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Abstract

It has been 20 years since West Nile virus first emerged in the Americas, and since then, lit-

tle progress has been made to control outbreaks caused by this virus. After its first detection

in New York in 1999, West Nile virus quickly spread across the continent, causing an epi-

demic of human disease and massive bird die-offs. Now the virus has become endemic to

the United States, where an estimated 7 million human infections have occurred, making it

the leading mosquito-borne virus infection and the most common cause of viral encephalitis

in the country. To bring new attention to one of the most important mosquito-borne viruses

in the Americas, we provide an interactive review using Nextstrain: a visualization tool for

real-time tracking of pathogen evolution (nextstrain.org/WNV/NA). Nextstrain utilizes a

growing database of more than 2,000 West Nile virus genomes and harnesses the power of

phylogenetics for students, educators, public health workers, and researchers to visualize

key aspects of virus spread and evolution. Using Nextstrain, we use virus genomics to

investigate the emergence of West Nile virus in the U S, followed by its rapid spread, evolu-

tion in a new environment, establishment of endemic transmission, and subsequent interna-

tional spread. For each figure, we include a link to Nextstrain to allow the readers to directly

interact with and explore the underlying data in new ways. We also provide a brief online

narrative that parallels this review to further explain the data and highlight key epidemiologi-

cal and evolutionary features (nextstrain.org/narratives/twenty-years-of-WNV). Mirroring

the dynamic nature of outbreaks, the Nextstrain links provided within this paper are con-

stantly updated as new West Nile virus genomes are shared publicly, helping to stay current

with the research. Overall, our review showcases how genomics can track West Nile virus

spread and evolution, as well as potentially uncover novel targeted control measures to help

alleviate its public health burden.
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Background

West Nile virus (WNV; family Flaviviridae; genus Flavivirus) is globally distributed and main-

tained by a complex transmission cycle involving multiple species of mosquitoes and birds [1–

3]. Since its emergence in the Americas in 1999, the virus has resulted in over 48,000 reported

cases, 24,000 reported neuroinvasive cases, over 2,300 deaths [4], and an estimated 7 million

total human infections in the continental US [5]. At present, WNV is considered one of the

most important zoonotic diseases of concern to the US population [6]. WNV is also a signifi-

cant animal pathogen, having caused over 28,000 reported equine cases [7] and mortality in

over 300 bird species [2], resulting in massive population declines reported among at least 23

bird species [8,9]. This includes a reported 45% decline in the American Crow (Corvus bra-
chyrhynchos) population following the introduction of WNV [9]. The impact of WNV has not

been limited to the US, as more than 5,000 human infections have been reported in Canada

[10], and the virus is recognized as an emerging threat across the Americas [11–13].

In the two decades since WNV became established in the US, limited progress has been

made in controlling transmission of the virus. Thus, renewed investment in understanding the

fundamental aspects of endemic WNV transmission and innovative research directions are

needed to mitigate the public health burden of WNV for the next 20 years. For example,

advances in virus sequencing and phylogenetic analysis (comparing genetic variation over

space and time) have transformed our ability to map the spread and evolution of viruses

[14,15]. Such “genomic epidemiology” approaches, for example, were recently deployed to

reconstruct the emergence of Zika virus in the Americas [16–18] and revealed the sources

causing the yellow fever outbreaks in Brazil [19,20]. For WNV, virus genomics played a central

role in uncovering how the virus emerged and became endemic in a new region after its intro-

duction in the US (e.g., [21–27]), and more detailed studies may identify transmission net-

works and source areas of potential reemergence to be targeted during future interventions

[28,29]. While powerful, these phylogenetic tools require technical expertise and computing

resources that make them out of reach for some groups. To fill this need, Nextstrain

(nextstrain.org) [30] was created to provide everyone the ability to explore pathogen spread

and evolution using genomic epidemiology. In this review, we use Nextstrain to uncover key

epidemiological and evolutionary processes during the emergence and establishment of WNV

in the Americas (nextstrain.org/WNV/NA) and discuss collaborative opportunities to advance

this work for future outbreak control.

