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The increasing prevalence of hepatic steatosis and nonal-
coholic fatty liver disease (NAFLD) as a component of 

the obesity and metabolic syndrome epidemics is emerging 
as a major public health concern in the United States and 
throughout the developed world. Over 60% of American 
adults are considered to be obese, along with nearly 20% 
of children, while approximately half of American adults 
may have some degree of hepatic steatosis (1–5). The prev-
alence of NAFLD within most populations with obesity 
is thought to be between 70%–90% (5–7), which carries 
important implications for comorbidities including car-
diovascular disease, metabolic syndrome, and (less often) 
progression to nonalcoholic steatohepatitis and cirrhosis 
(8–12). However, despite the increasing trend of obesity 
and fatty liver disease, there is no reliable nonimaging clin-
ical method at present, to our knowledge, for accurately 
capturing the degree of hepatic steatosis at the population 
level, either prospectively or retrospectively.

Among the cross-sectional imaging techniques to 
quantify liver fat, MRI proton density fat fraction, or 
PDFF, is emerging as the noninvasive reference standard 
of choice, given its accuracy and whole-liver assessment 
(13–15). Recent studies have established a linear correla-
tion between liver fat measurement at MRI PDFF and 
nonenhanced CT, allowing for the latter to also accurately 
quantify liver fat (16). Going forward, both MRI and CT 
now represent superior reference standards to histopatho-
logic analysis for liver fat quantification, and measure-
ments are obtained noninvasively. Furthermore, because 
abdominal CT is much more frequently performed than 
MRI in clinical practice for a wide variety of indications 
(17,18), the potential now exists for population-based op-
portunistic screening for hepatic steatosis and NAFLD. 
Although liver Hounsfield unit measurement at nonen-
hanced CT is typically achieved by using a manual region-
of-interest (ROI) approach, we have developed a fully 
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Background:  Nonalcoholic fatty liver disease and its consequences are a growing public health concern requiring cross-sectional im-
aging for noninvasive diagnosis and quantification of liver fat.

Purpose:  To investigate a deep learning–based automated liver fat quantification tool at nonenhanced CT for establishing the preva-
lence of steatosis in a large screening cohort.

Materials and Methods:  In this retrospective study, a fully automated liver segmentation algorithm was applied to noncontrast abdomi-
nal CT examinations from consecutive asymptomatic adults by using three-dimensional convolutional neural networks, including a 
subcohort with follow-up scans. Automated volume-based liver attenuation was analyzed, including conversion to CT fat fraction, 
and compared with manual measurement in a large subset of scans.

Results:  A total of 11 669 CT scans in 9552 adults (mean age 6 standard deviation, 57.2 years 6 7.9; 5314 women and 4238 
men; median body mass index [BMI], 27.8 kg/m2) were evaluated, including 2117 follow-up scans in 1862 adults (mean age, 59.2 
years; 971 women and 891 men; mean interval, 5.5 years). Algorithm failure occurred in seven scans. Mean CT liver attenuation 
was 55 HU 6 10, corresponding to CT fat fraction of 6.4% (slightly fattier in men than in women [7.4% 6 6.0 vs 5.8% 6 5.7%; 
P , .001]). Mean liver Hounsfield unit varied little by age (,4 HU difference among all age groups) and only weak correlation 
was seen with BMI (r2 = 0.14). By category, 47.9% (5584 of 11 669) had negligible or no liver fat (CT fat fraction ,5%), 42.4% 
(4948 of 11 669) had mild steatosis (CT fat fraction of 5%–14%), 8.8% (1025 of 11 669) had moderate steatosis (CT fat frac-
tion of 14%–28%), and 1% (112 of 11 669) had severe steatosis (CT fat fraction .28%). Excellent agreement was seen between 
automated and manual measurements, with a mean difference of 2.7 HU (median, 3 HU) and r2 of 0.92. Among the subcohort 
with longitudinal follow-up, mean change was only 23 HU 6 9, but 43.3% (806 of 1861) of patients changed steatosis category 
between first and last scans.

