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Abstract

Protein posttranslational modifications (PTMs) have typically been studied independently, yet 

many proteins are modified by more than one PTM type, and cell signaling pathways somehow 

integrate this information. We coupled immunoprecipitation using PTM-specific antibodies with 

Tandem Mass Tag (TMT) mass spectrometry to simultaneously examine phosphorylation, 

methylation, and acetylation in 45 lung cancer cell lines compared to normal lung tissue and to 

cell lines treated with anti-cancer drugs. This simultaneous, large-scale, integrative analysis of 

these PTMs using a cluster-filtered network (CFN) approach revealed that cell signaling pathways 

were outlined by clustering patterns in PTMs. We used the t-distributed stochastic neighbor 

embedding (t-SNE) method to identify PTM clusters and then integrated each with known protein-

protein interactions (PPIs) to elucidate functional cell signaling pathways. The CFN identified 

known and previously unknown cell signaling pathways in lung cancer cells that were not present 

in normal lung epithelial tissue. In various proteins modified by more than one type of PTM, the 

incidence of those PTMs exhibited inverse relationships, suggesting that molecular exclusive 

“OR” gates determine a large number of signal transduction events. We also showed that the 

acetyltransferase EP300 appears to be a hub in the network of pathways involving different PTMs. 

In addition, the data shed light on the mechanism of action of geldanamycin, a HSP90 inhibitor. 

Together the findings reveal that cell signaling pathways mediated by acetylation, methylation, and 
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phosphorylation regulate the cytoskeleton, membrane traffic, and RNA-binding protein-mediated 

control of gene expression.

Introduction

Proteins covalently attach moieties such as phosphate, methyl and acetyl groups to other 

proteins to regulate cell signaling events crucial for all cellular physiological functions, 

including differentiation, proliferation, cell movement, and cell death. In many human 

diseases, these cell signaling mechanisms go awry (1). Much progress has been made in 

identifying proteins that attach (writers), recognize (readers), and remove (erasers) different 

posttranslational modifications (PTMs) (2), and our understanding of these mechanisms has 

led to the development of targeted therapeutics, such as cancer treatments that target kinases 

(3), histone deacetylases (4), and bromodomains, which are the associated structures of 

readers of acetylation (5, 6).

The canonical view of PTMs is that protein acetylation and methylation are mainly involved 

in epigenetic chromatin modifications, while signal transduction pathways are mainly 

regulated via phosphorylation. This view dominated the field mainly because different 

modification types have been typically studied independently. However, there is now 

increasing appreciation that histones are not the only class of proteins affected by acetylation 

and methylation (4, 7). This means that drugs targeting enzymes responsible for regulating 

methylation and acetylation of histones may have a much broader effect. It is therefore 

important to understand in detail molecular signaling pathways that involve these PTMs. In 

addition, further understanding of cell signaling pathways will provide new opportunities for 

therapeutic intervention. For example, multiple PTMs are involved in signaling cascades that 

are linked to neurological disorders (8) and the innate immune response (9).

Here, we sought to understand molecular signaling pathways that are active in lung tumor-

derived cell lines by simultaneously examining patterns of protein phosphorylation, 

methylation, and acetylation on a large scale. The data we collected provide a unique 

opportunity for an integrated study of cell signaling networks involving these three different 

PTMs. Our goal is to define the relationship between kinases, phosphatases, 

acetyltransferases, deacetylases, methyltransferases, and demethylases. Our approach was to 

integrate two different kinds of information: clustering based on statistical relationships 

among various types of PTMs, and protein-protein interactions data from public databases 

(10).

The sequencing of the human genome provided a parts list of many of the molecular 

constituents that make up the human cell, but we still have a limited understanding about 

how these parts interact and are organized into functional complexes to regulate the cell 

signaling pathways that govern molecular biological processes. Protein-protein interaction 

(PPI) databases attempt to catalog how proteins interact with one another, and how these 

interactions are organized into networks (11–16). Networks are useful to model signal 

transduction pathways (17–22), but these models are difficult to understand and validate 

because such models are complex, they integrate information from a variety of sources, and 

commonly are not specific to a particular tissue or cell type in the proper context. They also 
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suffer from biases, such as literature focus biases or experimental platform biases. Here, we 

hypothesized that empirical information about PTMs may be used to constrain the 

complexity of cell signaling models to better understand the system under study (10, 23). We 

reasoned that clustering of PTMs under different conditions reveals patterns specific to the 

system, in this case, lung cancer cell lines. Clusters identified by statistical relationships that 

contain proteins known to interact likely represent functional cell signaling pathways. This 

data-driven modeling approach (24) is somewhat analogous to using gene co-expression data 

to identify cell signaling pathways in yeast (25). However, PTMs are much closer to cell 

signaling events than mRNA co-expression, which makes our approach more likely to 

identify cell signaling events upstream of gene expression changes (10).

We used immunoprecipitation with antibodies specific for tyrosine and serine/threonine 

phosphorylation, lysine acetylation, and lysine and arginine methylation, coupled with mass 

spectrometry. This technique was originally described to study only phosphorylated proteins 

(10, 26–28). Mass spectrometry determines the identity of peptides with modified residues, 

and the relative amounts of these peptides. This method has a low false positive rate, but a 

high false negative rate. This is mainly due to stochastic sampling of peptides for detection 

and subsequent fragmentation (29–33). This limitation of mass spectrometry introduces two 

challenges: (i) the resulting data has a large number of missing values; and (ii) comparing 

experimental conditions is difficult when peptides are stochastically detected. Tandem Mass 

Tag (TMT) experiments surmount the latter issue by labelling samples with different 

isotopic mass tags, and mixing them, so that when a peptide is selected by the mass 

spectrometer, different tags are resolved upon subsequent fragmentation (34). This allows 

direct comparison of peptide amounts in multiplexed samples and accurate calculation of 

treatment-to-control ratios within a TMT multiplex. When comparing two or more TMT 

runs, however, there are still a large fraction of missing values because of the stochastic 

nature of detection. Therefore, the TMT data are different from gene expression data derived 

from microarray or RNA-seq experiments, and thus require special considerations for data 

analysis (Text S1). Building on previous work (10, 23), we evaluated different methods for 

handling these data, which can be grouped into three approaches: imputing missing values, 

pairwise-complete, and penalized matrix decomposition. Statistical relationships (Spearman 

correlation; Euclidean distance) were embedded into a reduced dimension representation 

using t-distributed stochastic neighbor embedding (t-SNE), which is effective in identifying 

clusters in a wide variety of non-linear real-world and biological data (10, 23, 35–38). 