Visualizing spread and evolution using Nextstrain

Nextstrain (nextstrain.org) is an open-source initiative to use pathogen genome data to pro-

vide a real-time interactive view of the spread and evolution of significant human pathogens

[30]. The concept was born from a large collaborative project to track influenza virus evolution

using rapid virus sequencing and data sharing [31]. This aided the seasonal influenza vaccine

selection process by identifying emerging virus strains that may have evolved resistance to pre-

vious vaccines [32,33]. Moreover, recent epidemics of Zika and Ebola have highlighted the

need for not only real-time virus genome sequencing but also rapid dissemination of epidemi-

ologically relevant results [34]. Thus, Nextstrain was created to provide a publicly accessible

and up-to-date overview of pathogen spread and evolution during outbreaks, facilitated

through collaborations with subject matter experts. Alongside platforms such as Virological

(virological.org), Nextstrain has become an important venue to quickly disseminate prepubli-

cation results, which is especially critical when the information can lead to public health inter-

ventions or improved public understanding [34].
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Nextstrain is powered by a collection of open-source bioinformatic tools to curate, analyze,

and visualize available virus genomes [30]. These datasets are used to reconstruct the geo-

graphic structure and estimated virus spread using incorporated phylogenetic tools [14,15]. To

reduce runtimes, Nextstrain leverages TreeTime for the maximum likelihood phylogenetic

analysis [35], through which the entire WNV dataset currently presented on Nextstrain

(n = 2,267 genomes as of June 2019) can be analyzed in under an hour on a modern computer.

We created a WNV Nextstrain resource in 2018 to convey the history of WNV in the Amer-

icas and promote new research directions (nextstrain.org/WNV/NA; S1 Fig). All of the figures

herein were created using Nextstrain and contain live display links in each legend to allow the

reader to explore the data. The analysis presented on Nextstrain can be recreated using our

build pipeline found at github.com/grubaughlab/WNV-nextstrain, which can be used to ana-

lyze any WNV dataset offline. Additionally, we designed a new narrative function in Next-

strain to accompany this review—accessible at nextstrain.org/narratives/twenty-years-of-

WNV—which walks users through the epidemiological findings discussed here in a more con-

densed and interactive format. Mirroring the dynamic nature of such research, Nextstrain is

constantly updated as new WNV genomes are shared publicly. Thus, the live display links will

always contain the most up-to-date information, helping the readers stay current with the

research.

Emergence of an exotic virus

During the summer of 1999, New York City experienced a remarkably high mortality among

crows and several exotic captive birds, including Chilean flamingos (Phoenicopterus chilensis)
in the Bronx Zoo [36]. Meanwhile, health professionals in Queens observed an unusual peak

of unexplained human encephalitis cases, but the connection was not initially made with the

increased bird mortality [37]. Early serological investigations pointed to Saint Louis encephali-

tis virus (SLEV), a mosquito-borne flavivirus endemic to the Americas, as the causative agent

of the human encephalitis cases [38]. Electron microscopy investigation of viruses isolated

from bird tissues also revealed flavivirus-like particles [21]. However, SLEV is usually not asso-

ciated with mortality in birds, triggering further investigation of a possible link between the

virus causing encephalitis in birds and humans [36]. Sequencing of viruses from bird and

human tissues ultimately revealed that the 1999 outbreak was not caused by SLEV but, rather,

a virus that had never before been observed in the Americas—WNV [21,36,39].

WNV was first isolated in Uganda in 1937 [40] and has since become endemic to many

parts of Africa, Europe, Asia, Australia, and the Middle East [41]. Despite its global distribu-

tion, WNV was not detected in the Americas before the outbreak in 1999, raising two impor-

tant questions: (1) where did the virus originate from and (2) when was it first introduced?

Phylogenetic comparisons of the virus sequences isolated from New York in 1999 to WNV

sequences from around the world revealed that it was most closely related to a WNV isolate

from the brain of a dead goose found in Israel in 1998 [21,39], suggesting a potential origin

from the Middle East [42] (Fig 1). Further genetic studies revealed that WNV was likely intro-

duced in 1998 [24,43] (Fig 1). Thus, WNV may have been circulating in the US for a year

before the first outbreak was detected during the summer of 1999.