Conclusion:  This fully automated CT-based liver fat quantification tool allows for population-based assessment of hepatic steatosis 
and nonalcoholic fatty liver disease, with objective data that match well with manual measurement. The prevalence of at least mild 
steatosis was greater than 50% in this asymptomatic screening cohort.
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ously described and are not of relevance to our liver-focused 
study (23). Breath-hold CT acquisition of the abdomen and 
pelvis without intravenous contrast enhancement was ob-
tained in both supine and prone positions, but only the for-
mer was used for liver assessment. All CT scans were obtained 
with 8–64-section multidetector–row scanners (GE Health-
care, Waukesha, Wis) by using 120 kVp with low-dose mil-
liampere settings (typically modulated between 30–300 mA). 
All CT scanners were calibrated daily for quality control of 
Hounsfield unit measurements. Of note, although varying 
the kilovolt setting affects mean Hounsfield unit measure-
ments, varying milliampere will only affect image noise (ie, 
the standard deviation of Hounsfield unit measurements), 
but should not meaningfully affect mean Hounsfield unit val-
ues. The kilovolt settings were kept constant for this reason. 
Overlapping image reconstruction included both thin (1.25 
mm) and thick (5 mm) sections for colonic and extracolonic 
assessment, respectively.

Automated Algorithm for Liver Segmentation and Liver Fat 
Quantification
The detailed description of the segmentation method can be 
found in a separate technical publication (24). Briefly, a mod-
ified three-dimensional U-Net was used for segmentation 
(25,26). To enable processing of large three-dimensional vol-
umes with limited graphics processing unit, or GPU, mem-
ory, an initial strided convolution (step size 2) and a comple-
menting final transposed convolution were added. Training 
data were obtained from the Medical Segmentation Decath-
lon project (27). As liver training data were available at con-
trast material–enhanced CT only, while our population data 
are at noncontrast CT, we performed domain transfer of con-
trast CT to noncontrast CT by using CycleGAN (28). Data 
augmentation was performed by using three-dimensional 
rotation, crop, elastic deformation, CycleGAN noncontrast 
image, and random flips. Model training and inference took 
place on the National Institutes of Health Biowulf high-per-
formance computing cluster by using 4 CPU threads and up 
to 48 GPU nodes (NVIDIA K80 or P100; Santa Clara, Calif; 
12 GB or 16 GB GPU memory), respectively. Batch size was 
4, resolution was 256 3 256 3 192, and initial filters were 
32. The initial learning rate was 0.0001, and training was 
performed for 10 000 iterations. All voxels designated as liver 
by the segmentation algorithm were analyzed, and the mean 
and median Hounsfield unit were computed.

Manual ROI Method for Liver Attenuation Measurement
In a subset of 5562 CT scans, manual mean liver attenuation 
was measured (in Hounsfield units) by using a simple and pre-
viously validated technique that consists of placement of an 
ROI over a representative parenchymal portion of the right 
hepatic lobe (Fig 2) (29–33). Typical size of the rounded ROI 
was 500–1500 mm2 and care was taken to avoid vessels, focal 
nodules or masses, or other causes of heterogeneity. Manual 
ROI measurements were placed independently by several 
trained individuals in large consecutive subsamples by using 
the approach described above, representing the full spectrum 

Abbreviations
BMI = body mass index, CI = confidence interval, NAFLD = nonalco-
holic fatty liver disease, ROI = region of interest

Summary
Population-based quantification of liver fat at nonenhanced CT in a 
large asymptomatic adult outpatient cohort by using a fully automat-
ed deep learning CT-based method may help to identify individuals 
at risk for nonalcoholic fatty liver disease and metabolic syndrome, 
while also allowing for large-scale population-based studies.