Penalized matrix decomposition followed by an additional t-SNE step further resolved large 

clusters to produce a co-clustered correlation network (CCCN) for strongly associated 

modifications. This clustering method was used to decipher cell signaling pathways by 

filtering PPI edges to retain only interactions between proteins whose modifications co-

clustered, creating a cluster-filtered network (CFN). The CFN and CCCN data structures 

were further evaluated in a number of ways, and then used to outline cell signaling 

pathways, starting from the target proteins that are affected by drugs. The analysis highlights 

molecular pathways defined by highly correlated clusters of PTMs, and revealed 

antagonistic relationships among PTMs that were negatively correlated. Signaling pathways 

that are regulated by multiple PTMs involve heat shock, RNA binding, cytoskeletal, and 

membrane trafficking proteins that are linked to canonical tyrosine kinase pathways.
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Results

Clustering PTMs

Our goal was to use large scale mass spectrometry data to integrate cell signaling pathways 

that involve protein phosphorylation, methylation, and acetylation. We hypothesized that 

proteins that interact with one another and are posttranslationally modified in patterns 

identified by close statistical relationships likely represent functional cell signaling 

pathways. We therefore combined PTM clustering information with PPI databases to create 

the CFN. The CFN only retains PPIs whose modifications co-cluster (Figure 1A). The 

resulting network only retained interactions between proteins that are also supported by 

protein modification data (10).

PTM data were obtained using immunoprecipitation with antibodies that are non-specific to 

individual proteins but specific to PTMs and combined with Tandem Mass Tag (TMT) mass 

spectrometry (Figure 1B). 45 lung cancer cell lines were compared to normal lung tissue in 

nine multiplex runs. In addition, selected lung cancer cell lines were treated with the anti-

cancer drugs crizotinib, gefitinib, gleevec, and geldanamycin in six multiplex runs. Because 

each experiment represents a different state of the lung cancer cell line signaling system, and 

because combining data from different cell lines improves the quality of clustering (10), we 

combined comparison of cell lines to normal lung tissue (8729 modifications) and drug-

treated cell lines (9321 modifications) into one data matrix containing 13798 unique 

modifications; 90 samples from 15 independent experiments (6 samples in each experiment). 

The combined data matrix contained 78% missing values because there are a large number 

of PTMs that were not detected across different multiplex runs. Missing values may 

represent either the absence of PTMs in samples or simply the lack of data, so we developed 

approaches to reduce their influence on data analysis (10, 23).

Because identification of groups of statistically-related PTMs from sparse datasets is 

challenging, we evaluated different methods to derive clusters from the statistical 

relationships between the identified PTMs (described in detail in text S1). We found that the 

t-SNE method when used with dissimilarity representations was the most effective at 

resolving meaningful clusters based on the uniformity and density of each cluster, and the 

number of prior knowledge PPIs found among the proteins within the identified clusters 

(figs. S1 and S2) (10, 23). To utilize the PTM data to filter edges in PPI databases (Figure 

1A), we evaluated analytical methods that identify PTM clusters whose proteins tend to 

interact (figs. S3 and S4). We found that breaking up large clusters (>80 PTMs) by applying 

penalized matrix decomposition (PMD), and another round of t-SNE, worked best for 

defining clusters that were most justifiable by several criteria (fig. S4).

Well-studied proteins have more interactions within PPI databases. Hence, filtering edges 

using PTM clustering enriched for interactions specific to the lung cancer cell line data, and 

mitigated the bias in PPI databases towards well-studied proteins (figs. S5 and S6). There 

was a weak correlation between CFN “betweenness”, a measure that indicates how 

frequently proteins are found on shortest paths through the network, and the number of 

PTMs found on each protein (fig. S7). However, the most highly modified proteins were not 

the proteins that were common to many paths, i.e. had high betweenness. The number of 
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modifications did not always correlate with serving as a hub within cell signaling pathways, 

though some highly modified proteins may act as hubs. We defined the minimum Spearman 

correlation to be used to delineate edges that represent correlations between PTMs (Figure 

1A), by examining the effect on network size and density (figs. S8 and S9). Finally, using 

drug responses that affect known kinase pathways, we determined that binning large ratio 

values and using log2-transformed data for clustering produced the best results (fig. S10). 

This is likely because TMT ratio data contains extreme values, which may skew correlation 

analyses, and it can be argued that PTM ratios beyond 100-fold are not functionally 

different.

Having established an effective method to cluster PTM data derived from TMT mass 

spectrometry, and having then used these PTM clusters to filter PPI in a CFN that outlines 

cell signaling pathways in lung cancer cell lines (Figure 1A), we then defined a threshold for 

Spearman correlations between PTMs to display edges in a CCCN (Figure 1C). The CFN 

and CCCN networks are available for further exploration at https://

cynetworkbrowser.umt.edu/.

Pathways in cluster-filtered networks based on drug-affected PTMs

We next used these networks to examine pathways from drug targets to proteins whose 

PTMs were affected by drug treatment, to outline cell signaling pathways active in lung 

cancer cell lines. We began with drugs that directly inhibit receptor tyrosine kinases (RTKs). 

We reasoned that RTK inhibitors will affect kinase pathways and therefore phosphorylation 

and other PTMs of substrates and downstream pathway effectors. We traced pathways by 

identifying shortest paths in the CFN from known RTK drug targets to other proteins whose 

PTMs changed at least two-fold after drug treatment. Crizotinib, which inhibits the RTKs 

MET [also called c-MET or hepatocyte growth factor receptor (HGFR)] and ALK 

(anaplastic lymphoma kinase), inhibited the modification of a number of proteins that are 

involved in cytoskeletal rearrangements and adhesion (Figure 2A; blue indicates a decrease 

in PTMs), consistent with the oncogenic role MET is playing in metastasis (39). EGFR 

phosphorylation was also decreased by crizotinib (Figure 2A), and the EGFR inhibitor 

gefitinib decreased MET phosphorylation (Figure 2B), indicating crosstalk between these 

RTKs or possibly off-target effects. The CFN connections downstream of MET, ALK, and 

EGFR linked to the tyrosine kinase LYN, the tyrosine phosphatase PTPN11 (also known as 

SHP2), and the adaptor/scaffolding proteins IRS1 and CRK (40). These connections indicate 

known interactions supported by the statistical clustering of PTMs.