A still unsettled question is how the virus was brought into the US [44]. The primary mech-

anism by which dengue and Zika viruses spread around the world is the long-distance travel of

infected humans (e.g., [16,45]). However, unlike these viruses, WNV is maintained in a trans-

mission cycle between birds and mosquitoes, in which humans are considered “dead-end”

hosts (i.e., do not contribute to the cycle). Therefore, mobility of infected birds or mosquitoes,

rather than infected humans, is the more plausible mechanism for the introduction of WNV
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from the Middle East into the US. While migratory birds might be important dispersers of

WNV worldwide [46–48], flyways between the Middle East and North America are not com-

mon [3]. A more likely scenario is commercial or unintentional human transportation of birds

and/or mosquitoes. Mosquitoes are notorious hitchhikers on airplanes [39,40], making an

introduction via one of the two international airports located within the area of the 1999 New

York City WNV outbreak a plausible hypothesis. Although it is impossible to determine

exactly how WNV was introduced, more detailed future investigations into the patterns of

WNV introductions worldwide may reveal new insights.

Conquering a continent

Following the initial outbreak in New York in 1999 [37], surveillance of mosquitoes and birds

showed WNV spread along the eastern seaboard reaching Florida by 2001 [4] and west to the

Rocky Mountains and Pacific Northwest (Washington state) by 2002 [4,49]. Finally, in 2003,

WNV was detected in Southern California [4,50], marking its successful establishment across

the continental US.

The virus genomic data reveal that WNV spread even faster across the US than the surveil-

lance data show (Fig 2). When combining spatial and phylogenetic data, it is estimated that

the WNV “wave” moved from the East Coast to the West Coast at an average dispersal velocity

of approximately 1,000 km/year during the first few years (1999–2003) [26]. Moreover, by the

time WNV was first detected in New York, the virus had already spread to neighboring states

[26] (Fig 2A), before reaching parts of the Midwest and Southeast by 2000 (Fig 2B). These

data also suggest that WNV was established in Texas by 2001 [26] (Fig 2C) and California by

2002 [23] (Fig 2D), a year before it was detected by local surveillance systems [4,50]. The rapid

geographical expansion of WNV between 2001 and 2002 is consistent with a large increase in

virus genetic diversity (i.e., a “polytomy,” as a result of many new transmission chains being

introduced; Fig 1A) [24] and a significant jump in human cases (66 human cases in 2001 to

4,156 in 2002) [4].

During the initial rapid spread of WNV in the US, the lack of geographic structure (i.e.,

“bush-like’ tree topology; S2 Fig) detected from the numerous national [24,26,51–54] and

Fig 1. Emergence of WNV in New York. Though WNV was first detected in New York in 1999, (A) it likely became established in 1998 (confidence interval = October

to December 1998) (B) by an introduction possibly from the Middle East, although the exact location cannot be inferred. Data from specific times can be visualized on

Nextstrain using the “Date Range” function. A live display can be found at nextstrain.org/WNV/NA?c=num_date&d=tree,map&dmax=1998-12-01&p=grid.

https://doi.org/10.1371/journal.ppat.1008042.g001
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regional [51,55–58] phylogenetic studies suggests that WNV encountered a highly conducive

environment with few barriers after it was introduced. This is likely due in part to the large

diversity of hosts and vectors that WNV can utilize for transmission [1–3]. Among these,

highly abundant passerine birds (e.g., thrushes and sparrows) [59] and Culex mosquitoes (e.g.,

C. tarsalis and C. pipiens) [60–62] are the most important for maintaining WNV transmission.

Therefore, it is likely that a large population of susceptible hosts and vectors already present in

the Americas helped WNV to quickly conquer a continent despite the varied landscapes that it

needed to traverse.