Key Results
nn The prevalence of hepatic steatosis was greater than 50% in the 

asymptomatic screening cohort according to an automated deep 
learning CT-based tool, including 10% with moderate or severe 
steatosis.

nn This automated deep learning liver segmentation and fat quanti-
fication algorithm used at nonenhanced CT produces results that 
correlated well with manual liver Hounsfield unit measurement 
(mean difference ,3 HU).

nn Correlation of hepatic steatosis with body mass index, age, and 
sex were all weak, indicating that clinical demographic and mor-
phometric assessment is ineffective for predicting the likelihood of 
underlying nonalcoholic fatty liver disease.

automated algorithm for CT-based liver segmentation and at-
tenuation assessment. The purpose of our study was, therefore, 
to apply this recently trained and tested deep learning–based  
automated liver algorithm to nonenhanced CT in a large, lon-
gitudinal, asymptomatic adult screening cohort, including cor-
relation with manual measurement, to assess the prevalence of 
hepatic steatosis.

Materials and Methods

Study Cohort
This was an institutional review board–approved, Health Insur-
ance Portability and Accountability Act–compliant, retrospec-
tive cohort study of 9552 consecutive patients who underwent 
initial nonenhanced abdominal CT at a single academic medi-
cal center for the purpose of colonography screening between 
April 2004 and December 2016. The need for signed informed 
consent was waived for this retrospective study. Including CT 
follow-up in a subcohort of 1862 asymptomatic individuals 
undergoing 2117 additional CT colonography scans, a total of 
11 682 noncontrast CT examinations in asymptomatic adults 
were eligible for inclusion (Fig 1), allowing for assessment of 
longitudinal changes over time. Causes for exclusion were 
failure of the algorithm, liver not included on scan series, and 
severe artifact resulting in unusable output. All patient infor-
mation was anonymized before the automated measurements 
were performed. In separate studies, we have investigated the 
use of other automated CT tools with this patient cohort, in-
cluding algorithms for quantifying fat, bone mineral density, 
muscle, and aortic calcification (19–22).

CT Scanning Protocol
Specifics relating to CT colonography technique, including 
bowel preparation and colonic distention, have been previ-
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mean volumetric liver attenua-
tion, whereas the manual ROI 
method samples only a por-
tion of the right hepatic lobe 
on a single section, deriving 
the mean Hounsfield unit only 
within that restricted area.

Statistical Analysis
Summary statistics were col-
lected for the patient popula-
tion based on age and sex. Con-
version from the nonenhanced 
CT Hounsfield unit numbers 
to estimated CT fat fraction 
was calculated from the MRI 
PDFF equivalent by using the 
recently published (16) for-
mula: CT fat fraction (%) =  
(CT HU) × (20.58) + 38.2. 
This equation is specific to 
120-kV scanning. For appar-
ently negative CT fat-fraction 
numbers (ie, when CT attenu-
ation is 65.9 HU or greater), 
CT fat fraction is necessarily 

constrained to 0%. Steatosis categories are herein 
defined as normal for fat fraction less than 5% 
(.57 HU), mild for 5%–14% (42–57 HU), 
moderate for 14%–28% (18–42 HU), and severe 
for greater than 28% (,18 HU) (16).

For comparison of automated versus manual 
Hounsfield unit measures, a 4 3 4 confusion ma-
trix was constructed to compare steatosis catego-
rization. In addition, for each category threshold, 
sensitivity and specificity (with 95% confidence in-
tervals [CIs]) were calculated for automated Houn-
sfield units by using the manual Hounsfield unit 
measures as the reference standard.