In addition to decreases in phosphorylation of downstream targets, we noted an increase in 

acetylation of many proteins (Figure 2B, yellow nodes). In a group of proteins that were 

both phosphorylated and acetylated, phosphorylation decreased and acetylation increased 

with gefitinib treatment (Figure 2C). The acetyltransferase EP300 itself showed increased 

acetylation with gefitinib treatment, and was linked to HSP90 in the CFN (Figure 2B). Also 

present was fatty acid synthase (FASN), whose activity and expression is controlled by 

EP300 (41). EP300 and HSP90 had many links in the CFN to proteins dually modified by 

both phosphorylation and acetylation (Figure 2B). Thus, examination of several PTMs in the 

same experiment revealed an unexpected relationship between phosphorylation and 
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acetylation. Filtering PPIs by PTM modification clustering highlighted links between 

cytoskeletal proteins, RNA-binding proteins, and heat shock proteins in lung cancer cell 

lines.

HSP90 proteins, together with CDC37, act as chaperones for a large number of kinases, 

including RTKs, and are required for regulation of activity as well as their initial folding 

(42). The mechanisms of action of the HSP90 inhibitor geldanamycin are not well 

understood compared with the other anti-cancer drugs employed in this study. Heat maps 

showing PTMs affected by more than 2-fold by geldanamycin revealed that, in addition to 

HSPs (Figure 3A), many proteins involved in regulating endocytosis (Figure 3B) and 

cytoskeletal dynamics (Figure 3C) were affected by geldanamycin. This is consistent with 

reports that geldanamycin affects endocytic membrane trafficking and cytoskeletal dynamics 

(43–45). Examination of the shortest paths between HSP90 proteins, the known targets of 

geldanamycin, and proteins whose PTMs were affected by geldanamycin included 

acetyltransferase EP300 interacting with HSP90AA1 (Figure 3D). As mentioned above, 

proteins that have high betweenness are likely to be hubs in the network, that is, connect 

many cell signaling pathways (fig. S7). These included HSP90AA1 and several other 

proteins linked to it in the geldanamycin subnetwork (Figure 3D), including the 14–3-3 

proteins YWHAQ and YWHAZ; the RNA-binding protein, NPM1; and the heat shock 

proteins HSPA8, HSPA1B; and β-actin (ACTB). Geldanamycin treatment also affected 

phosphorylation of the RTKs ALK, AXL, EGFR, ERBB3, and IGF1R, of which 

phosphorylation was decreased for all but AXL and ERBB3 (Figure 3D).

These results suggest that geldanamycin may affect the balance between phosphorylation 

and acetylation by influencing EP300 through interaction with HSP90 proteins. This in turn 

affects endocytosis (as indicated by phosphorylation changes in DYNC1I2, EPS8, CAV1, 

and clathrin heavy chain, CLTC) as well as microtubules, actin, other cytoskeletal elements 

(as indicated by several PTM changes in spectrin, SPTAN1; keratins, KRT7, KRT8) (Figure 

3). Protein methylation may also be involved. Changes in methylation were also observed in 

response to geldanamycin, and phosphorylation of the histone lysine methyltransferases 

WHSC1/NSD2 and NSD1 were reduced (Figure 3). In fact, there were CFN links between 

EP300 and kinases, phosphatases, another acetyltransferase (CLOCK), methyltransferases 

(PRMT1, ASH1L) and the actin-regulating proteins RAC1 and CDC42 (Figure 4A).

Specific PTM relationships in the pathways that connect EGFR to EP300 can be visualized 

by showing PTMs and their correlation edges on the CFN graph (Figure 4B). In the graphs 

in Figure 4, node size and color indicate comparison of individual PTMs, or the sum of all 

PTMs for a protein, in cell lines compared to normal lung tissue. The same graphs indicating 

fold change in response to drug treatments are shown in fig. S11. Individual PTMs on EP300 

changed in response to different conditions, and these changes occurred concomitantly with 

PTMs on other proteins that co-clustered with EP300 PTMs (fig. S12). For example, EP300 

phospho-S1897 was down-regulated in lung cancer cells compared to normal lung tissue 

along with two phosphorylation sites on BCAR3 (fig. S12A, bottom), while EP300 

acetylation sites K1674 and K1760, along with RAC1 and CDC42 acetylation sites, were 

increased by gefitinib treatment (fig. S12C, top and middle left, respectively). These data 

indicate that EP300 likely plays a central role in cytoplasmic signaling in addition to its 

Grimes et al. Page 6

Sci Signal. Author manuscript; available in PMC 2019 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previously described role as a histone acetyltransferase. The inverse relationship between 

phosphorylation and acetylation on EP300 (fig. S12) and other proteins (Figure 2) gives rise 

to the hypothesis that there is an antagonistic relationship between particular sites of 

acetylation and phosphorylation on cell signaling proteins. These sites may be indicators of 

mutually opposing mechanisms or pathways.

Evidence for antagonistic relationships among PTMs

The hypothesis that there is an antagonistic or dueling relationship between phosphorylation 

and acetylation sites leads to two predictions. First, we should expect to find negative 

correlations between a subset of phosphorylation and acetylation sites for proteins modified 

with both PTMs. The distribution of correlations between phosphorylation and acetylation 

sites on the same protein was significantly different than that of dual phosphorylation or 

acetylation (Figure 5A). We found 269 such phosphorylation and acetylation modifications 

with Spearman correlation lower than –0.5 in 112 proteins in the lung cancer cell line PTM 

data (highlighted in blue in Figure 5A). Both tyrosine phosphorylation and serine/threonine 

phosphorylation exhibited negative correlations with acetylation (fig. S13). Negative 

correlations can be visualized as blue edges on a combined CFN-CCCN (Figure 5B), which 

revealed proteins that are involved with endocytosis and the actin cytoskeleton that are 

affected by geldanamycin. Cortactin (CTTN), for example, had a large number of 

phosphorylation sites negatively correlated with its acetylation sites that are affected in 

opposite ways by geldanamycin (Figure 5B, upper right; Figure 5C). Clathrin is another 

example where phosphorylation and acetylation sites were negatively correlated, though not 

all sites were affected by geldanamycin, or detected in the drug treatment experiments. 