While the typical home ranges of residential birds [23,63] and mosquitoes [64] may account

for a large portion of WNV dispersal, the rapid rates of spread, nonuniform diffusion pattern,

and lack of geographical structure are best explained by frequent mixing of local and nonlocal

viruses [26]. Laboratory [65], field [66,67], and phylogenetic studies [24,27] support the

hypothesis that the introduction of nonlocal viruses was facilitated by the movement of WNV-

infected migratory birds. Indeed, the early spread of WNV along the eastern seaboard aligns

with a major bird migration flyway; and while the routes primarily run north and south, the

elliptical migration patterns of passerines may account for the East to West WNV expansion

[27,48,68]. However, it is also possible that other mechanisms may account for the rapid

spread and frequent virus mixing. For example, the impact of human behavior on WNV

spread [63], specifically through the unintentional transport of WNV-infected birds or mos-

quitoes via the dense trucking industry in North America, should be examined more thor-

oughly. Better understanding of how WNV spreads long distances may be critical to inform

future mitigation strategies.

Fig 2. Genomics reveals rapid spread of WNV across the continent. By reconstructing the ancestral traits using TreeTime, Nextstrain infers state of

all internal nodes of the phylogenetic tree to map the pattern of WNV spread. The phylogenetic data show that WNV spread to new regions occurred

about a year before it was detected by local surveillance. Data from specific times can be visualized on Nextstrain using the “Date Range” function. Live

displays can be found at (A) nextstrain.org/WNV/NA?c=num_date&d=map&dmax=1999-12-31&f_country=USA, (B) nextstrain.org/WNV/NA?c=

num_date&d=map&dmax=2000-12-31&f_country=USA, (C) nextstrain.org/WNV/NA?c=num_date&d=map&dmax=2001-12-31&f_country=USA,

(D) nextstrain.org/WNV/NA?c=num_date&d=map&dmax=2002-12-31&f_country=USA.

https://doi.org/10.1371/journal.ppat.1008042.g002
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Aided by evolution?

While WNV continues to diversify, the direct role that evolution played during the emergence

of WNV in the Americas is currently difficult to discern. Evolution of WNV and other mos-

quito-borne viruses is complicated due to their requirement to maintain fitness in alternating

and quite disparate mosquito vectors and vertebrate hosts [69–73]. As a result, the WNV evo-

lutionary rate (approximately 4 × 10 −4 substitutions/site/year; S3 Fig) is slower than many

other single-host RNA viruses [74]; and little evidence for positive selection in the virus popu-

lation has been detected since the emergence of WNV in the Americas [24]. Yet, the displace-

ment of initial WNV genotype (termed NY99) by locally derived genotypes (WN02 and

SW03) [25,51,55,75,76] suggests that the virus may have undergone adaptive evolution in the

US (Fig 3).

The defining feature of the NY99 genotype displacement is a single amino acid substitution

in the WNV envelope protein (E-V159A) that emerged around 2001 [25,51,76] (Fig 3A). By

2003, the WN02 genotype containing the E-V159A substitution became dominant (Fig 3A),

corresponding to the westward spread of the virus (Fig 3B and 3C). Experimental studies have

shown that compared to NY99 strains, WN02 strains may be more efficiently transmitted by

C. pipiens and C. tarsalis mosquitoes [76–78] and produce higher viremias during infection of

house sparrows (Passer domesticus) [79]. Other studies, however, have not found differences

in mosquito transmission rates between the genotypes [80–82] and evidence for selection of

this allele was not found during phylogenetic [24] or experimental evolution studies [83,84].

Thus, the events leading to the extinction of NY99, either by stochastic processes or through

an unknown selective disadvantage, remain unknown.

Soon after the emergence of WN02 in 2001, a southwest genotype (SW03), defined by two

amino acid substitutions NS4A-A85T and NS5-K314R, arose from within this clade [24,85]

(Fig 3A). Both of these substitutions have occurred independently multiple times (S4 Fig) and

appear to be under positive selection [85,86]. WN02 and SW03 continue to coexist within the

US (Fig 3) and even cocirculate within the same locations, years, and mosquito vectors (e.g.,

Arizona [22], California [23], and New York [87]; S5 Fig), suggesting that there are not any

major barriers segregating these genotypes. However, there is some evidence that SW03 has a

more rapid rate of spread than WN02 in California [23]. This could suggest that NS4A-A85T

and/or NS5-K314R are the result of recent adaptations; however, the direct fitness of either

allele has yet to be experimentally evaluated. Altogether, the evidence that supports the hypoth-

esis that rapid evolution of WNV facilitated its westwardly spread is limited, and additional

studies are required to tease apart if locally derived genotypes, such as WN02 and SW03, are

specifically adapted to the environment in the Americas.