In patients with follow-up CT scans, changes 
in liver attenuation values (and CT fat fraction) 
were recorded. Relative percent change in liver 
attenuation was calculated by taking the differ-
ence in Hounsfield unit between the two scans, 
dividing this by the initial result, and multiply-

ing by 100. Annual percent change over time was calculated 
by further dividing this by the interval years between scans 
(in years). Sankey diagram analysis was performed to illus-
trate changes in steatosis categorization (ie, normal, mild, 
moderate, or severe) over time. P values were derived by us-
ing two-sided t tests and validated by using nonparametric 
testing (Wilcoxon rank sum test) in all cases; P , .05 was 
considered to indicate statistical significance. A linear regres-
sion model was used to compare body mass index (BMI) and 
CT fat fraction. In addition, a multivariable linear regression 
analysis was performed to control for the covariates of BMI, 
sex, and age by using the ordinary least-squares method. Data 

of liver fat fraction. Manual measures were performed with-
out any knowledge of automated results or steatosis category. 
Reader experience for this simple ROI task varied from medi-
cal students (with ,1 year of experience) to abdominal radi-
ologists (with .10 years of experience). Manual measurements 
for study scans were included from routine clinical practice 
recorded in our clinical database, as well as others from previ-
ously conducted steatosis trials (29,30).

The automated and manual methods for assessing liver 
Hounsfield units have methodologic differences that could im-
pact direct comparison. The automated method segments the 
entire available liver (including hepatic blood pool) and derives a 

Figure 1:  Flowchart shows study cohort, including final categories of liver fat.

Figure 2:  Images show automated and manual methods for measuring liver attenuation at 
nonenhanced CT in an asymptomatic 60-year-old man. Transverse (axial) CT image showing 
schematic depiction of automated (left) and manual (right) techniques. Automatically segmented 
liver is in green and manual region-of-interest (ROI) placement is in yellow. Automated Hounsfield 
units are based on volumetric segmentation of entire imaged liver, whereas manual Hounsfield units 
are based on areal mean within single ROI. Nonetheless, two values match well.
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Correlation with Manual Measurement
Excellent agreement was seen for the subset of 5265 scans with 
both automated and manual liver Hounsfield unit measurement, 
despite the fundamental differences in the automated volu-
metric versus limited manual areal ROI approach. The overall 
mean difference between automated and manual measurement 
was 2.7 HU (median, 3 HU), with an r2 value of 0.93 (Fig 
5). Mean population-based automated and manual measure-
ments were 56 HU 6 10 and 59 HU 6 12, respectively. 
Bland-Altman analysis revealed a proportional bias of 2.7 HU 
toward manual measurements, which increased slightly at 
higher Hounsfield units, presumably related to the inclusion 
of hepatic blood pool in the automated technique. This would 
slightly lower mean Hounsfield units when blood pool attenu-
ation was less than liver attenuation, but would eventually in-
crease automated Hounsfield units in advanced steatosis, when 
blood pool attenuation is greater than liver attenuation.

Comparison of steatosis categorization by using automated 
versus manual measures is demonstrated by the 4 3 4 confusion 
matrix (Table 3). By using the manual Hounsfield unit measure 
as the reference standard, the sensitivity and specificity of the au-
tomated technique for categorizing a patient as healthy (no ste-
atosis) was 82.6% (3137 of 3800; 95% CI: 81.3%, 83.8%) and 
96.3% (1411 of 1465; 95% CI: 95.2%, 97.2%), respectively. 
Similarly for mild, moderate, and severe steatosis, the automated 
performance was 88.7% (892 of 1006; 95% CI: 86.6%, 90.6%) 
and 83.5% (3556 of 4259; 95% CI: 82.3%, 84.6%), 87.5% 
(343 of 392; 95% CI: 83.8%, 90.6%) and 98.3% (4792 of 
4873; 95% CI: 97.9%, 98.7%), and 74.6% (50 of 67; 95% CI: 
62.5%, 84.5%) and 99.9% (5193 of 5198; 95% CI: 99.9%, 
99.9%), respectively.

