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Abstract

The widespread adoption of closed-loop control in systems biology has resulted from 

improvements in sensors, computing, actuation, and the discovery of alternative sites of targeted 

drug delivery. Most control algorithms for circadian phase resetting exploit light inputs. However, 

recently identified small-molecule pharmaceuticals offer advantages in terms of invasiveness and 

potency of actuation. Herein, we develop a systematic method to control the phase of biological 

oscillations motivated by the recently identified small molecule circadian pharmaceutical KL001. 

The model-based control architecture exploits an infinitesimal parametric phase response curve 

(ipPRC) that is used to predict the effect of control inputs on future phase trajectories of the 

oscillator. The continuous time optimal control policy is first derived for phase resetting, based on 

the ipPRC and Pontryagin’s maximum principle. Owing to practical challenges in implementing a 

continuous time optimal control policy, we investigate the effect of implementing the continuous 

time policy in a sampled time format. Specifically, we provide bounds on the errors incurred by 

the physiologically tractable sampled time control law. We use these results to select directions of 

resetting (i.e. phase advance or delay), sampling intervals, and prediction horizons for a nonlinear 

model predictive control (MPC) algorithm for phase resetting. The potential of this ipPRC-

informed pharmaceutical nonlinear MPC is then demonstrated in silico using real-world scenarios 

of jet lag or rotating shift work.
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1. Introduction

A coalescing of control engineering and systems biology has resulted in widespread use of 

open-loop and feedback control approaches in biological and biomedical applications [1, 2]. 

These include identifying and modulating cellular behavior [3–5], treating diseases [6, 7], 

constructing synthetic biological circuits [8, 9], optimizing biomanufacturing productivity 

[10, 11], and formulating targeted drug delivery systems [12–15]. Unlike open-loop systems 

that require manual intervention at critical times to prevent deleterious outcomes, closed-

loop drug delivery systems enable effective regulation of targeted biological pathways by 

leveraging control-relevant models, systematic prediction, or decision-making based on 

clinical targets. Therefore, these approaches have found use in manufacturing and medical 

devices. Additional improvements in the quality of closed-loop drug delivery and adherence 

within society has been fueled by the invention of wearable sensors [16], minimally invasive 

actuators, and embedded decision-making platforms [17], along with novel drug delivery 

mechanisms [18] or input-output pairs [19]. This paper demonstrates how selecting control 

input (from light-based methods to small-molecule pharmaceuticals) or controller design 

parameters plays an essential role in resetting the phase of mammalian circadian rhythms.

Circadian rhythms are endogenous daily oscillations in gene expression or metabolism 

driving temporal adaptations in most organisms. In mammals, these oscillations are 

generated by genetic feedback loops within each cell of the organism [20]. Since 

environmental signals (such as ambient light) set the time of this biological clock, mistimed 

environmental cues may result in adverse changes to these rhythms, and consequently, a loss 

of temporal regulation of the genetic architecture, and psychological and physiological 

pathologies [21]. In recent years, small-molecule pharmaceuticals have gained significant 

interest as a path toward modulating the circadian clock to reduce the effects of circadian 

disturbances [22, 23]. Small-molecule pharmaceuticals present critical benefits over the use 

of light for clock resetting including avoiding the day-time “dead-zone” where light evokes a 

minimal phase response, and reducing the impractical and burdensome challenge of 

attempting to tightly control one’s light environment. For example, light-based regulation 

would necessitate sustained periods of time wearing low-transmission glasses or light visors 

[24]. Most importantly, light dosing strategies typically take several days to reset circadian 

rhythms: hence the prevalence of sustained jet lag following long trips across time zones. 

Even state-of-the-art optimal control policies involving light necessitate as much as eight 

days to complete a phase resetting when allowing for regular sleep timing [25].

Pharmaceuticals are expected to enable direct manipulation of sensitive control targets 

within the clock, allowing more rapid clock resetting [26]. The complex nature of the 

circadian oscillator necessitates a control approach toward dosing strategies for these drugs, 

as identical stimuli applied at different times of the day may have drastically disparate 
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effects on the clock. Modeling approaches such as those described in [27] have been 

employed to identify the underlying mechanistic action of these drugs. Such models may, in 

turn, be used to inform advanced model-based control strategies such as model predictive 

control (MPC) for circadian regulation.

Prior studies employing models of circadian dynamics have independently investigated 

optimal control-based approaches for manipulating the circadian clock. For example, 

nonlinear MPC and multi-target MPC for light-resetting a Drosophila circadian clock model 

was demonstrated in [26, 28], and complementary phase response curves (PRCs) were 

leveraged to identify potential control targets. Other studies using nonlinear Drosophila 
clock models [29, 30] proposed more efficient procedures to obtain light-based optimal 

control trajectories by relaxing the nonlinear control problem into a mixed-integer 

formulation. Recent work has extended the concept of using light-based feedback control to 

investigate re-entrainment of clocks in humans. Attempts have been made to pose this 

complex problem as a scheduling problem to obtain the best bang-off-bang strategy [24] for 

light inputs. Recently, the authors in [31] used lower harmonics to formulate an approximate 

model of the circadian oscillations in humans, and exploited the structure of the co-state 

equation to propose an efficient line-search algorithm to obtain optimal control sequences. 

Although these methods are elegant and have been demonstrated to be effective via 

numerous simulation studies, a significant drawback of optimal control approaches is that 

they are rarely immune to measurement inaccuracies, exogenous noise, or plant-model 

mismatch (i.e. discrepancies between the system under control and the model describing it). 

Further-more, without model approximation, deriving optimal control sequences remain 

computationally prohibitive, if not intractable, for complex high-dimensional nonlinear 

models [30].

The use of feedback in circadian entrainment remains a relatively unexplored problem. A 

notable exception is [32], where the authors developed a framework for control of circadian 

rhythms using short-duration pulses to shift the phase, via proportional-integral-derivative 

(PID) control by exploiting a low-dimensional approximate predictive model of the phase 

dynamics, known as a phase response curve (PRC). This low-dimensional representation of 

pertinent phase information and the predictive power of a ipPRC enables the construction of 

MPC algorithms that are well-known to be inherently robust to noise and plant-model 

mismatch. A prominent recent study derived a feedback control law for circadian 

entrainment using lookup tables from the optimal control [33]. This study focused on a light 

input which may be switched on and off at will, and although highly effective for light, 

pharmaceutical delivery under this policy would incur errors. More importantly, the main 

result proven herein bounds the nearness of their feedback control approach to their optimal 

control law. A preliminary investigation of the potential of MPC in circadian control with 

pharmaceuticals was undertaken in [34, 35], which demonstrated MPC of mammalian 

circadian rhythms via KL001, a small-molecule pharmaceutical that was recently used to 

manipulate (in vivo) the circadian clock in mammals [22, 23]. Although previous 

investigations have revealed the importance of carefully selecting prediction horizon and 

controller sampling time of the MPC to reset the circadian oscillator, no systematic method 

of selecting these design variables has been derived.
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This study seeks to answer three fundamental questions:

1. What does the optimal control policy for pharmaceutical-driven circadian phase 

resetting look like?