Becoming an entrenched virus

Following its emergence, WNV quickly established endemicity and became one of the most

important mosquito-borne viruses in North America [4,6]. Since 2002, between 662 (in 2009)

and 9,438 (in 2003) human WNV cases have been reported every year in the US [4]. Evidence

for endemicity from the genomic data is clear in New York, with some local transmission

chains (i.e., branches on the phylogenetic tree) persisting for at least 10 years (S6 Fig) [87].

Likely due to the constant repopulation of susceptible mosquito vectors and avian hosts, the

data indicate that WNV poses as an annual public health threat with no signs of remission.

Though WNV transmission is consistently detected throughout the continental US, its bur-

den is not uniform, with a large variation in year-to-year human cases and the highest inci-

dence rates often occurring in the central great plains (e.g., Wyoming, South Dakota, and

North Dakota) [4]. Dynamic extrinsic factors, such as rainfall and temperature, that influence
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mosquito and bird populations can be predictive of WNV intensity [88–94], yet the contribu-

tions of these extrinsic factors vary across the US due to differences in regional ecology

[3,95,96]. This is supported by the nonuniform abundance of C. tarsalis, C. pipiens, and C.

quinquefasciatus across the US [97,98], where the presence or absence of these primary mos-

quito vectors in a given location is mediated by many factors including human land use, eleva-

tion, and winter temperatures. Together, these ecological differences create unique

transmission networks at the local and regional levels that can significantly influence the likeli-

hood of human disease risks [96–100]. These ecological barriers may further influence mos-

quito genetic diversity [64,101], causing potential differences in their efficiency for WNV

transmission [95,102]. Combined with varied avian ecology and migratory bird flyways across

the US [3,96], these data suggest that WNV is maintained in regional transmission networks

with unique selective pressures that influence the stability and emergence of new WNV strains

[87].

The slowed dispersal velocity and formation of geographical segregation [22–24,26,87] (S2

Fig, S6 Fig) after the initial rapid spread stage (Fig 2) reinforce the hypothesis that WNV is

now primarily maintained at local or regional levels with less long-distance mixing. However,

it is unclear if dynamic clustering of the virus across the US will lead to the emergence of new

adaptive genotypes and if locally adapted viruses are more likely to cause outbreaks. Under-

standing such fundamental questions of the epidemiology and biology of WNV strains

between and within states may be important for effectively combating this entrenched virus.

Fig 3. Displacement of the introduced WNV by locally derived genotypes. (A) The WNV phylogenetic data support three main genotypes in the US:

NY99, the introduced genotype; WN02, defined by the amino acid substitution E-V159A; and SW03, defined by the amino acid substitutions

NS4A-A85T and NS5-K314R. The phylogeographic data from the US reveal that (B) NY99 rarely migrated past the Mississippi River, while (C) WN02

and (D) SW03 emerged in the East and spread all the way to the West Coast. WN02 and SW03 continue to cocirculate across the continent. Circle size

is relative to the number of genomes that remained local. Data from specific genotypes can be visualized on Nextstrain using the “Color By: Strain” and

“Filter by Lineage” functions. Live displays can be found at (A) nextstrain.org/WNV/NA?c=lineage&d=tree&f_country=USA, (B) nextstrain.org/

WNV/NA?c=lineage&d=map&f_country=USA&f_lineage=NY99, (C) nextstrain.org/WNV/NA?c=lineage&d=map&f_country=USA&f_lineage=

WN02, (D) nextstrain.org/WNV/NA?c=lineage&d=map&f_country=USA&f_lineage=SW03.

https://doi.org/10.1371/journal.ppat.1008042.g003
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An international concern

The spread of WNV north to Canada and as far south as Argentina highlights that the growing

burden of WNV is not limited to the US. The first human WNV case in Canada was reported

in Ontario in 2002, and it has now become endemic in several southern Canadian provinces

[10,103]. Surveillance between 2001 and 2004 showed that WNV had spread to Central Amer-

ica and the Caribbean [12,13,104–107]. Since then, evidence of WNV transmission has been

found across South America, including Colombia, Venezuela, Brazil, and Argentina [13,108–

111]. Detection of WNV antibodies in migratory birds suggests that this route may be an

important factor for WNV dissemination throughout the Americas [106]; but as described

above, it is still unclear if other mechanisms may influence the spread of WNV to Central and

South America.