Cliques of highly correlated co-clustered PTMs were also revealed in the CCCN (Figure 5D, 

identified by yellow edges). For example, EGFR pTyr869 clustered with MET pTyr1003 in 

one clique, while different EGFR phosphorylation sites clustered with proteins involved with 

endocytosis (EPS8, CLTC) in the other clique (Figure 5D).

The second prediction of the hypothesized dueling relationship between certain 

phosphorylation and acetylation sites is that there should be interactions between acetyl-

binding proteins containing bromo (or BET) domains, which bind to acetylated lysine 

moieties, and kinase signaling pathways (5). Such interactions were observed in the CFN 

among dually phosphorylated and acetylated proteins, kinases and bromodomain proteins 

(Figure 5E; bromodomain proteins are colored light red). Bromodomain-containing proteins 

were more likely to interact with dually phosphorylated/acetylated proteins than acetylated 

proteins in general, or proteins modified by phosphorylation or methylation (Figure 5F). 

That there were more CFN interactions between bromodomain-containing proteins and 

dually phosphorylated and acetylated proteins compared to all other groups of proteins 

(Figure 5F), combined with the fact that gefitinib (Figure 2B, C) and geldanamycin (Figure 

3) caused decreases in phosphorylation and concomitant increases in acetylation for a large 

number of proteins, strongly support the hypothesis that certain phosphorylation and 

acetylation sites play antagonistic or mutually opposing roles for proteins identified in this 

study.
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The data suggest the hypothesis that the intracellular location of proteins may change when 

their phosphorylation and acetylation rates go in opposite directions. To test this hypothesis, 

we performed cell fractionation experiments that effectively separate organelles including 

endosomes and lysosomes, and membrane compartments distinguished by resistance to non-

ionic detergents (lipid rafts; Figure 6A) (10, 46, 47). Geldanamycin treatment caused 

changes in the intracellular location of proteins with negative correlations between 

phosphorylation and acetylation, determined by mass spectrometry (Figure 6B, C), and 

western blotting (Figure 6D, E, and fig. S14). Many dually modified proteins increased in 

detergent-resistant lipid raft fractions (rafts2–4), including HSPs and chaperones 

(HSP90AA1, HSPA4, HSPB1, CCT2); 14–3-3 phosphoserine-binding proteins (YWHAZ, 

YWHAE, YWHAQ, YWHAH); cytoskeletal proteins (ACTB, CTTN, TUBB4A, MTPN); 

membrane traffic-associated proteins (CLTC, NDRG1), and signaling adaptor proteins 

(GIPC1, LASP1, PEA15, CRK, CRKL, GRB2) (Figure 6, and fig. S14). Clathrin heavy 

chain (CLTC) also decreased in endosome fractions (org2) in response to geldanamycin, 

while other proteins increased, including MAPK1, MAPK12, and KRAS (Figure 6C, D, E). 

While there was a geldanamycin-induced increase in phosphorylated MAPK3/MAPK1 in 

raft fractions, phosphorylated CTTN decreased in the same fractions (p-ERK1/2 and p-

CTTN, Figure 6E, and fig. S14). Concomitantly, several bromodomain-containing proteins 

(PBRM1, ATAD2, BAZ1A, BAZ1B, and SMARCA4) decreased in the same lipid raft 

fractions (raft2–4; Figure 6B, C). These data are consistent with previous work showing that 

geldanamycin influences the intracellular localization of signaling proteins (43–45) and 

support the hypothesis that the changes in modification state that we observed in response to 

geldanamycin (Figure 3) have functional consequences for intracellular localization.

A total of 295 proteins were identified that had negative correlations between different types 

of PTMs on the same protein (table S1). Examination of relationships between protein 

methylation and other PTMs revealed that the distribution of correlations between 

methylation and acetylation sites on the same protein was significantly different than 

correlations of the same PTMs (Figure 7A). There were 50 proteins with 95 dual acetylation 

and methylation PTMs that had negative correlation less than –0.5 (highlighted in blue in 

Figure 7A). These include RNA-binding, cytoskeletal, heat shock proteins, transcription 

factors, and acetyltransferases, including EP300 and NCOR2 (table S1). Note that none of 

this group were histones, which were dually modified, but correlations were mostly positive 

or not significant. There were also groups of methylated and acetylated proteins whose 

PTMs clustered together and were all highly correlated with one another. An example clique 

of these highly correlated co-clustered PTMs (Figure 7B, identified by multiple yellow 

edges) revealed several RNA binding proteins and transcription factors, including the 

methyltransferase EZH1, acetyltransferase CREBP, deacetylase SIRT9 (which was 

phosphorylated), and proteins whose methylation and acetylation sites were inversely 

correlated. These data suggest that there are molecular interactions governed both 

synergistically and antagonistically by methylation and acetylation in proteins to regulate 

RNA processing and transcription.

Similar to other dual modifications on the same proteins, the distribution of PTM 

correlations among 96 dually phosphorylated/methylated proteins were distinct from 

homologous PTM correlations, with 211 modifications having negative correlation between 
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phosphorylation and methylation less than –0.5 (Figure 7C). Many of these co-clustered 

PTMs were found on RNA-binding and RNA-processing proteins. We also identified a 

clique of PTMs among phosphorylated and methylated RNA-binding proteins that included 

links to methyltransferases and kinases (Figure 7D). The core clique of proteins whose 

PTMs all clustered and correlated included proteins involved in RNA splicing and 

processing, similar to the clique of methylated and acetylated proteins above (Figure 7B) 

(48). The extended group contained other proteins involved in RNA binding, cytoskeleton, 

chaperone activity, and transcription regulation. HNRNPA2B1 displayed multiple negative 

correlations between its tyrosine phosphorylation and arginine methylation sites. Note that 

the methyltransferase EZH1, the RNA processing protein XRN2, and the RNA binding 

protein RBMX were linked to both clusters (Figure 7).