Longitudinal Subcohort
Among the subcohort of 1862 individuals with longitudinal 
follow-up (mean time interval of 5.5 years), the overall average 
change in mean liver attenuation was minimal at 23 HU 6 
9, reflecting a decrease of 6% in Hounsfield unit. A total of 
42.0% (782 of 1861) of patients decreased in liver attenuation 
by at least 5 HU between their initial CT and first follow-up, 
whereas 15.3% (284 of 1861) increased in attenuation by at 
least 5 HU, and 42.7% (795 of 1861) remained within 5 
HU (Fig 6). A total of 43.3% (806 of 1861) of individuals 
changed steatosis category (normal, mild, moderate, severe) 
between their first and last scans, more often toward greater 
degrees of steatosis, which is better illustrated by the Sankey 
diagram in Figure 7.

Discussion
We demonstrate the feasibility of using an automated 
deep learning tool for population-based screening for 
hepatic steatosis. Given our relatively unique noncontrast 
CT cohort of asymptomatic and generally healthy outpa-
tient adults, our study may provide further insights into 
the “normal” population range of liver fat, including preva-
lent degrees of nonalcoholic fatty liver disease (NAFLD). 
Of note, the prevalence of at least mild hepatic steatosis 
was greater than 50% in our asymptomatic adult screen-

processing and analysis was performed by using base R and 
ggplot2 packages (R Core Team, version 3.4.2; R Foundation 
for Statistical Computing, Vienna, Austria).

Results

Study Cohort
The mean age 6 standard deviation of the cohort of 9552 as-
ymptomatic adults was 57.2 years 6 7.9, including 4238 men 
and 5314 women. Mean BMI was 28.9 kg/m2 6 6.5 (median, 
27.8 kg/m2; interquartile range, 24.6–31.8 kg/m2). There 
were 1862 patients (mean age, 59.2 years; 891 men and 971 
women) with 2117 subsequent follow-up CT scans (mean 
time interval between scans was 5.5 years); 245 patients under-
went more than one follow-up scan and 10 patients underwent 
three follow-up scans. The mean age of the 4439-patient subset 
with manual measurement in 5265 scans was 57.7 years, in-
cluding 2069 men and 2343 women. Thirteen of 11 682 total 
CT scans were excluded for algorithm failure (n = 7), liver not 
included (n = 4), and severe artifact precluding either manual 
or automated Hounsfield unit (n = 2), yielding a final cohort 
of 11 669 total CT examinations (Fig 1). Failure rate of the 
algorithm was 0.06% (seven of 11 676).

Automated Tool Results
The mean automated volumetric CT liver attenuation was 
55 HU 6 10, corresponding to a CT fat fraction of 6.4%. 
Overall, 47.9% (5584 of 11 669) had no or negligible ste-
atosis (CT fat fraction ,5%), 42.4% (4948 of 11 669) had 
mild steatosis (CT fat fraction of 5%–14%), 8.8% (1025 
of 11 669) had moderate steatosis (CT fat fraction of 14%–
28%), and 1% (112 of 11 669) had severe steatosis (CT fat 
fraction .28%). The population distribution of automated 
liver attenuation and CT fat fraction is shown in Figure 3. 
Men had a slightly higher fat fraction than did women on 
average (7.4% 6 6.0 vs 5.8% 6 5.7; P , .001). Little change 
was seen in mean liver Hounsfield unit according to age in 
this cohort (Table 1), with mean values differing by less than 
4 HU among all age groups spanning from younger than 40 
years to older than 80 years. The standard deviations of the 
mean also varied by only 4 HU or less. A slight decrease in 
mean Hounsfield unit with increasing age was also seen across 
age categories by sex (Table 2).