Although many partial WNV genomes (primarily envelope coding sequences) were gener-

ated from the Americas outside of the US (e.g., [52,112]), complete or near-complete virus

genomes are necessary to accurately reconstruct spread and outbreak dynamics [113]. To this

end, there are currently only 11 WNV genomes available from Mexico [114,115], seven from

the rest of Latin America and the Caribbean [116–119], and none from Canada. These limited

data do reveal that the southwards spread into Latin America and the Caribbean began during

the early stages of the outbreak in the US and occurred independently multiple times [115–

120] (Fig 4). In Mexico, multiple introductions of the WN02 and SW03 genotypes suggest that

viruses may be commonly moving across the US–Mexico border [114,115]. Moreover, WNV

genetic data from the British Virgin Islands [119] and Puerto Rico (partial sequences [121])

reveal that at least the WN02 genotype was introduced into the Caribbean. Interestingly, the

NY99 genotype that was displaced in the US (Fig 3) was detected in Colombia, Argentina, and

Brazil, likely via separate introductions, and may still be in circulation in South America [116–

118]. However, the paucity of complete WNV genomes makes it difficult to understand the

patterns of spread and diversity outside of the US.

An important question is why large human WNV outbreaks have not been detected in

Latin American countries [12,122]. The tropical and subtropical regions of the Americas have

suitable conditions for the establishment of WNV, including warm temperatures, diverse

avian populations, and a variety of Culex mosquitoes [11,122]. Moreover, SLEV, a similar flavi-

virus maintained by Culex vectors and avian hosts is endemic throughout the Americas [123].

Considering that the “old” NY99 genotype virus was recently detected in Brazil [118] and sero-

logical evidence of WNV is prevalent in resident birds from Latin America [13,104–106], it is

likely that WNV is endemic throughout the Americas. Perhaps the presence of other mos-

quito-borne viruses has thus far masked human cases (e.g., misdiagnosed as dengue) or may

convey some level of cross-protection [12,122]. Alternatively, as WNV may have initially out-

competed SLEV in the US [124], the presence of competitive SLEV genotypes in Central and

South America may have at least temporarily slowed WNV transmission in these regions.

Given these uncertainties, initiatives to introduce human and equine serosurveys and dead

bird and mosquito surveillance for WNV in regions throughout the Americas are paramount

for determining its true burden.

Future role of genomics

Given how much WNV has thrived in the US, significant national investment will be required

to control future outbreaks. Among this investment should include sustained and collaborative

efforts to fill in the many gaps in WNV genomic sampling throughout the country, especially

from the last 10 years (Fig 5), to better understand endemic WNV transmission using virus

genomics approaches [14]. Fortunately, the availability of scalable, easy, and relatively
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inexpensive sequencing tools (e.g., [125,126]) make these efforts more achievable, and recent

work by Swetnam and colleagues [27], Hepp and colleagues [22], Bialosuknia and colleagues

[87], and the WestNile 4K Project (westnile4k.org/) provides a template for future public

health and academic lab partnerships. Platforms such as Nextstrain (nextstrain.org/WNV/NA)

and Virological (virological.org) allow these new data to be continually communicated to the

public.