Connections to aberrantly regulated genes in lung cancer

Lastly, to assess the functional significance of upstream signaling events’ influence on 

global mRNA gene expression by posttranslational modifications, we examined how cell 

signaling pathways inferred from the CFN analysis may regulate basal gene expression 

patterns in lung cancer cell lines. Among the most commonly differentially regulated genes 

from the gene expression data we obtained from lung cancer cell lines from the Cancer Cell 

Line Encyclopedia (CCLE) (49), SMARCA4 and NKX2–1 were also detected in the protein 

modification data (Figure 8A; ref. (50)). SMARCA4 is the most down-regulated gene and its 

inactivation is thought to promote NSCLC aggressiveness (51). NKX2–1 is one of the top 10 

differentially regulated gene in this set of cell lines. NKX2–1 plays a key role in lung 

development; its loss causes a failure of lung cell differentiation and leads to malignant 

transformation in lung adenocarcinoma (52–54). SMARCA4 and NKX2–1 exhibited CFN/

CCCN interactions with the RNA binding proteins DDX5, DHX9, HNRNPAB, and lysine 

acetyltransferase NCOA2 (Figure 8B). These links from DDX5 to NCOA2, NKX2–1, and 

SMARCA4 were preserved in a highly curated network focused on direct binding 

interactions (Figure 8C). This is consistent with a mechanism to control NKX2–1 expression 

through long non-coding RNAs (54). The acetyltransferase EP300, the methyltransferase 

PRMT1, and the kinases PKN2, CHEK2, YES1, and the bromodomain-containing kinase 

BAZ1A also had cluster-filtered interactions with this group (Figure 8B), indicating that the 

interplay of phosphorylation, acetylation, and methylation is likely to play a role in 

controlling expression and activity of SMARCA4 and NKX2–1.

In sum, we detected a large number of proteins that were modified by more than one type of 

PTM; in this study we detected more than 700 proteins that were phosphorylated, acetylated, 

and methylated (Fig. 9A and fig. S15A). Correlation was poor (R-squared 0.03368) 

comparing relative abundance of proteins detected by their PTMs in our data to total protein 

abundance estimates for human proteins in paxDB (fig. S15B) (56). This suggests that the 

amount of detectable PTMs was governed largely by signaling events rather than by total 

protein amounts. Elucidation of clusters of positively correlated PTMs, when combined with 

PPI information, identified cell signaling pathways that are active in lung cancer cell lines. 

In addition, our observations suggest that proteins that function as signal integrating hubs 

may have one or more exclusive OR (XOR) switches governed by a subset of antagonistic 

relationships among phosphorylation, acetylation, and methylation sites (Figure 9B). Since 
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different PTMs govern interactions among proteins with PTM-specific binding domains 

(Figure 9B), proteins modified by more than one PTM type may thus function as hubs for 

signal integration or pathway control switches. Identification of these cell signaling hubs, 

and the enzymes that modify them, provides insight into the complex signal transduction 

mechanisms that regulate lung cancer cell lines.

Discussion

The data generated for this study presented a unique opportunity to simultaneously examine, 

on a large scale, proteins modified by tyrosine and serine/threonine phosphorylation, lysine 

acetylation and lysine and arginine methylation (Figure 1B). This allowed definition of 

relationships between kinases, phosphatases, and enzymes known to affect other 

posttranslational modifications, including acetyltransferases, deacetylases, 

methyltransferases, and demethylases. Our computational data analysis approach was to 

integrate two different kinds of information: clustering based on statistical relationships 

among various PTMs, and PPI data from public databases, to outline signal transduction 

pathways (Figure 1A). We started with PPI networks retrieved from Pathway Commons, 

String, GeneMANIA (15, 16), BioPlex (12), and the kinase-substrate data from 

PhosphositePlus (13, 14), then filtered interactions based on PTM clustering. Clustering 

methods using t-SNE were previously used for analyzing lung cancer phosphoproteomic 

data (23) and the CFN approach we employed here was previously used on 

phosphoproteomic data from neuroblastoma cell lines (10). We further refined this approach 

with an additional step (PMD) to break up large clusters as described in Materials and 

Methods and Supplementary Information. We have shown that the CFN derived from these 

data effectively removes biases in PPI networks where well-studied proteins have more links 

(fig. S6) and that the number of PTMs does not overly bias node betweenness (fig. S7), so 

that the two kinds of information were well balanced for construction of a CFN.

The cell signaling pathways within the CFN were based on known PPIs as well as clustering 

of PTMs in lung cancer cell lines, so for interactions between any two proteins to be retained 

in the CFN, they must be included in the same PTM cluster. Starting with drug targets (the 

proteins that bind to and are directly affected by drugs) we examined links, shortest paths in 

the CFN, to proteins whose PTMs were changed by drug treatment (Figures 2, 3). This 

effectively outlined signaling pathways in lung cancer cell lines between drug targets and 

downstream proteins whose PTMs were affected by the drug.

The hypothesis that certain PTMs may have a mutually opposing, antagonistic relationship 

to one another was first suggested in our results by drug treatments that caused protein 

acetylation to increase and phosphorylation to concomitantly decrease (Figures 2, 3). The 

links between the acetyltransferase EP300 and heat shock proteins including HSP90s, 

suggested that the HSP90 inhibitor, geldanamycin, affects the balance between the 

phosphorylation and acetylation of endocytic and cytoskeletal proteins. This in turn perturbs 

endocytosis and cytoskeletal dynamics, which influences membrane trafficking and activity 

of selected RTKs and other proteins involved in signal transduction (Figure 6). These results 

are consistent with previous work showing that geldanamycin affects membrane traffic and 

cytoskeletal dynamics to regulate activity and intracellular localization of many signaling 
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proteins (43–45). EP300 had many CFN links to enzymes that regulate other PTMs, 

including kinases, phosphatases, and methyltransferases (Figure 4, and figs. S11, S12). 

EP300 has been previously reported to function in cytosol to regulate autophagy (57, 58). 

Our data suggest that EP300 (and possibly other acetyltransferases) may play a role in 

regulating other membrane traffic and cytoskeletal mechanisms. Consistent with this notion, 

HDAC6 acetyltrasferase regulates the acetylation status of microtubules and modulates 

EGFR trafficking (59). That geldanamycin affects the balance of different PTMs sheds new 

light on the elusive mechanisms of action of this class of drug, which is important to 

understand because HSP90 inhibitors are an emerging therapy for lung cancer (60–62).

Further support for an antagonistic relationship between certain phosphorylation and 

acetylation sites was provided by examining negative correlations between PTMs within the 

same protein, and visualizing them as edges (Figure 5A, B). In addition, cluster-filtered 

interactions existed between kinase signaling pathways and bromodomain-containing 

proteins that bind to acetylated lysine moieties (Figure 5E). These interactions were most 

frequent among proteins with negative correlations between phosphorylation and acetylation 

sites on the same protein (Figure 5F). In fact, negative correlations within proteins were also 

identified for acetylation vs. methylation sites (Figure 7A, B), and phosphorylation vs. 

methylation sites (Figure 7C, D). These data elucidated a family of different PTMs that 

potentially function as multiple XOR (exclusive OR) switches in signaling pathways (Figure 

9B).