There was only a weak positive correlation between CT fat 
fraction and BMI (r2 = 0.14) (Fig 4). Multiple linear regression 
modeling was also performed to assess the collective impact 
of age, sex, and BMI on liver CT fat fraction. The model pro-
duced the equation CT fat fraction (%) = 78.6 2 0.1age 2 2.4sex 
2 0.6BMI, demonstrating that sex had the greatest influence on 
liver attenuation in the presence of age and BMI. The impact 
of age and BMI was minimal. However, CT fat fraction was 
higher in patients with a BMI greater than or equal to 30 kg/
m2 compared with those with a BMI less than 30 kg/m2 (9.3% 
6 7.1 vs 5.0% 6 4.5; P , .001). Furthermore, CT scans in 
patients with obesity (BMI 30 kg/m2) showed steatosis in 
69.6% (2772 of 3983), including moderate or severe steatosis 
in 20.5% (817 of 3983).
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can potentially evaluate 
even larger-scale popula-
tions for hepatic steatosis 
by using nonenhanced 
CT scans obtained for any 
reason that includes the 
liver, either prospectively or 
retrospectively.

NAFLD and the as-
sociated metabolic syn-
drome represent a grow-
ing and potentially major 
public health issue, espe-
cially if left unchecked. 
Hepatic steatosis is largely 
an asymptomatic condi-

tion but—whether a cause or effect—is related to diabetes, 
obesity, hyperlipidemia, and metabolic syndrome. Some have 
argued that even mild steatosis, present in nearly half of our oth-
erwise healthy screening cohort, carries potentially serious health 
risks. Assuming the degree of steatosis is relevant, we found a 
10% prevalence of moderate or severe hepatic steatosis within 
our patient population. Furthermore, although individuals with 

ing cohort. Although we are aware of other studies that 
have used automated CT techniques for such biomarkers in 
smaller cohorts (of approximately 100 individuals) (34), our  
study also provided correlation with manual measures, converted 
results to MRI proton density fat fraction, or PDFF, equivalent 
values, and assessed for longitudinal changes over time. With 
our data and automated CT tool, clinicians and researchers 

Figure 3:  Density plots show population-based distribution of mean liver attenuation (in Hounsfield units) at (a) unenhanced CT and (b) corresponding estimated CT fat 
fraction. In b, all patients to right of green line had at least mild steatosis (fat fraction 5%; prevalence of 52.1%), whereas those patients to right of yellow line had at least 
moderate steatosis (fat fraction 14%; prevalence of 9.7%), and those patients to right of red line had severe steatosis (fat fraction 28%; prevalence of 1.0%).

Table 1: Population-based Values of Automated CT Liver Attenuation and Estimated Fat Fraction

Age (y) No. Mean Liver Attenuation (HU) Median Liver Attenuation (HU) Interquartile Range (HU) Mean CT Fat Fraction (%)

,40 59 57 6 8 58 55–63 5.1 6 4.2
40–44 88 56 6 11 59 54–62 5.8 6 6.1
45–49 251 57 6 9 58 54–62 5.3 6 4.8
50–54 3944 56 6 10 58 52–62 6.0 6 5.7
55–59 3042 55 6 11 57 51–62 6.4 6 6.0
60–64 2294 54 6 12 56 50–61 7.2 6 6.5
65–69 981 54 6 10 56 50–60 7.1 6 5.6
70–74 538 54 6 10 55 50–60 7.1 6 5.6
75–79 261 54 6 10 56 51–60 7.0 6 5.8
.80 211 55 6 8 55 50–59 6.8 6 4.1

Note.—Unless otherwise specified, data are means 6 standard deviation.

Table 2: Automated Liver Results according to Sex and Age Categories

Automated Mean Liver Attenuation (HU)

Age (y) Men (n = 5262) Women (n = 6407) P Value

,40 57 6 8 57 6 7 .84*
40–49 56 6 10 57 6 9 .207*
50–59 54 6 10 57 6 10 ,.001
60–69 52 6 11 55 6 11 ,.001
70–79 53 6 10 55 6 9 ,.001
80 53 6 7 56 6 9 .032*
All 53 6 11 56 6 10 ,.001

Note.— Unless otherwise specified, data are means 6 standard deviation.
* Corresponding P values from Wilcoxon rank sum test were P = .740, P = .653, and P = .018, respec-
tively.
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reliably inferred from a patient’s body habitus. Al-
though neither hepatic nor visceral fat are defining 
features of metabolic syndrome, they may provide 
unique information that is lacking from BMI alone 
(32). These two measures are readily available from 
nonenhanced CT, and further investigation is war-
ranted in terms of their predictive value.