Generating a well-distributed temporal and spatial WNV genomic dataset can be used to

determine which strains are causing outbreaks and, importantly, where those strains came

from and when they became locally established. This work will help to identify if WNV out-

breaks in Ames, Iowa, for example, are connected to outbreaks as far away as Des Moines,

Iowa (approximately 60 km); Omaha, Nebraska (approximately 270 km); or even Chicago, Illi-

nois (approximately 560 km). Systematically searching for connections among WNV out-

breaks around the country may reveal endemic “transmission networks,” which could be

exploited for control and forecasting purposes. WNV control is primarily based on local inter-

ventions to temporarily reduce the populations of mosquito vectors [127], but the long-term

effects are likely limited by recolonization of mosquitoes and reintroductions of viruses once

the pressure is removed. Thus, a highly coordinated effort among several health departments

and mosquito abatement districts to synchronize vector control within a transmission network

may reduce reintroductions and limit WNV transmission beyond a single season. In addition,

genomic epidemiology approaches with large-scale efforts to collect and share mosquito abun-

dance and infection rate data [128] may help to identify potential patterns of virus outbreaks

(e.g., as used to identify factors contributing to the Ebola epidemic [29,129]). This, in turn,

Fig 4. International spread of WNV following its emergence in the US. Following the emergence of WNV in the US, the virus was detected

throughout the Americas, from Canada to Argentina. (A) The colored branches on the tree correspond to (B) the lines on the map depicting spread.

However, the limited number of available near-complete WNV genomes from each location and the long branches make it difficult to accurately map

the patterns of spread and timing of introductions (e.g., the long orange branch on the tree may indicate that the virus may have traveled to many

locations before being introduced in Brazil sometime between 2002 and 2018). Data from specific countries can be visualized on Nextstrain using the

“Color By: Country” and “Filter by Country” functions. A live display can be found at nextstrain.org/WNV/NA?c=country&f_country=Argentina,

Brazil,British-Virgin-Islands,Colombia,Mexico&p=grid.

https://doi.org/10.1371/journal.ppat.1008042.g004
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could be used to maximize vector control efforts by strategically focusing resources at a precise

time and location to limit potential outbreaks [29]. After 20 years of WNV in the Americas, it

is time to recognize that alleviating the burden of WNV for the next generation will likely

depend on significant investment, new approaches, and large collaborations.

Supporting information

S1 Fig. Nextstrain as a tool to visualize WNV evolution and spread. A depiction of the main

interactive interface on Nextstrain to visualize the virus (A) phylogeny (time-resolved phyloge-

netic tree created with TreeTime, states listed by two-letter abbreviations, countries listed by

three-letter abbreviations), (B) spread (inferred patterns of spread based on the tree, circle size

is relative to the number of genomes that remained local), and (C) genetic diversity (amino

acid diversity plotted as entropy and positioned by codon sequence). In the WNV genome, the

protein abbreviations are as follows: C = capsid, prM = premembrane, E = envelope, NS1-

5 = nonstructural protein 1–5. A live display, which can be used to select and zoom in on vari-

ous features, can be found at nextstrain.org/WNV/NA?p=grid. WNV, West Nile virus.

(PDF)

S2 Fig. Limited geographic structure from early in the epidemic suggests that there were

few barriers to WNV spread. An unrooted maximum likelihood WNV phylogenetic tree

shows that there is little geographic structure (i.e., bush-like topology) during the early spread

Fig 5. Gaps in recent WNV sampling hinder the usefulness of virus genomic analyses. Following the initial interest in sequencing WNV, the number

of available genomes for research has continued to decrease. The circle sizes represent the relative number of near-complete WNV genomes available

from each collection location (county) per 5-year period. There are currently (A) 728 available WNV genomes from 37 states from 1999 to 2004, (B)

789 WNV genomes from 22 from 2005 to 2009, (C) 541 WNV genomes from 22 states from 2010 to 2014, and (D) 190 WNV genomes from 5 states

from 2015 to 2019 (all counts are as of June 2019). Data from specific times can be visualized on Nextstrain using the “Date Range” function. Live

displays of the data can be found at (A) nextstrain.org/WNV/NA?c=num_date&d=map&dmax=2004-12-31&f_country=USA&r=division, (B)

nextstrain.org/WNV/NA?c=num_date&d=map&dmax=2009-12-31&dmin=2005-01-01&f_country=USA&r=division, (C) nextstrain.org/WNV/NA?