2. What design considerations should be made in implementing feedback control of 

circadian phase? More specifically, how does the selection of sampling or 

switching times and the prediction horizon affect the optimality of the applied 

control?

3. How can these design considerations shape our selection of circadian 

therapeutics?

In answering these questions, this study presents a systematic framework for constructing 

ipPRC-based nonlinear MPC formalisms capable of manipulating mammalian clocks using 

small-molecule pharmaceuticals.

2. Phase-Reduced Model and Optimal Phase Shifting

First, the circadian oscillator model and its accompanying notation are presented.

2.1. Circadian oscillator model

Circadian dynamics are most commonly represented by limit-cycle oscillators. These 

oscillators are generally modeled using a class of smooth nonlinear dynamical systems of 

the form

dx
dt = f x, p, u , (1)

where x t ∈ ℝn denote states such as mRNA or protein concentrations, p ∈ ℝm denote 

kinetic parameters, and u t ∈ ℝℓ denote control inputs. The zero-input system ẋ = f x,p,0
comprises an exponentially-attractive limit cycle Γ ⊂ ℝn that satisfies

lim
t ∞

x t − x t − T = 0, (2)

with period T and angular frequency ω = 2π/T. A two-dimensional limit cycle with states x 
= [x1, x2] is visualized in Fig. 1A.

This study is concerned with dynamics of the phase of oscillation, and so we first map every 

unique point on the limit cycle x0 ∈ Γ to a unique scalar phase ϕ0 ∈ 𝕊1 = 0, 2π . Phase is 

defined such that for an oscillator on the limit cycle, phase advances linearly with time. Let 

ΦΓ : Γ 𝕊1 denote the corresponding map relating x0 to oscillator phase ϕ0 = ΦΓ x0 .

Let γ(t; x0) denote the solution of system (1) with initial condition x 0 = x0 ∈ Γ. Thus a 

time-dependent phase variable
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ϕΓ t = ΦΓ γ t, x0 (3)

may be established. Considering that the unperturbed oscillator traverses the limit cycle at 

the constant rate ω, the system phase evolves in time according to:

ϕΓ t = ωt+ϕ0 mod 2π . (4)

The application of an exogenous input (such as a control action) will divert the state of an 

oscillatory system away from the limit cycle Г. In order to ascertain the phase shift incurred 

by such an input, we must assign a phase to points on ℝn\ Γ that are not on the limit cycle Г, 

that are exponentially attracted to Г. This can be done by assigning them the phase of the 

trajectory to which they ultimately converge. The trajectory denoted θ(t; xa, u) is the time 

evolution of point xa ∉ Г, with dynamics given by (1) and control input u. For the zero-input 

case (u = 0), the state xa may be assigned the phase of the initial condition of the trajectory 

γ(t; x0) to which the trajectory θ(t; xa, 0) ultimately converges. The asymptotic phase of xa, 

denoted ϕa, is equal to the phase ϕ0 of point x0 ∈ Г, subject to

0 = lim
t ∞

∥ θ t, xa, 0 − γ t, x0 ∥ . (5)

This relationship yields the asymptotic phase map ϕa = Φ(xa). The asymptotic phase map 

may be used to formulate a time-dependent asymptotic phase variable

ϕ t, 0 = Φ θ t, xa, 0 (6)

for the zero-input case. The trajectories γ and θ with identical phase, and their asymptotic 

convergence, are shown schematically in Fig. 1B.

This formulation yields phase dynamics identical to the case for ϕ, with particular solutions 

of the form ϕ(t; 0) = ωt + ϕ0 with initial phase ϕ0. The following subsection describes how 

the concept of an asymptotic phase variable can be extended for the more challenging and 

useful case of non-zero control input u.

2.2. Infinitesimal parametric phase response curves and the phase-reduced model

For an oscillator in the neighborhood of Г, the phase dynamics resulting from a control input 

may be derived by the chain rule:

dϕ t, u
dt = ω + ∂

∂t
∂Φ γ t, x0

∂u u t (7)

which yields a first-order approximation of phase dynamics for a nonzero control input.

Pharmaceutical manipulations of the clock are generally considered to be mediated by 

temporary changes in one or more parameter values (e.g. increased degradation of a protein, 

or decreased transcriptional rate) [23, 36]. Input u(t) is incorporated into the ODE model as a 

time-dependent modification of parameters p
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p t = p0 + u t . (8)

Substituting this into (7) yields

dϕ
dt = ω + ∂

∂t
∂Φ γ t, x0

∂ p u t , (9)

where ∂
∂t

∂Φ γ
∂ p  is the infinitesimal parametric PRC (ipPRC) for the oscillator on the limit 

cycle [37]. The formulation (9) is valid up to the first-order approximation in both duration 

and magnitude of the control, and is referred to as the phase-reduced model.

The one-dimensional phase equation is therefore given by:

dϕ
dt = ω + B t, ϕ ⋅ u t , (10)

where B(t; ϕ) is the ipPRC and u(t) is the parametric perturbation.

Assumption 1.—The ipPRC B(·) is fully known and dependent only on the asymptotic 

phase ϕ(t).

The ipPRC can be calculated numerically from mechanistic models of the clock for a known 

control input as above, or alternately could be characterized experimentally [37, 38]. Since 

the ipPRC is generated from a clock model, it may exhibit minor differences with the ipPRC 

of the mammalian circadian system. This contributed to our decision to later apply control 

via MPC, as it is inherently robust to plant-model mismatch. The ipPRC may be quantified 

directly via impulse response tests, though these experiments are challenging to perform.

A prior method of formulating asymptotic phase dynamics assumed short pulses of control 

inputs that relax completely to the limit cycle after each pulse [32], and thus the phase 

sensitivity on the limit cycle may be used. Assumption 1, rather, implies that the phase 

response dynamics are constant along isochrons (state-space regions of constant phase). This 

assumption is violated as the oscillator becomes more distant from its limit cycle, or closer 

to the fixed point at the center of the limit cycle. Identifying violations of this assumption 

may be studied in the future, and in these cases, the model should be simulated in full. This 

assumption has been used in prior studies as well [25, 33]. Our assumption yields a few 

practical advantages when implementing pharmaceutical inputs. Short pulses are less able to 

evoke significant phase shifts, as the realized phase shift is determined by integration of the 

ipPRC. Thus, the ipPRC must be of extreme magnitude to yield appreciable shifts for short 

pulses. Pharmaceutical inputs to the clock are not likely to have the extremely rapid 

pharmacokinetics needed to be approximated as short pulses.