Similarly, although men had slightly more liver 
fat compared with women on average, and mean 
liver fat slightly increased with patient age, no 
meaningful correlation could otherwise be derived 
between age and steatosis. As such, simple clinical 
assessment of basic demographic and morphomet-
ric features cannot reliably predict the presence of 
underlying hepatic steatosis. Mild elevation in liver 
enzymes is relatively common in the setting of ste-
atosis but is also highly nonspecific, and requires 
cross-sectional imaging for confirmation.

We observed excellent overall agreement be-
tween the automated liver attenuation values de-
rived from the deep learning algorithm and the 
manual ROI-based measurements, despite the 
underlying difference in methodology (volumet-
ric vs single-section ROI). This suggests that the 
effect of marked regional heterogeneity in liver 
attenuation, which exists but is relatively uncom-
mon in practice, does not meaningfully impact 
overall population assessment. Nearly all livers in 
our asymptomatic outpatient cohort were relatively 
homogeneous in appearance at CT. The slight dif-
ference in mean attenuation presumably relates to 
inclusion of the intrahepatic vasculature with the 
volumetric automated approach, which would have 
a negative impact when liver Hounsfield units ex-
ceed blood pool Hounsfield unit, and vice-versa for 
advanced steatosis when liver parenchyma drops 
below blood pool attenuation. Regardless, the au-
tomated method can serve as a natural extension 
of the existing CT literature based on manual ROI 
measurement, which was previously shown to be a 
representative measure despite the undersampling 

(29–32,35,36). Furthermore, the linear relationship between 
noncontrast CT Hounsfield units and MRI PDFF percentages 
allows for direct correlation between these imaging modalities 
and reporting of fat fractions (16).

Abdominal CT is a commonly performed examination 
among middle-age and older adults in the United States 
(18), which provides an opportunity to screen for multiple 
conditions beyond the initial indication for imaging. In ad-
dition to hepatic steatosis (29–31), we found that CT can 
also be used to retrospectively assess for hepatic fibrosis (37–
41). Beyond NAFLD and liver disease, we are also investi-
gating the use of abdominal CT for opportunistic screening 
of a wide variety of additional entities, including osteopo-
rosis, abdominal aortic aneurysm and calcification, visceral 
fat, sarcopenia, hemochromatosis, cancer, and the metabolic 
syndrome (32,42–48). Furthermore, nearly all these tasks 

obesity (body mass index [BMI] 30 kg/m2) did have a slightly 
fattier liver on average than did those with a BMI less than 
30 kg/m2, we found there was surprisingly little correlation be-
tween hepatic steatosis and BMI. This is relevant because the 
presence or absence of hepatic steatosis can therefore not be 

Figure 4:  Graph shows relationship between CT fat fraction and body mass index (BMI). Sur-
prisingly little correlation is seen, with wide range of fat fractions at any given BMI value. As such, 
an individual’s BMI would appear to be poor predictor of hepatic steatosis.

Figure 5:  Scatter plot shows automated versus manual measurement of liver attenuation at 
nonenhanced CT in subcohort of 5265 scans with excellent agreement (r2 = 0.934). Slight bias 
(2.7 HU) was observed toward manual values, which increases slightly at higher Hounsfield units, 
presumably related to inclusion of hepatic blood pool with automated technique.