c=num_date&d=map&dmax=2014-12-31&dmin=2010-01-01&f_country=USA&r=division, (D) nextstrain.org/WNV/NA?c=num_date&d=

map&dmax=2019-12-31&dmin=2015-01-01&f_country=USA&r=division.

https://doi.org/10.1371/journal.ppat.1008042.g005
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phase, as best demonstrated by the Texas (gold) and New York (purple) genomes often cluster-

ing together. This suggests that environment was highly conducive for transmission and that

the virus could freely spread. The minimal mixing between California and New York genomes,

however, suggests that geographic structure is starting to form as the virus transitioned into its

endemic phase. Additional WNV sequencing throughout the US from the last 10 years will

help to better understand if structure is starting to form and at what scale. States are listed by

two-letter abbreviations and countries are listed by three-letter abbreviations. This “unrooted”

tree view can be visualized on Nextstrain by toggling between the “Tree Options: Layout”. A

live display can be found at nextstrain.org/WNV/NA?l=unrooted&m=div&p=full. WNV,

West Nile virus.

(PDF)

S3 Fig. Evolutionary rate of WNV in the Americas. A root-to-tip plot showing the diver-

gence (substitutions per site) of sequenced WNV genomes (tips) from the inferred ancestral

sequence (root) by the collection dates (shown in years) is used to estimate the evolutionary

rate at approximately 4×10−4 substitutions/site/year. The tips are colored by increasing time.

This “clock” view can be visualized on Nextstrain by toggling between the “Tree Options: Lay-

out.” A live display can be found at nextstrain.org/WNV/NA?c=num_date&d=tree&l=clock.

WNV, West Nile virus.

(PDF)

S4 Fig. Multiple independent occurrences of genotype-defining WNV mutations. WNV

genotype SW03 is defined by two amino acid substitutions, (A) nonstructural protein 4A

(NS4A) A85T and (B) NS5-K314R. Branches (inferred ancestral genome) and tips (sequenced

genome) are colored by amino acid at position (A) NS4A site 85 (nucleotide position 6721)

and (B) NS5 site 314 (nucleotide position 8621). Both (A) NS4A-A85T and (B) NS5-K314R

help to form a well-supported clade (yellow branches at the top) but also occur independently

throughout the tree (yellow scattered throughout the lower half). All other alleles (nucleotide

and amino acid changes) can be visualized using Nextstrain by entering the loci using the

“Color By: genotype” function or by selecting a loci on the “Diversity” plot (i.e., S1C Fig). Live

displays can be found at (A) nextstrain.org/WNV/NA?c=gt-NS4A_85 and (B) nextstrain.org/

WNV/NA?c=gt-NS5_314. WNV, West Nile virus.

(PDF)

S5 Fig. Cocirculation of WNV genotypes WN02 and SW03. Since the emergence of WN02

(blue) and SW03 (green) in 2001, the genotypes continue to cocirculate in locations through-

out the US For example, both genotypes were detected during the same years and vector spe-

cies (A) in Maricopa County, Arizona [22] (B), throughout California [23], and (C)

throughout New York [87]. Data from other studies can be visualized on Nextstrain by using

the “Filter by Authors” function. Live displays can be found at (A) https://nextstrain.org/

WNV/NA?c=lineage&f_authors=Hepp%20et%20al, (B) https://nextstrain.org/WNV/NA?c=

lineage&f_authors=Duggal%20et%20al, and (C) https://nextstrain.org/WNV/NA?c=

lineage&f_authors=Shabman%20et%20al. WNV, West Nile virus.

(PDF)

S6 Fig. Establishment of persistent local WNV transmission networks demonstrates

endemicity. WNV is likely establishing persistent local transmission networks throughout the

US, but this can be easily demonstrated from the 570 genomes available from New York (most

generated by [87]). Multiple co-occurring transmission chains (branches) exist derived from

either local evolution or separate (re-)introductions, but several persist locally for 5 or more

years indicating that those viruses became established. Data from other states can be visualized
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on Nextstrain by using the “Filter by State” function. A live display can be found at nextstrain.

org/WNV/NA?f_state=NY&d=tree. WNV, West Nile virus.

(PDF)
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