Our data are consistent with the notion that different PTMs on the same protein integrate 

multiple signals to generate combinatorial outputs (63). These interconnected, functionally-

associated mechanisms co-evolved across eukaryotes (2, 64), and are associated with 

oncogenesis (40). Our study indicates that acetylation and methylation, together with 

phosphorylation, increase the interactome of hubs in the signal transduction network by 

conditionally altering the sets of interacting proteins with particular protein domains (Figure 

9; refs. 65, 66). Proteins in the network may be classified as proteins that attach (writers), 

recognize (readers), and remove (erasers) PTMs (2). The readers of acetylation contain 

bromo and BET domains (5). Readers of methylation are proteins that have the tudor 

domain for arginine methylation; and chromo, MBD, and PWWP domains for lysine 

methylation (67). It is noteworthy that bromodomain-containing proteins include kinases 

(BAZ1A; TRIM33; BRD2; BRD4), acetyltransferases (EP300; CREBBP), and 

methyltransferases (ASH1L; KMT2A; Figure 5E). This emphasizes the interconnected 

nature of mechanisms involving different PTMs.

Signaling pathways outlined using cluster-filtered networks involve a large number of 

modified RNA binding, cytoskeletal, and membrane traffic proteins. The number of RNA-

binding and cytoskeletal proteins in these networks makes sense in light of the number of 

mechanisms involved with RNA transport, sequestration, and regulatory RNA molecules 

(68–72). Cells evolved mechanisms to control protein expression by transcription, 

translation, and transport of RNA to different intracellular locations. Two RNA binding 

proteins were the most highly modified proteins in the data (AHNAK, SRRM2; fig. S7). 

Several such highly modified RNA binding proteins are dysregulated in cancer and move 
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from cytoplasm to nucleus in response to phosphorylation (73). Our data suggest that 

methylation and acetylation also likely play a role in this process.

Signal transduction involves more than the three PTMs studied here, for example generation 

of second messengers, and covalent attachment of carbohydrates, lipids, or ubiquitin-family 

proteins, which cause additional changes in activity, intracellular location, and binding 

partners (63–65). Accurate models of signal transduction should attempt to integrate data 

about these processes for a complete picture. For example, MET ubiquitination and 

internalization is regulated by phosphorylation at Tyr1003, the c-CBL E3 ubiquitin ligase 

binding site (74). This PTM on MET clustered with phosphorylation of EGFR at Tyr869 and 

Tyr1197 but not at Tyr1045, EGFR’s c-CBL binding site (Figure 5C,D) (75).

It would also be useful to correlate gene expression patterns with PTMs. This remains 

challenging, however, because the correlation between protein and mRNA levels is poor, as 

shown for example during Xenopus embryogenesis, where large cells allow direct 

comparisons (76), though many differences may be resolved using simple model for 

expression kinetics (77). PTMs in cells are even more highly variable and dynamic than 

protein levels. For example, very different phosphorylation patterns in the anaphase 

promoting complex and mitotic spindle checkpoint proteins are observed in response to 

antimitotic drugs (78), and PTMs show much more dramatic changes than mRNA or protein 

during developmental progression (77). PTMs are more likely to be useful to inform us 

about cell signaling pathways than transcription because they are closer to signaling events, 

at least those that are upstream of transcription (25, 77).

Our study integrating three different PTMs contains a large amount of information that 

outlines signaling pathways when clustering is combined with known protein-protein 

interactions. These data elucidated clusters of highly-correlated PTMs among groups of 

proteins (yellow CCCN edges in Figs. 5B and 6, B and D). This means that if one or a few 

of these PTMs are detected, other members of the clique are likely to be found, which is 

useful for determining signatures of pathway activation or disease state. There are more 

synergistic relationships, as well as dueling or antagonistic relationships, among different 

PTMs in lung cancer signaling pathways than can be presented from our data; therefore, we 

have created a browser-accessible interface as a resource for further exploration by other 

investigators (https://cynetworkbrowser.umt.edu/). Networks are also available on the NDEx 

repository (https://doi.org/10.18119/N9F59Z) and in Data File S1. The data will be useful 

for prediction of pathways of drug resistance (79), and side effects from drugs that target 

writers, readers and erasers of acetylation and methylation (4–9).

Materials and Methods

Modification-specific antibody immunoprecipitation and Mass spectrometry.

PTMs of 45 lung cancer cell lines, 12 derived from SCLC and 33 from NSCLC, were 

compared to normal lung tissue (pooled from anonymous patients) using an established 

protocol (26, 27). In addition, several cell lines were treated with crizotinib, gefitinib, 

geldanamycin, or imatinib at 1 µM for 1–24 hours. In all, 15 six-plex TMT experiments 

were performed. Briefly, cells were washed and harvested in PBS and cell pellets frozen in 
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liquid nitrogen. Cells were lysed in a 10:1 (vol/wt) volume of lysis buffer (4% SDS; 100 

mM NaCl; 20mM HEPES pH 8.5, 5 mM DTT, 2.5 mM sodium pyrophosphate; 1 mM β-

glycerophosphate; 1 mM Na3VO4; 1 μg/ml leupeptin), and proteins were reduced at 60°C 

for 45 min. Proteins were then alkylated by the addition of 10 mM iodoactamide (Sigma) for 

15 min at room temperature in the dark, and methanol/chloroform precipitated. Protein 

pellets were resuspended in urea lysis buffer (8M urea; 20 mM HEPES pH 8.0; 1 mM 

sodium orthovanadate; 2.5 mM sodium pyrophosphate; 1 mM beta-glycerolphosphate) and 

sonicated. Insoluble material was removed by centrifugation 10,000 x g, 5 min, and the 

supernatant diluted fourfold in 20 mM HEPES pH 8.5, 1 mM CaCl2, for Lys-C digestion 

overnight at 37°C, then diluted two-fold and trypsin digestion 4–6 hours at 37°C. Samples 

were then acidified to pH 2–3 with formic acid, peptides purified on a Waters Sep-Pak 

column and dried in a speed-vac. Peptides were purified on a Waters Sep-Pak column, and 

quantified using a micro-BCA assay (Thermo). Mass tag (6-plex TMT reagents; Thermo) 

were crosslinked to peptides in 30% acetonitrile/200 mM HEPES pH 8.5 1 hour at room 

temperature and the reaction stopped by the addition of 0.3% (v/v) hydroxyamine. 