Table 3: 4 × 4 Confusion Matrix for Steatosis Categorization  
by Using Automated versus Manual Measures (n = 5265)

Automated Steatosis Categorization
Manual Steatosis  
Categorization

Normal Mild Moderate Severe

Normal 3137 661 2 0
Mild 51 892 63 0
Moderate 3 41 343 5
Severe 0 1 16 50

Note.—Data are CT scans of patients.
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above could be included without any additional 
scanning.

We acknowledge certain limitations to our study. 
All scans were derived from a single medical center 
by using scanners from a single CT vendor and non-
contrast technique. Further external validation of the 
tool using a variety of different patient care settings 
and CT techniques is warranted. These liver Houn-
sfield unit results apply only to nonenhanced CT. 
We plan to study a cohort of patients with both non-
enhanced and contrast-enhanced CT imaging of the 
liver to determine if the impact of hepatic enhance-
ment on fat quantification is predictable. As noted, 
there were differences in measurement technique 
between the automated and manual liver Hounsfield 
unit approaches. Nonetheless, these measures corre-
lated strongly. The relatively smaller number of cases 
with moderate (n = 1025) and severe (n = 112) 
steatosis limit our conclusions somewhat, especially 
toward the severe end of the fatty liver spectrum. 
However, performance data from confusion matrix 
analysis shows that performance is relatively pre-
served across the Hounsfield unit spectrum. Lastly, 
our study did not attempt to correlate liver attenua-
tion values with downstream adverse clinical out-
comes. If we are successful in demonstrating clinical 
utility of this automated tool in risk profiling, then 
the next logical step would be widespread imple-
mentation as a prospective clinical tool.

In conclusion, we provide validation for a deep learning–based 
automated liver segmentation tool at abdominal CT for quantify-
ing liver fat. This fully automated CT tool provides both rapid 
and objective assessment that allows for application to large retro-
spective cohorts for future research. The relative lack of correlation 
between liver fat and clinical data including body mass index, age, 
and sex further demonstrate the need for quantitative cross-sec-
tional imaging in nonalcoholic fatty liver disease (NAFLD). We 
found the overall prevalence of steatosis to be greater than 50% 
in our asymptomatic adult cohort, including 10% with moderate 

can be fully automated through means of artificial intelli-
gence, presumably eliminating any variability related to sub-
jective interobserver measurements. To date, prior to liver 
evaluation, we have investigated automated CT-based bone 
mineral density, visceral fat, muscle, and aortic calcification 
(19–21). These additional objective measures can be added 
prospectively or retrospectively without any additional time 
or dose to the patient. If utilization of CT colonography for 
colorectal cancer screening were to substantially increase in 
the future, then all the additional opportunities described 

Figure 6:  Images show screening nonenhanced transverse (axial) CT scans over 1 decade in an asymptomatic man who was 51 years old at 
time of initial imaging. There is substantial variation in liver attenuation over time (corresponding to fat fraction change of .20%), with only minor 
changes in body mass index (BMI). There is excellent agreement between automated and manual measures of liver attenuation.

Figure 7:  Sankey diagram illustrates change in steatosis categorization between initial and final 
CT scans in subcohort of 1861 individuals. Of those patients initially classified as normal (fat frac-
tion ,5%), 42.8% (446 of 1041) increased to mild (fat fraction 5%–14%) and 2.4% (25 of 1041) 
increased to moderate (fat fraction 14%–28%) or severe (fat fraction .28%) steatosis. Of those 
starting at mild, 22.5% (152 of 675) reverted to normal, and 16.1% (109 of 675) increased to 
moderate or severe steatosis.
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or severe steatosis. We have also demonstrated how this tool can 
be used for longitudinal assessment of change in liver fat frac-
tion. If hepatic steatosis is shown to be an independent risk fac-
tor for future adverse events, then this automated tool could also 
be potentially used for opportunistic NAFLD screening with any 
nonenhanced CT that includes the liver (abdominal or thoracic), 
regardless of the clinical indication for imaging.
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