Assumption 2.—The ipPRC map is continuous on [0, 2π] and has exactly two zero 

crosses in that interval; the derivatives of the ipPRC at the zero crosses have opposite sign.
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This PRC form is readily found in the literature, and for stimuli of a finite duration is 

commonly referred to as a type 1 phase response [38, 39]. Methods for calculation of the 

ipPRC using limit-cycle oscillator models are described elsewhere [37]. The other phase 

response observed (solely) for finite-duration stimuli, a type 0 phase response, contains a 

discontinuity. This form is associated with a strong and extended stimulus or multiple 

stimuli over several days, and therefore does not correspond to the ipPRC [38–40]. 

Furthermore, a type 0 phase response may be generated from an ipPRC that conforms to 

Assumption 2 by applying a long-duration stimulus.

2.3. The phase resetting problem and optimal phase resetting via Pontryagin’s maximum 
principle

The phase-resetting problem involves tracking a reference oscillator with phase given by 

ϕr(t) ϵ [0, 2π), with the oscillator ϕ(t; u) which obeys (10), and with control input bounded 

by u ϵ [umin, umax]. The phase of the reference oscillator is given by:

ϕr t = ωr t + ϕr 0 mod 2π .

Assumption 3.—The reference angular velocity is identical to the angular velocity of the 

oscillator, that is, ω ≡ ωr.

Assumption 4.—The oscillator is not perturbed by exogenous inputs (e.g. light, metabolic 

changes) other than control actions.

Through these assumptions we seek to achieve a phase shift rather than entrain to a dynamic 

phase angle or an environment that also perturbs the system under control. Future studies 

may approach the more complicated case in which small differences between the day length 

and human circadian periods (see [41]), and dynamic light input, are accounted for. This 

simple case of achieving a static phase shift more simply yields optimal control policies that 

are sufficient to provide understanding for feedback controller design.

The phase difference between the reference oscillator and the oscillator under control is:

χ t = ϕ t − ϕr t mod 2π .

The total desired phase shift is such that χ(tf ) = 0 where tf is the time at which the control 

action is finished, and therefore

Δϕf = − χ 0 mod 2π .

In an ideal case where pharmaceutical inputs can be continuously dosed, one can derive an 

optimal control trajectory for entrainment via Pontryagin’s Maximum/Minimum Principle 

[42]. The optimal control problem may be formulated with state dynamics

ϕ̇ = ω + B ϕ ⋅ u t (11)
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ϕ 0 = ϕ0,

and cost functional

J u t = ∫
0

tf
1 dt, (12)

for minimum-time entrainment. This cost functional does not include a penalty for 

introducing a drug which may have side effects or be otherwise undesirable. If the drug 

selected elicits dose-dependent off-target effects, the cost functional could be modified to 

penalize dose as well, and the performance between cases could be compared.

This yields a free-time fixed-endpoint problem, which can be solved using standard optimal 

control approaches [33, 42]. The Hamiltonian

H ϕ, λ, u = ω + B ϕ ⋅ u ⋅ λ + 1 (13)

is formulated with λ is the dynamic costate with terminal condition λ(tf) = 0. Using 

Pontryagin’s Maximum Principle with constrained control inputs in the range [umin, umax] 

we can write

max
u

H ϕ, λ, u = max
umin ≤ u ≤ umin

ω + B ϕ ⋅ u ⋅ λ + 1

= ω ⋅ λ + 1 + max
umin ≤ u ≤ umin

B ϕ ⋅ u ⋅ λ

which yields the optimal “bang-bang” control policy

u⋆ t =
umax if B ϕ ⋅ λ > 0
umin if B ϕ ⋅ λ ≤ 0 . (14)

Here, the terminal condition of the costate, λ(tf ) = 0, forces the costate to be either positive 

or negative for any given initial condition for all time, and so for a specific initial condition 

the control input depends exclusively on the sign of B(ϕ), c.f. [33].

This implies that the oscillator should be shifted in only either the negative or positive 

direction toward its final phase shift, but not both. For an oscillator with desired phase shift 

Δϕf and initial phase ϕ0, the optimal control input u⋆ is one of two admissible trajectories: 

either that for achieving the positive phase shift

u+* t =
umax if B ϕ > 0
umin if B ϕ ≤ 0 . (15)

or the negative phase shift
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u−* t =
umin if B ϕ ≥ 0
umin if B ϕ < 0 . (16)

Which of these two trajectories is optimal depends upon which reaches ∆ϕf more rapidly, 

where ∆ϕ accumulates over time according to

Δϕ = ∫
0

t
B ϕ t' ⋅ u t' dt′ mod 2π . (17)

A decision boundary between advances and delays is denoted ∆ϕb (i.e., ∆ϕf > ∆ϕb indicates 

that delays are preferable, and ∆ϕf < ∆ϕb indicates that advances are preferable). 

Correspondingly, that boundary for the continuous time optimal control is denoted ΔϕB
⋆. 

Thus, the two admissible trajectories may be calculated and compared to determine 

optimality.

This concept is illustrated for the small-molecule pharmaceutical KL001 input in Fig. 3. For 

KL001 drug action, umax = 0:06 to reflect a 60% decrease in degradation rate, and umin = 0 

to reflect that decreasing the degradation rate cannot result in the synthesis of new 

biomolecules. The ipPRC is shown in Fig. 2 Here, we visualize the two admissible 

trajectories as two oscillators ϕ+(t) and ϕ−(t) receiving control inputs u+
⋆ t  and u−

⋆ t , 

respectively, causing the accumulation of phase shifts ∆ϕ+(t) and ∆ϕ−(t) moving in opposite 

directions around the circle of all phase shifts ∆ϕ ϵ [0, 2π) starting at ∆ϕ = 0. The time tB
⋆ at 

which these oscillators meet therefore achieves any phase shift on [0, 2π). This time may be 

found for any initial phase ϕ0 by solving the coupled equations (10) and (17) for inputs u+
⋆ t

and u−
⋆ t , with the terminal condition of ∆ϕ+(t⋆) = ∆ϕ−(t⋆).

Thus, Δϕb
⋆ ϕ0  is defined as the phase shift at which ϕ−(t) and ϕ+(t) meet. The maximum 

time to achieve any phase shift starting from ϕ0 is given by tb* ϕ0 , and Δϕb* ϕ0  (depicted as a 

solid black line in Fig. 3D) yields the boundary between where a positive shift and negative 

shift are optimal to reach a desired ∆ϕf from phase ϕ0. The optimal control input for a given 

ϕ0 and ∆ϕf is therefore defined as:

u⋆ t =
u−
⋆ t if Δϕ f ≥ Δϕ b

⋆ ϕ0

u+
⋆ t if Δϕ f < Δϕ b

⋆ ϕ0 ⋅ (18)

Therefore the optimal shift time tf
opt ϕ0, Δϕf  may be calculated by applying this continuous 

time optimal control until ∆ϕ = ∆ϕf One can formally write tb
⋆ as

tb
⋆ ϕ0 = sup

Δϕ f
t f
opt ϕ0, Δϕf .