Combined samples were then sequentially immunoprecipitated with cocktails of 

modification-specific antibodies from Cell Signaling Technology in the order: anti-

phosphotyrosine (P-Tyr-1000, #8954); anti-phosphoserine/threonine (AGC/PSD-family 

Kinase Substrate Antibody; CST in-house antibody validated for peptide 

immunoprecipitation), Phospho-Akt Substrate #9614, Phospho-AMPK Substrate Motif 

#5759, Phospho-ATM/ATR Substrate #9607 and #6966); anti-acetyllysine (acetylated-

Lysine #9814(80)); anti-methyllysine (Mono-Methyl Lysine #14679(81)) and anti-

methylarginine (Mono-Methyl Arginine #8015(81)) (see Figure 1B). After anti-

phosphotyrosine and anti-phosphoserine/threonine immunoprecipitation phosphopeptides 

were further purified on a TiO2 column [Thermo Fisher (82)]. Samples are then mixed in 

equimolar ratios, and the ratios checked and samples run on an Orbitrap Q Exactive MS 

(Thermo Fisher). Identification of peptides and quantification of mass tags was obtained 

from the from the MS2 spectrum after fragmentation by MS/MS analysis as described (28, 

81). Peptides with FDR < 1% were selected for further analysis. Modification sites with site 

localization scores of less that A-score 13 were excluded from analysis (83).The data were 

filtered to include single modification sites present in three or more experiments for the final 

analysis. For display of results in heat maps, treatment:control ratios were calculated as fold 

change (treatment/control if treatment>control; −1/treatment/control if treatment<control).

Final clustering for cluster-filtered networks.

A detailed discussion of data analysis considerations and network development is provided 

in Supplementary Text S1. TMT ratio data were used to calculate pairwise-complete 

Euclidean distance, Spearman and hybrid Spearman-Euclidean dissimilarity (SED) (10, 23). 

Clusters were identified using t-SNE as below. Clusters containing more than 80 

modifications were subjected to PMD with dimensionality reduced to the number of 

experiments that contained modifications in the cluster and t-SNE was then performed on 

these PMD embeddings. Clusters were examined manually and those that were sparsely 

populated with data (meaning, that contained modifications mostly from one experiment) 

were discarded. An adjacency matrix was constructed by pairing co-clustered modifications 

to each other. To construct co-cluster correlation networks (CCCNs), the adjacency matrix 
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was used to filter Spearman correlations at various values as shown in Figure S9, excluding 

values that were not between co-clustered modifications. Spearman correlation values were 

used to represent network edge weights in modification site CCCNs. This protein 

modification CCCN was used to construct a protein CCCN by merging all co-clustered 

correlation edges into the gene names of modified proteins. The final gene CCCN represents 

the sum of modification correlations among all proteins (genes) that clustered together, 

whose modifications were detected in two or more experiments, and whose Spearman 

correlation is greater than the absolute value of minimum densities shown in Figure S9B.

Pairwise complete Euclidean distance and Spearman correlation was performed in R 

using previously-described methods (10, 23). Embeddings were created from Euclidean 

distance; Spearman dissimilarity defined as 1 - abs(cor); and hybrid Spearman-Euclidean 

dissimilarity (SED) defined as the mean of normalized Euclidean and Spearman 

dissimilarity as 1 - cor.

Matrix decomposition was performed using the methods described in Witten, et al (88) 

using the R package, PMA. Parameter selection for PMD via cross-validation was first 

performed using the tuning function PMD.cv. The function, PMD, which applies an L1 

penalty on the columns and rows, was used to obtain a matrix of 90 factors (equivalent in 

size to the original data) and 15 factors (the number of TMT runs). The original data were 

not centered for these calculations. Alternatively, the data were further standardized such 

that each column has zero mean and unit variance (normalized, centered or nc). Groups with 

greater than 3 sites were evaluated.

t-SNE embeddings were created using Rtsne, the Barnes-Hut implementation of t-

Distributed Stochastic Neighbor Embedding. The pairwise complete method produced 

clusters that were more readily distinguished (Figure S1), with other methods tending to 

crowd many sites into one or two very large clusters. This was mitigated in two ways, by 

reducing the perplexity in t-SNE, and reducing vector length for inclusion of neighbors in 

clusters (the “too long” value) in the minimum spanning tree length to define clusters. These 

parameters were optimized as much as possible to avoid one large cluster and also many 

single-site clusters. The typical settings with Rtsne were dimensions = 3, perplexity = 15; 

theta = 0.25; and the initial PCA step turned off.

Random clusters were generated by sampling the total number of sites or genes from the 

data using a probability vector to obtain the average number of genes and sites similar to real 

clusters from all embeddings. The probability of random co-clustering of different 

modification sites from the same protein was weighted to the number of modification sites 

per protein; in other words proteins with many modification sites in the data were more 

likely to co-cluster in random clusters. The average %NA of random clusters was equal to 

that in the entire data set (Figure S2C).

Internal evaluations.

Index is defined as

Index = [(1 + realsamples) * (1 + clearsites) / (1 + percent.NA)] / no. sites
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where

intensity = total signal - (total signal x percent NA/100)

clearsites = no: sites - sites culled by slope

realsamples = no: samples – (no: samples x percent single site samples x 100)

no. sites = number of modification sites in the cluster.

This formula is modified from that previously defined (23): ‘‘single site samples’’ is the 

number of cases where a sample in the cluster contains only one site, and ‘‘single sample 

sites’’ represents the number of cases where a site in the cluster is represented in only one 

sample. The ‘‘culled by slope’’ function sorts sites and samples from largest to smallest 

within each cluster and measures the slope of the regression line for each site in all the 

samples. If the slope is negative, the site follows the general pattern in the cluster. If the 

slope is positive, the site is more highly expressed in different samples than the rest of the 

group, and is culled.

External evaluation.

The Pathway Commons data set was extracted from publicly available resources (20). 

Interactions were filtered to include only ‘in-complex-with’, “controls-phosphorylation-of”, 

“controls-state-change-of”, “controls-expression-of”, and “controls-transport-of.” The gene 

names of modified proteins were used to retrieve interactions among proteins within all 

clusters and the number of edges were quantified.

