through the model. The two different strategies of the
manual plans CL and TP, summarised in Table 6, were
reproduced by the respective RP models, for example in
the brain stem, spinal cord and larynx doses. This result
is a confirmation of the knowledge base planning con-
cept, where the institutional plan quality personalized on
the past patients is transferred to the new patients. With
the KBP, this is actually accomplished not only across a
list of desired dose achievements, but tailoring the dose
distribution strategy to the new anatomy of the new
patient.
All the mentioned points suggest that the plan and pa-

tient selection for any new RP model is crucial, since the
RP based results will reproduce the quality and dosimetric
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strategy of the input plans, for the chosen patient anatomy
ranges, as also suggested by Cagni et al. [29].
A potential critical point in an automated process, is

the use of the same (or not) optimization and calculation
algorithms for generating the plans used to feed the
model, and the validation phase. In the present work,
the clinical plans (for CL-1 models) were generated with
the PRO optimization engine and the AAA algorithm,
while in the whole RP validation and subsequent model,
the PO optimization and Acuros dose calculation algo-
rithms were used. It is known that PO was found to pre-
vail over PRO for VMAT planning [30, 31], and Acuros
is more accurate than AAA [32, 33]. Concerning the
optimizer, outperforming PO with respect to PRO, could
have a double effect. On one side, the initial clinical
plans (used to generate the model CL-1) might have
been better if optimized with PO; on the other side the
improved quality of the RP generated plan could in part
be ascribed to the different optimizer. This different
characteristic of the two optimizer could be considered a
limitation in the clinical practice. However, the algo-
rithms differences should in principle have no real im-
pact in the use of RP, whose core is the DVH
estimation. This is especially for what concerns the
optimization engine, up to the limit proposed by Cagni
et al. [34], where the authors used dose distributions
from Tomotherapy plans to generate an RP model,
which was then used for VMAT planning with good re-
sults and comparisons. More delicate is the dose calcula-
tion algorithms, where, for the same plan, different dose
distributions could be computed. However, in this work,
all the comparisons were between plans consistently
generated by the PO optimizer, and computed with
Acuros. The possible critical point is the first model
(CL-1), where the clinical plans were computed with
AAA. However, this reflects the real clinical work, and
we decided to keep the original plans for this study, ac-
cording to the dose distribution that was clinically ac-
cepted for patient treatment, aware that those plans
could have been slightly different with a different dose
calculation algorithm. This small effect was not affecting
the two TP models, where the same combination of PO
and Acuros was always used.
Recently, Wang et al. [35] proposed a procedure to

improve the plan quality, generating further models
using in each subsequent model the best of the plans be-
tween those obtained from RP, and the original (or pre-
vious step) ones. They evaluated only the plan quality,
without analysing the model summary results, showing
an improved plan quality for the subsequent models.
Another comparison between RP models based on dif-

ferent initial plans has been recently published. In their
work, Lin et al. [36] compared a model generated from
clinical trial-and-error based plans on prostate, with a

model generated for the same patients, whose plans were
optimized according to a constrained hierarchical
optimization procedure, a very complex and time con-
suming process able to produce Pareto optimal plans.
They concluded that the RP model populated with this
second group of plans improved significantly the model
quality, in terms of R2 and DVH estimation bound
width; the final clinical plan quality, however, was not
significantly improved using the RP generated by this
second group of plans, proving that the model quality
does not necessarily translate into clinical plan quality.
Those results are consistent with what presented in the
current work.
Interesting is also the work of Fusella et al. [37], who

evaluated the plan quality of the cohort used to train the
model with plan quality metrics, in order to select the
plans with the highest dosimetric quality, reducing in
part the plan variability of the data feeding the model.
The main limitation of the current study refers to the

restrictions of the RP implementation in the version 13.6
of Eclipse. In particular, during the RP based
optimization, the generated mean dose value (for a mean
objective) is not computed for the entire structure, but
(presumably) for the part of the structure not overlap-
ping the target. This generates mean dose values for
overlapping OARs much lower than what achievable by
the whole organ, increasing the sparing efforts in that
structure as a function of the overlapping amount. This
creates some inconsistency in the mean optimization ob-
jectives in the model, that should have been solved in a
subsequent RP version. In the current work, the mean
dose objectives were widely used.