(19)
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Remark. A bang-bang optimal control policy for light entrainment was shown previously in 

[24] and [31]. Applying these solutions, however, necessitated either a line search or a 

search for switching times due to the nonlinear temporal relationship between light input and 

driving force on the oscillator. Because pharmaceutical control of the clock can be 

parameterized directly within the limit cycle model, this formulation provides a simple way 

to compute the theoretical optimal phase resetting policy. Therefore, this provides a means 

for determining the relative efficacy of any applied control policy.

3. Closing the loop: designing an ipPRC-based nonlinear MPC

3.1. Motivation

Model predictive control is generally implemented by solving a finite-horizon optimal 

control problem at discrete sampling times, that is, for t = 0, τ, 2τ, , where τ is the sampling 

time. This section will demonstrate that time discretization causes a loss of optimal control 

in regions where the step includes a zero cross of the ipPRC, as the input cannot be adjusted 

during the step and the continuous-time optimal control policy will be violated (visualized in 

Fig. 5). Additionally, care must be taken to ensure that a controller selects the optimal 

direction of phase shifting (e.g., 8h advance vs. 16h delay) when only observing a finite 

portion of the future ipPRC. For the continuous time optimal control, that boundary is 

known to be Δϕb
⋆, however, this is unlikely to be the correct boundary for the sampled-time 

case. Further, there is no guarantee that this boundary will appear from simply solving the 

finite-horizon optimal control.

This section explores how the formulation of the finite-horizon optimal control problem for 

MPC affects our ability to control the clock. For example, consider an ipPRC with a small 

positive region. A large sampling time in this case may result in a controller unable to access 

the positive ipPRC region due to the surrounding negative region being included in each 

step, and the inadvertent delays canceling the desired advance. This would force such a 

controller to use phase delays to achieve even small positive phase shifts.

It is therefore useful to compare the performance of a controller with piecewise constant 

control and uniformly spaced steps in sampling and switching time (the sampling-time 
control) to the continuous-time optimal control case to identify where inefficiency 

accumulates. This technique can be used to find a balance between high performance and 

the computational cost and physical impracticality of frequently updating the algorithm via 

measurement of physiological phase markers.

Additionally, the controller design will inform the suitability of a specific pharmaceutical for 

use. For example, a drug with a small positive ipPRC region will not be an appropriate 

choice for achieving large phase advances if an alternative drug with a larger positive ipPRC 

region exists. Alternately, the drug with the larger positive ipPRC region may be unsuitable 

if its pharmacokinetics are slow, such that sampling times must be very long to allow drug 

clearance between adjusting the dose.
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3.2. Exploiting the ipPRC to choose MPC sampling time

Consider the more practical scenario of implementing control inputs parameterized as 

piecewise constant signals with equispaced time intervals between the knots (i.e., the 

switching times) of the control parameterization trajectory. This is commonly done when 

solving and applying MPC in continuous-time. The control input is defined as constant 

across time steps of uniform duration in a finite horizon, as commonly done for MPC:

u t = ui for t ∈ ti − 1, ti , (20)

where ti are the discrete sampling times, with i = 1, … , Np where Np is the number of steps 

in the prediction horizon (and control horizon, in this paper). Then, ui ϵ [umin, umax] is a 

scalar constant, and τ = ti − ti−1 is the sampling time for the controller.

Next, we are interested in quantifying the error incurred due to piecewise constant control 

actions at discrete sampling times. To better understand this error, we derive bounds on two 

metrics: the residual phase error, and the number of additional cycles to complete reset. 

Definitions for and proofs of bounds on these metrics follow.

Definition 1. The residual phase error Eτ
ϕ  is the phase error remaining at sampling time tk, 

the first sampling time for which the continuous-time optimal control would have first 
completed the reset.

Recall that tf
opt is the time at which χ(t) = 0 under the optimal control and so

k = arg min
i ∈ ℕ

i subject to: ti ≥ tf
opt . (21)

Based on Definition 1, the residual phase error is given by

Eτ
ϕ = χ tk . (22)

First, we provide bounds on Eτ
ϕ and demonstrate that these bounds are solely dependent on 

the sampling time τ and the ipPRC specific to the pharmaceutical being used. To do so, let 

ncyc be the number of 2π cycles required to achieve the continuous time optimal control 

resetting using the optimal control policy (18). Furthermore, we denote Eτ
0, −,Eτ

0, +, and Es to 

be the errors incurred at the step including the negative zero cross, the step including the 

positive zero cross, and a correction for phase advance cases, respectively.

Theorem 1 (Bounding of Eτ
ϕ). Suppose Assumptions 1–4 hold. The residual phase error 

incurred by the sampled- time control (20) satisfies

Eτ
ϕ ≤ ncyc+ 1 Eτ

0, − + Eτ
0,+ + Es .
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Proof. Note that the sampling-time control is able to identically track the continuous-time 

optimal control except where consecutive sampling times occur on either side of a zero-cross 

of the ipPRC.

By Assumption 2, the ipPRC has two zero-crosses in each [0, 2π) cycle and so this occurs at 

most twice per cycle. A zero cross occurs at t = t0 (where ti−1 < t0 < ti). The phase shift 

accumulated for a single step of the controller from ti−1 to ti is given by

Δϕi ui = ∫
ti − 1

ti
B ϕ t' ⋅ uidt ′, (23)

which must be solved numerically with (10) to provide ϕ(t′). Based on the arguments made 

in the previous section using Pontryagin’s principle, we know that the optimal control policy 

selects either umax or umin until the zero-cross, then the opposite following it. Thus, the 

maximal loss of phase advance or delay is incurred if the switching times are positioned 

such that the shift incurred over that time step Δϕi(ui) = 0 for the maximal input case, as this 

indicates that phase advances and delays cancel. The worst-case loss is therefore incurred 

where the controller takes no action on either side of the zero-cross, as the maximal action 

would also incur no shift (as shown in Fig. 5).

The maximal loss in phase shift is of equal magnitude in the positive and negative directions 

because competing advances and delays of identical magnitudes cancel. The maximal error 

incurred at a given zero-cross is

Eτ
0 = max

ti − 1, u
∫

ti − 1

t0 B ϕ t' ⋅ udt′ (24)

and the error for the positive or negative zero-cross is denoted Eτ
0,+ or Eτ

0, −, respectively. 

The maximal phase error incurred for each cycle is the sum of the maximal error from each 

zero-cross, all other steps are identical to the continuous-time optimal control. A 

demonstration of the phase-shift cancellation by competing advances and delays is shown in 

Fig. 5.