Conclusions
In summary, an RP model based on plans generated by a
previous RP model improves the model quality showing
better mathematical parameter results, and possibly the
plan quality for clinical application. Moreover, each RP
model is able to produce plans reflecting the input plan-
ning quality criteria: the RP input data should hence
refer to the best plans according to a defined strategy, in
order to obtain plans compliant with the institutional
specific goals.

Appendix
RapidPlan
The RP KBP engine consists of three main subsystems:
i) a model training environment, ii) a dose volume histo-
gram prediction environment, and iii) the generation of
personalized dose-volume constraints for the plan
optimization. The first is devoted to the data modelling
of the plan and patient datasets and the training of the
predictive model for each OAR. The second component
aims to estimate the dose distribution as dose volume
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histograms, DVH, achievable for a certain new patient,
based on the application of the predictive model. The
third element derives from the estimated DVH and from
a set of customizable rules associated with the model the
actual dose-volume constraints to use for the dose plan
optimization. These constraints could be of various na-
ture: lower, upper, upper gEUD, mean dose, line objec-
tives. This last constraint is an entire DVH, which is
used as a single objective: in particular, the line objective
is generally used from estimated DVH.
In the first phase, the RP engine performs the extrac-

tion of the dosimetric and geometric/anatomical data
from a cohort of selected plans on different patients, and
computes from those data a number of dosimetric and
geometric metrics for each OAR. OAR specific dosimet-
ric characteristics derive from the cumulative DVH,
while the geometric information derive from a cumula-
tive volume histogram of the Geometry-based Expected
Dose (GED) metric, representing, in a simplified way,
how far the various voxels in the structure are from the
target surface, where the distance value is the amount of
dose in a voxel, under a defined field geometry, given by
the dose delivered to the targets. On DVH and GED, a
principal component analysis is performed to determine
the dosimetric and geometric features (principal compo-
nents) which at best summarise the main characteristics
of the input data. Some anatomical data are also ex-
tracted: the volume of the OAR, the fraction of the OAR
volume overlapping with the targets, the fraction of
OAR volume out of all the field projections, the volume
of the joint targets. All those metrics are the input for
the regression model, which, combining a dosimetric
and a geometric feature (or a combination of them) re-
sulted in a coefficient that can be used to estimate the
OAR DVH for any new patient. A more detailed descrip-
tion of the RP and DVH estimation algorithm can be
found in [26]. The version of the RP module used in this
study was the 13.6.
After the model configuration, RP allows the user to

analyse the model quality. On one side, the model train-
ing is evaluated through parameters specific for each
structure and each plan in the model configuration. This
evaluation phase is here considered as part of the config-
uration process, where possible outlier plans are identi-
fied and managed. On the other side, the model quality
is given by a summary of goodness-of-fit and goodness-
of-estimation statistics. These include, among others,
per each trained organ at risk, the coefficient of deter-
mination R2 (goodness-of-fit), and the mean squared
error MSE between original and estimate (goodness-of-
estimation). The R2 describes how well the regression
model represents the training plan data, by quantifying
the variability in the data expressed by the model; its
value ranges from 0 to 1: larger R2 indicates a better

model fit, however, R2 values too close to 1 could be
symptom of overfitting. The MSE describes how well the
model is able to estimate the original DVH in a training
plan, by measuring the distance between the original
DVH and the mean of the upper and lower bounds of
the estimated DVH; the closer the value is to 0, the bet-
ter is the estimation capability of the model. The
goodness-of-estimation statistics is generated during an
internal cross-validation process of the model. The
whole training set is firstly divided into 10 parts, and 10
models, one for each part, are trained. For each of those
internal training sets, a different tenth of the whole plan
set is left out and used for internal validation. The aver-
age of the validation statistics of these 10 internal
models are finally summarized in the goodness-of-
estimation statistics.
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