For phase advances, additional error is incurred by phase advances accumulating less due to 

the zero crosses, thus, the oscillator phase will reach the next positive ipPRC region later 

than it would if it could achieve the full phase advance. The additional error accumulated is 

equal to the maximal shift that could be achieved in the extra time that it takes to reach the 

positive region. The time lost per cycle for phase advances is:

tE = T
2π ⋅ Eτ

0,+ + Eτ
0, −

(25)

where T is the oscillatory period. This results in an additional residual phase error per cycle 

of
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Es =
max

0 ≤ t ≤ T
∫

t

t+ tE
B ϕ t′ dt′ if Δ ϕ f < Δ ϕb

0 if Δϕ f ≥ Δϕb

(26)

where ∆ϕb is the decision boundary between phase advances and delays. In the case of phase 

delays, this quantity is 0, since the oscillator phase will reach the next negative region more 

rapidly due to achieving less phase delay.

These errors Eτ
0, − + Eτ

0,+, and Es  are caused by deviations from the optimal control policy 

at ipPRC zero crosses, and the sampling-time optimal control otherwise exactly follows the 

continuous time optimal control. Each of these errors occurs at a rate of once per cycle. 

Thus, we can bound the residual time phase error

Eτ
ϕ ≤ ncyc Δϕ f , ϕ0 + 1 Eτ

0, − + Eτ
0,+ + Es

(27)

for a given τ, which concludes the proof.

The bound Eτ
ϕ may be thought of as the maximal value of χ(tk) for optimal control with 

sampling time τ.

Remark. At first glance, it may seem that this bound is loose for the case of arbitrarily large 

ncyc, the number of cycles to achieve any reset is bounded by the finite scalar

ncyc
max = max

Δϕ f , ϕ0
ncyc Δϕ f , ϕ0

the maximum number of number of cycles to achieve any continuous time optimal reset. 

Applying this value in (27), we may bound the residual time phase error for any sampling-

time optimal reset.

Fig. 6 shows how the residual phase error bounds evolve over time for phase advances or 

delays, ϕ0 = 0, and τ = 2 h. This corresponds to the actual residual phase error incurred, by 

numerically calculating the optimal control. Although the error bound increased identically 

for each cycle, the actual residual phase error varies each cycle, depending upon how each 

zero-cross aligns with the sampling times.

Fig. 7A-B demonstrates this bound for KL001 under τ = 1, 2, 4 h, for ϕ0 = 0. The number of 

cycles to achieve each reset for phase advances or delays ∆ϕf ϵ [−2π, 2π] (to explicitly 

show advances and delays) and ϕ0 = 0 under the continuous-time optimal control for KL001 

is shown in Fig. 7A. The region of this plot that corresponds to the phase resetting directions 

selected by the continuous-time optimal control (advances for Δϕ f < ΔϕB
⋆, delays for 

Δϕ f ≥ ΔϕB
⋆) are denoted between the dashed lines. Notably, the number of cycles to achieve 
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phase advances accumulates more rapidly due to the smaller positive region of the ipPRC, 

and as such, error will incur more quickly in phase advance regions. Fig. 7B shows the 

bounds on the residual phase error for τ = 1, 2, 4 h, and the actual residual phase error 

incurred for numerically calculating the optimal control for each shift and sampling time. As 

observed, the calculated residual phase errors fall within the computed bounds.

In addition to the residual phase error, it is useful to determine how much additional time it 

would take to reach a complete reset. Effectively, we aim to nd tadd for χ t f
opt + tadd = 0.

Finding or bounding tadd is complicated, as it necessitates knowledge of the entire discrete-

time optimal control trajectory for each ϕ0 and ∆ϕf How-ever, the most additional time to 

reset is incurred when a

phase advance requires waiting through the negative ipPRC region (or the inverse case, a 

phase delay forcing a wait through the positive ipPRC region) to complete the resetting. 

Conveniently, we may bound the number of additional cycles to complete a phase reset 

without explicit knowledge of the full discrete-time optimal control.

Definition 2.The number of additional cycles to complete reset nτ
add ∈ ℕ  is a positive 

scalar that enforces the constraint

χ t f + ncyc
addT+, − = 0

where T +,− is the accelerated/decelerated period of the oscillator induced by a phase 
advance/delay, respectively.

Remark. We note that T + < T < T −, and by virtue of being on a limit cycle yields

lim
t ∞

x t, p, u+ − x t − t+,p, u+ = 0

and

lim
t ∞

x t, p, u− − x t − t−,p, u− = 0

which hold true for any T +-periodic control input u+ that phase advances the oscillator and 

shortens the period, or T −-periodic control input u− that phase delays the oscillator and 

lengthens the period. In sum, phase advances result in transient shortening of the period, and 

phase delays result in a transient lengthening of the period.

The following upper bound is proposed on the number of additional cycles to complete 

reset.

Theorem 2 (Bounding of ncyc
add).
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Let Δϕg, τ
−  and Δϕg, τ

+  be the maximum phase delay and advance that is guaranteed to be 

achievable in a cycle of 2 respectively. Recall that ∆ϕb is the decision boundary between 
phase advances or delays. The number of additional cycles to correct for the residual phase 
error incurred by the sampled-time control (20) is bounded above by

ncyc
add ≤

Eτ
ϕ/Δϕg, τ

− + 1 i f Δϕ f ≤ Δϕb

Eτ
ϕ/Δϕg, τ

+ + 1 i f Δϕ f ≤ Δϕb , (28)

where ⌊ · ⌋ denotes the floor function.

Proof. Let Δϕg, τ
+  denote the phase advance that are guaranteed to be achievable in a single 

cycle. This is more simply thought of as the maximum total phase advance or delay 

achievable in a cycle minus the worst-case zero-cross error. For advances, the maximum 

phase advance achieved in a cycle is achieved by the continuous time optimal control policy 

for advances:

Δ ϕcyc
+ = ∫

0
T+

B ϕ t′ ⋅ u−
∗ t' dt′. (29)

The phase shift that is guaranteed to be achievable for each cycle for a step size of τ is 

therefore

Δ ϕg, τ
+ = Δ ϕcyc

+ − Eτ
0,+ − Eτ

0, −, (30)

and an equivalent method can be used to calculate Δϕg, τ
+ .

The bound may be calculated by dividing the remaining error Eτ
ϕ by the advance or delay 

that is guaranteed to be achieved each cycle for a sampling time of τ This implies (28).

This bound is plotted for the use of KL001 and τ = 1, 2, 4 h in Fig. 7C. For sampling times 

of 1 or 2 h, the residual phase error may corrected in 1–2 cycles, with the vast majority of 

cases needing only an additional cycle. Furthermore, because this method assumes the worst 

possible alignment of the control switching times for every cycle, it is unlikely that the full 

two additional cycles will be needed. Alternately, the 4 h sampling time potentially results in 

many additional cycles needed to achieve a complete reset. This is because, as shown in Fig. 

5, a 4 h step could be aligned such that nearly the entire phase advance region of the ipPRC 

is lost. Correspondingly, Δϕg, τ
+  is small in value. Thus, we may conclude that a sampling 

time of 2 h is approximately as effective as 1 h, and provides a 50% reduction in 

computational and sampling costs over 1 h sampling times, given our assumptions. Our 

controller designed in Section 4 therefore uses τ = 2 h. However, if a controller was 

designed to only produce phase delays, a 4 h sampling time is sufficiently near to the 

optimal control. This metric is therefore useful in designing controllers for a given problem 

and potential pharmaceutical given its ipPRC.
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For these plots, dashed lines bound the phase shifts that are performed by the continuous-

time optimal control to achieve complete coverage of phase shifts from 0 to 2π This 

implicitly assumes that the direction of optimal phase shifting is known for our choice of τ 
and is identical to the continuous time optimal control bound ∆ϕ⋆. The following subsection 

addresses the choice of resetting direction (given ∆ϕ⋆ for the continuous optimal case).

While numerical calculation of the in finite-horizon optimal control may seem 

advantageous, the optimizations involved are costly, as the selection of each step affects the 

region of the ipPRC available in the ensuing steps. Rather, we propose to formulate the MPC 

problem using the bounds derived from the optimal control as guidelines, and perform phase 

shifts by repeatedly solving the finite-horizon optimal control. It must be emphasized that 

because the bound we have derived is for the maximum residual phase error incurred at each 

zero-cross, a controller need not solve the in finite-time optimal sampling time control to be 

governed by the bound. Solving a finite-horizon optimal control problem is sufficient for 

these bounds on accumulated error to apply.

3.3. On MPC formulation and the selection of a prediction and control horizon

MPC involves repeatedly solving a finite horizon optimal control problem. For the 

continuous-time optimal control (in Section 2.3) the direction of phase shifting was 

determined by calculation of the equal-time phase shift boundary ∆ϕ⋆. That boundary may 

differ for the discrete-time optimal control for a given step size. However, in MPC, whether 

the oscillator should advance or delay is implicitly solved in the finite horizon optimization. 

This subsection demonstrates via simulations that the finite-horizon optimal control in MPC 

is dependent on the number of steps. Because the finite-horizon optimal phase shifting 

direction can differ from the true optimal direction, we propose a multi-staged optimization 

for solving the finite-horizon optimal control.

The MPC problem is formulated in a similar fashion as [34], where the prediction and 

control horizons are set to be identical. The prediction horizon consists of Np steps with 

sampling time τ For an oscillator at t = tk this yields:

U ≜ u tk+ τ ⋅ ⋅ ⋅ u tk+ N pτ ⊤
(31)

as the knots of the control trajectory defined at each of the Np steps. Eqn. (10) is used as the 

MPC predictor, which estimates the oscillator phase at the end of each of 𝓁 ∈ 1, ⋅ ⋅ ⋅ , Np

steps. The predictor formulation of (10) is

ϕ ti + ℓτ = ϕ ti + ωτ + ∑
k = 1

𝓁 ∫
ti + k − 1 τ

ti + kτ

B ϕ ⋅ uk dt . (32)

Here, i is the index of the applied control steps, and k is the index of the predictor. The 

predicted phase error χ t  is de ned as the magnitude of the phase difference between the 

predicted phase ϕ and the environmental phase:
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χ t ≜ ϕ t − ϕr t mod 2π (33)

We want the phase error to reflect the absolute phase distance between reference and 

controlled oscillators, and so we define

hϕ t = min χ t , 2π − χ t

To avoid overcorrecting to for small amounts of noise in the phase estimate, we ignore phase 

error below a constant δϕ:

gϕ t ≜ hϕ t otherwise
0 if hϕ t < δϕ

(34)

so that imprecisions in calculating phase do not result in controller action (similar to the 

zone-MPC approach of [7]). Thus, the finite-horizon optimal control problem at each time ti 
may be solved for the optimal trajectory uMPC

⋆ :

uMPC
⋆ = arg min

U
Σl = 1

N p ωϕ gϕ
2 ti + ℓτ + ωuuℓ

2
(35)

Subject to: Eqn. (32) Eqn. (33)

umin ≤ uℓ ≤ umax,

for all ℓ = 1, , Np, where wϕ and wu are positive weighting scalars evaluated at the end of the 

time step and start of the time step, respectively, as phase error is calculated after the control 

is applied for that step. Weights wu are nominal so that the control input is 0 when input 

would incur no phase shift. After identifying the optimal piecewise control trajectory u⋆, the 

initial step u1
⋆ is applied to the system (in this case the full 8-state ODE model) for t ϵ (ti, ti + 

τ] as is standard in model predictive control.

For the ensuing simulations, a sampling time of τ = 2 h was used, as described in the prior 

section. Additionally, weights wϕ = 10 and wu = 1, so that no control is delivered for 

marginal gains in phase shifting, and δϕ = 0.1 as in [35].

Simulations demonstrate that the optimization step in the MPC is susceptible to errors 

induced by choosing the slower direction to achieve a phase reset. The example in Fig. 8 

shows how the finite horizon optimal control uMPC
⋆  calculated for ∆ϕf = π, ϕ0 = 0 varies with 

Np. For short prediction horizons, the controller applies a phase advance, because more of 

the positive ipPRC region is immediately visible to the predictor, suggesting that this will 

achieve most rapid reset. By extending the prediction horizon to Np = 10 (20 h), more of the 

negative region of the ipPRC is available, and so the controller targets phase delays, 

consistent with the in finite-time optimal control for τ = 2 h. In some cases, performing the 
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optimization with both advances and delays available results in an “indecisive” controller 

that changes directions during the phase shifting, causing excessive lags to reset.

One solution to the problem of inconsistent finite-horizon optimal control policies is to 

extend the prediction horizon such that it always observes the entirety of the reset, to 

guarantee that the finite-horizon optimal control calculated during MPC is equal to the in 

finite-horizon optimal control, that is: uMPC
⋆ = uτ

⋆ However, this leads to excessive 

computational costs, especially for small sampling times. Furthermore, the optimization 

formulation itself poses challenges. Minimizing the time to complete the reset is 

challenging, as there is no gradient along which to move unless the reset is completed during 

the prediction horizon, leading to cases with an in finite cost. Minimizing phase error at each 

step may be suboptimal as well: the fastest reset achievable may involve temporarily 

increasing χ(t) for cases where ∆ϕf < π and ∆ϕf >Δϕτ
⋆.

An alternate approach, which is employed in the following section, is to use a two-stage 

optimization, where the direction of the reset (advance or delay) is chosen first using a pre-

selected bound ∆ϕb. Furthermore, we propose using ∆ϕb = ∆ϕ⋆, as this will ensure that the 

bounds on residual phase error and additional cycles to reset hold, as derived in the prior 

section, and thus provide guarantees on controller performance in the absence of plant-

model mismatch or noise. One further important consideration is that a controller with Np = 

1 will be unable to avoid ac-cumulating error at the zero-crosses, whereas a controller with a 

larger Np provides exibility to adjust the control inputs preceding a zero-cross to minimize 

the accumulated error. For this reason, the design parameters were set to Np = 5 and ∆ϕb = 

∆ϕ⋆ for our controller. We note, however, that the derived bounds hold even for Np = 1.

4. In silico application of designed MPC controller for phase resetting

To demonstrate the efficacy of this control approach, this section presents two control 

scenarios in our in silico circadian simulator (shown schematically in Fig. 4). We note here 

that the predictor in our MPC formulation was the phase only model, but the system that we 

applied the control input to is the full 8-state ODE model. Thus, we are testing Assumption 

1, since control inputs will perturb the system from the limit cycle, and control will only be 

viable if the phase-only model reduction accurately describes phase dynamics in state space. 

We parameterized the controller with τ = 2h, Np = 5, and ∆ϕb = ∆ϕ⋆, as prescribed by the 

design considerations in the prior sections.

The first scenario (Fig. 9) is an example of extreme jet lag, in which the environment 

undergoes a 5 h phase advance, followed three days later by a phase delay of 11 h This is the 

equivalent of a flight from Boston to London, then London to Honolulu. Here, the controller 

first waits for a positive region of the ipPRC rather than immediately attempting a delay, as 

∆ϕf < ∆ϕb. Thus, it completes this phase advance in approximately 30 h. The 11 h delay 

occurs during a region where B(ϕ) < 0, and thus control input is provided immediately. This 

shift is completed in a total of two continuous doses, in approximately 36 h. Without a 

control approach, light input alone achieves a shift of 2–3h per day at most, thus, this 

represents a significant speed up in phase resetting. If light is delivered under optimal 
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control, these shifts are predicted to take several days [24], thus demonstrating the potential 

for improvement by a pharmaceutical input.

The second scenario (Fig. 10) involves the delivery of KL001 to align an individual working 

on a rotating shift pattern, from [43]. Here, the time on the x-axis is local time, and the phase 

of the oscillator is initialized for an individual entrained to a normal light-dark cycle. In this 

protocol, the individual works two days of morning shift, followed by two days of evening 

shift, followed by two days of night shift (work shifts denoted by gray boxes. This 

perpetually phase-delaying schedule is easily tracked by KL001 input, as KL001 more easily 

achieves phase delays. Notably, by taking one large dose after the conclusion of each pair of 

shifts, the individual rapidly shifts to the new work phase. Each shift worked in this protocol 

occurs while the individual is exactly phase-aligned with their work environment. This 

scenario exclusively involves phase delays, and so under the analysis of Section 3 a larger 

sampling time of τ = 4 h (or possibly even larger) would be similarly effective.

Importantly, the possibly competing effects of light was neglected in these scenarios. This 

could be achieved simply by restricting light input during the phase-shifting steps, or 

treating light as a complementary control input, using an approach such as [25]. This is a 

possible topic for future study.

5. Conclusion

This paper presents tools for designing feedback control of circadian rhythms based upon an 

optimal control policy. Importantly, this paper provides a bound on the errors incurred by 

discrete sampling and update times during pharmaceutical control of circadian oscillation. 

These results may then be applied to compare against the efficacy of a light-based approach; 

see, for example, [33]. Thus, we implicitly considered the non-instantaneous 

pharmacokinetics of circadian pharmaceuticals. The optimal control problem in the case of 

known pharmacokinetics will likely necessitate computational, rather than analytic, 

solutions. In our simpler discrete-time formulation, one may think of the time step of each 

input as an approximation of the pharmacokinetics by a square wave. While this 

approximation is clearly non-physiological, it yields analytic solutions that can guide the 

search for viable pharmaceutical actuators. The principle that imprecision in following the 

optimal control policy is incurred when drug action occurs during ipPRC zero-crosses points 

indicates, for example, that a drug with slow pharmacokinetics and a short ipPRC positive 

region will be inefficient at achieving phase advances. Future studies will directly 

incorporate pharmacokinetics, which may be easily added to an MPC formulation, and then 

MPC solutions may be compared to performance under the optimal control policy. Further-

more, we have shown the advantages provided by pharmacological actuation, as any phase 

reset is predicted to be achievable in under 60 h. Uniquely, we propose a formulation of the 

nonlinear MPC based on the bounds derived from the optimal control problem.

Since drug discovery for the manipulation of circadian rhythms is ongoing, this paper 

presents a perspective on which pharmaceuticals will enable control. Specifically, an ideal 

circadian pharmaceutical will have (i) large-magnitude positive and negative ipPRC regions, 

to enable bidirectional phase resetting, and (ii) rapid pharmacokinetics, to enable precise 
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timing of its effect and minimal losses during ipPRC zero-crosses. This is in contrast to 

traditional pharmaceutical approaches that select for a long drug half-life to ensure its effect 

is sustained. Future studies should explicitly incorporate simple pharmacokinetic profiles, 

rather than piecewise-constant control. However, achieving closed-form solutions or error 

bounds for these problems is challenging.

While this study has approached control of circadian phase, circadian amplitude has been 

also been recognized as an important physiological parameter. Previous studies have 

predicted that light resetting of the clock is associated with diminished amplitudes [24, 44]. 

Changes in amplitude of circadian parameters may be due to deviation from the limit cycle 

within individual cells, or due to desynchrony among cellular oscillators during phase 

shifting [45]. Deviation from the limit cycle may be predicted through amplitude response 

curves (ARCs), and changes in synchrony may be predicted by judicious use of the ipPRC. 

Elsewhere, we have begun the development of MPC that maintains circadian synchrony 

through phase shifting [46] Future studies of circadian control may explicitly include control 

of circadian amplitudes in addition to phase.

Finally, the remaining link in achieving closed-loop circadian control is the development of a 

noninvasive circadian phase sensor. While phase may be assessed relatively simply from 

cellular bioluminescent reporters, noninvasive in vivo phase inference in mammals is an 

open challenge. Recent work in assessing phase from ambulatory monitoring has shown 

promise and reasonably accurate predictions [47], however, the propagation of measurement 

errors through such a control algorithm also remains an open question. An ideal phase 

sensor would rely on simple data such as solely actigraphy, rather than additional 

biophysical sensors (e.g. skin temperature, salivary melatonin), and remains in development. 

The abilities of phase inference methods and controller robustness will be of consequence 

for the implementation of any form of circadian feedback control mentioned herein.
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Figure 1: 
Schematic of limit cycle dynamics for arbitrary states x1 and x2. (A) The limit cycle Г in 

state space. (B) Schematic of trajectories γ and θ These points may be assigned identical 

phases (ϕa = ϕ0), as the trajectories originating at these points converge asymptotically.
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Figure 2: 
Schematic of the core circadian gene regulatory network and effect of small molecule 

KL001. (A) The core circadian negative feedback loop. KL001 stabilizes nuclear CRY by 

reducing its degradation rate, as shown in blue. (B) Infinitesimal parametric phase response 

curve (ipPRC) for KL001-mediated stabilization of nuclear CRYs.
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Figure 3: 
Optimal control of the circadian clock by use of the ipPRC shown in Fig. 2B. (A) Maximal 

phase advances Δϕ+
⋆ t  and delays Δϕ−

⋆ t  for the ipPRC, with ϕ0 = 0 and umax = 0:06, umin = 

0:00. The respective maximal phase shifts meet at time tB
⋆ and phase shift ΔϕB

⋆ as marked on 

the graph. All phase shifts may be achieved in time less than or equal to tB
⋆. Note that 

t f
opt 0, Δϕ f  can be found on this plot by seeking the minimum time at which the oscillator 

crosses the desired ∆ϕf (for example, t f
opt 0, 3π /2 ≈ 20 h, and is achieved by a phase delay). 

(B,C) Plot of optimal inputs u−
⋆ t  and u+

⋆ t , respectively, for the phase delay and advance 

shown in A. (D) Heatmap of optimal time to reset the clock t f
opt as a function of initial phase 
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as desired shift. Note that ΔϕB
⋆, the boundary between advances and delays, is dependent on 

ϕ0.
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Figure 4: 
In silico scheme for MPC of circadian rhythms. In experimental or clinical application, a 

human, organism, or cell culture would replace the 8-state ODE model as the system under 

control, and phase would be estimated rather than calculated.
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Figure 5: 
Error in applying the optimal control policy occurs at the zero-crosses of the ipPRC. For a 

sampling time of 4 h, the zero-cross occurs in the second step t1 < t0 < t2, and so u2 will 

necessarily violate the continuous-time optimal control law. For the cases shown here, 

Δϕ2(umax) = Δϕ2(umin) = 0, and the resulting phase at the end of step 2 is identical due to 

cancellation of the advance by the delay. Finally, it is noteworthy that this single 

pathological step consumes most of the positive region of the ipPRC, suggesting that τ = 4 h 

is a poor choice for sampling time if phase advances are desirable.
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Figure 6: 
The phase shift accumulated in the continuous-time optimal control (black line) plotted as a 

function of time, in comparison to the lower bound on phase shift accumulated (red line) and 

the actual discrete-time phase shift accumulated (red dots), for τ = 2 h and ϕ0 = 0. The 

residual phase error is the difference between the continuous time optimal control and the 

actual discrete-time control. Phase advances (A) and delays (B) are shown explicitly. The 

bound deviates further from the optimal control at each completed cycle, however, only the 

shifts that occur before tB
⋆ (dashed line) are attempted under the optimal control policy. 

Additionally, the error is more severe for phase advances, due to the relatively smaller 

positive region of the ipPRC, the fact that phase advances incur zero crosses more rapidly 

due to shortening the period, and the proximity of that positive region to a large negative 

region. For panel (B), these lines are nearly on top of one another. The numerically-

calculated optimal control for τ = 2 h indeed obeys the bounds derived in Theorem 1 from 

the continuous time optimal control.
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Figure 7: 
Sampling time τ affects circadian phase resetting for optimal control with evenly-spaced 

switching times, a common feature of feedback control and MPC. (A) Plot of number of 

cycles required to achieve each phase advance or delay under continuous-time optimal 

control. Errors due to switching timing occurs where the ipPRC crosses 0, and thus is 

residual phase error is a function of the number of cycles required for continuous-time 

optimal control. (B) A bound on Eτ
ϕ, the distance to the nal phase that will remain at t = t f

opt

under optimal control with a constant sampling time is derived from the continuous optimal 
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control trajectory. Here, the derived bound is shown as a line, and the Eτ
ϕ for numerically 

calculated optimal control solutions are shown as x markers for each τ (plotted as discrete 

points for ease of visualization). The residual phase error in each case indeed obeys the 

theoretical bounds. (C) A bound on ncyc
add is also derived. For this example, 1 h and 2 h shifts 

yield similar residual phase error and allow a complete reset in at most two additional 

cycles, under ∆ϕb = ∆ϕ⋆. Thus, either is a reasonable choice for sampling time, though a 2 h 

sampling time will reduce the cost of sampling by half. Alternately, if this drug were used 

only to achieve phase delays, a 4 h sampling rate would be similarly suitable.
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Figure 8: 
Changes in the prediction horizon affect the finite-horizon optimal control trajectory based 

on the observable ipPRC. This is demonstrated by computing the first finite-horizon optimal 

control trajectory and varying that horizon. (A-C) Finite-horizon optimal control trajectories 

for Np = 3, 5, and 10, respectively. In all cases, τ = 2h, ∆ϕf = and ϕ0 = 0. Note that not only 

do the finite horizon optimal controls computed by the MPC differ, they seek to achieve the 

same shift by either advances (A,B) or delays (C). The in finite-horizon optimal control is 

achieved via delays (∆ϕf > ∆ϕ⋆), and so A or B would lead to excessively-long resetting by 

either selecting advances to achieve the shift, or first selecting advances then later choosing 

delays as in C. (D) This result is visualized by plotting the phase progression for each MPC 

case and for the 0-input case. Phase advances evidently yield slower progress toward the 

reference phase, and thus short prediction horizons choose ineffectively. This complication 

in MPC problem formulation may be circumvented by providing the controller with the 

optimal resetting direction a priori.
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Figure 9: 
Demonstration of MPC for phase resetting in response to jet lag. This scenario involves a 5h 

(0.417π rad) phase advance followed by a 11h (0.917π rad) phase delay, the equivalent of 

flying from Boston to London, then London to Honolulu three days later. (A) Phase of 

oscillator under MPC compared to reference phase (local time) for the jet lag problem. For 

this problem, τ = 2h and Np = 5. (B) Timing of control inputs and ipPRC throughout the 

simulation. In both cases, the reset is completely achieved in less than 48h, a drastic speedup 

in comparison to the untreated case or the light-input case [33]. For simplicity, no light input 

to the clock was assumed in this case, though it may be incorporated as an additional 

disturbance input to the phase model, or applied as part of multi-input control.
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Figure 10: 
Demonstration of MPC for phase resetting in response to a weeklong rotating shift work 

schedule, described in [43]. This scenario involves 8h phase delays every two days when 

rotating from morning (06:00–14:00), to evening (14:00–22:00) to night (22:00–06:00) 

shifts, followed by days off. (A) Phase of oscillator under MPC compared to reference phase 

for the shift work problem. In this example, time corresponds to clock time, such that Per 
expression in an individual entrained for morning work will occur near dusk. The reference 

phase was adjusted to the next rotating shift following the last work cycle of the prior 

rotating shift. For this problem, τ = 2h and Np = 5. (B) Timing of control inputs and ipPRC 

throughout the simulation. Because all shifts are achieved by delays, a slower sampling rate 

(longer duration between dosage changes) would have a similar efficacy. For simplicity, no 

light input to the clock was assumed in this case, though it may be incorporated as an 

additional disturbance input to the phase model, or applied as part of multi-input control.
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