Protein-proteins interaction edges were retrieved from Pathway Commons as described 

above, and from STRING, GeneMANIA (using the website or the Cytoscape plugin)(15, 

16), BioPlex (12), and the kinase-substrate data from PhosphositePlus (13, 14). Text-mining, 

colocalization, and co-expression edges were excluded to focus on interactions that are 

likely part of cell signaling pathways. We found it most useful to limit interactions to those 

defined by direct physical interactions from curated pathways. For example, genetic 

interactions may be direct or indirect, so they were excluded in some cases to focus on direct 

physical interactions (84). A CFN was constructed from a PPI dataset with highly curated 

molecular interactions with a focus on direct interactions for which there is strong evidence 

(Figure 8C; refs. 20, 55).

Network analyses.

For the CCCN we used clustering to filter correlations between all sites. The resulting 

protein CCCN was used to create a cluster-filtered network (CFN) of PPI interactions that 

were filtered based on clustering by excluding all interactions save those from proteins with 

co-clustered modifications. To identify pathways that are likely to be active in lung cancer 

cell lines, shortest paths were determined using the R package, igraph (igraph.org). A 

composite of all shortest paths was assembled for Figures 2A, 2B, and 3D. Centrality was 

identified by node degree and betweenness, calculated using igraph functions. Networks 

were also graphed to show protein modifications with correlation edges from the CCCN. In 
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the CCCN graphs, correlation edges depict PTMs that co-cluster with edges representing 

Spearman correlations greater than the threshold of |0.543| as defined in Figure S9. 

Additionally, for Figures 5B, 7B, and 7D, negative correlations less than –0.5 are shown 

between different modifications within the same protein.

Website construction.

To enable exploration of the networks in detail by other investigators, we developed a 

website for interactive visualization (https://cynetworkbrowser.umt.edu/). Our novel 

infrastructure allows a web client (browser) to interface to a server-based instance of 

Cytoscape. Networks and their underpinning data are stored on the server as R data files, and 

each web session corresponds to a instance of Cytoscape on the server. The web client 

presents a graph rendered by the Javascript library, cytoscape.js. Actions on the site initiate 

queries to the Python server which in turn employs the R-to-python interface (rpy2) to call 

the relevant R function. R communicates with the server-based instance of Cytoscape via the 

RCy3 library (bioconductor.org)(85). The cyREST interface (86) returns updated graph 

information to the client, in the form of JSON data, by connecting Cytoscape to a Python 

Flask-WSGI server.

Cell fractionation.

H3122 cells were treated with 1 nM geldanamycin for 15 hours or not treated, then 

mechanically permeabilized using a Balch homogenizer (10, 46, 47). Permeabilized cells 

were centrifuged at 1000 x g 10 min, and the organelles in the supernatant applied to 

velocity sedimentation gradients as described previously (10, 46). Four fractions were 

collected from organelle gradients as shown in Figure 9A. Lysosomes are found in fraction 

1; endosomes in fractions 2–3 (10, 46). The 1000 x g pellet (cell ghosts) were solubilized 1.5 

hours on ice in 1% Triton X-100 and subjected to floatation equilibrium gradients as 

described, except the 10,000 x g centrifugation step was omitted (10, 47). Four fractions 

from floatation equilibrium gradients were collected: fraction 1 is from the bottom of the 

gradient, fraction 2 contains the lipid rafts as previously characterized, and fractions 3 and 4 

contain additional floating membranes at the top of the gradient as shown in Figure 9A. 

Samples were prepared for TMT mass spectrometry as described above except without 

immunoprecipitation with modification-specific antibodies, so total protein amounts were 

measured; ten mass tag labels were used (Thermo TMTplex); and samples were analyzed on 

an Orbitrap Fusion Lumos (ThermoFisher). The iBAQ method was used to normalize 

signals, where a protein’s total intensity is divided by the number of tryptic peptides 

between 6 and 30 amino acids in length (87). Western blots with lysates from H3122 and 

H3255 cells were then performed to verify results from select proteins in duplicate 

experiments. Antibodies to β-actin (#4970), phospho-CTTN Tyr421 (#4569), CTTN (#3503), 

phospho-ERK1/2 Thr202/Tyr204 (#4370), CCT2 (#3561), CLTC (#4796), CRKL (#3182), 

LASP1 (#8636), and YWHAZ (#7413) were from Cell Signaling Technology; antibody to 

ERK1/2 (sc-93) was from Santa Cruz Biotechnology. All antibodies were incubated at 

1:1000 (except phospho-ERK1/2, 1:2000) overnight at 4°C according to the manufacturers’ 

protocol. Duplicate blots were used to probe phospho- and non-phospho-CTTN and 

ERK1/2. Western blot chemiluminescent signals were obtained on a Fuji LAS-3000 and 

quantified using ImageGauge software. The amount of each protein in each fraction as a 
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percent in the whole cell was then calculated by dividing western blot or mass spectrometry 

signals by the total in all fractions (10, 47). Ratios were then calculated to compare 

geldanamycin-treated to control samples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data acquisition and analysis.
(A) A cluster-filtered network (CFN) was created by using a machine learning, pattern 

recognition algorithm (t-SNE) to identify which posttranslational modifications (PTMs) 

clustered together, filtering protein-protein interactions (PPIs; red edges) to retain only those 

between proteins whose PTMs co-clustered. (B) Outline of TMT mass spectrometry coupled 

with immunoprecipitation using modification-specific antibodies. Phospho-Ser/Thr (S/T) 

peptide immunoprecipitation was accomplished in multiple steps with AGC/PSD-family 

kinase substrate, AKT substrate, AMP kinase substrate, and ATM/ATR substrate antibodies 

(see Materials and Methods). Phosphopeptides were also further purified on a TiO2 column 

(82). (C) Bird’s-eye view of the co-cluster correlation network (CCCN) derived from 

posttranslational modifications from 15 independent experiments, each with 6 multiplex 

samples, from comparison of 45 lung cancer cell lines (12 derived from SCLC and 33 from 

NSCLC) to normal lung tissue, and selected cell lines treated with anti-cancer drugs. This 
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disconnected network includes threshold-filtered Spearman correlations among t-SNE-

clustered PTMs (yellow edges are positive correlations; blue are negative correlations). Also 

shown are negative correlations among different modification types within the same protein, 

which are useful for revealing antagonistic relationships among PTMs. Node size and color 

reflects total of all PTM ratios in the data set (fold change key). This network is available for 

download as Supplementary File 1, and on the NDEx repository (https://doi.org/10.18119/

N9F59Z). This network combined with the CFN that contains filtered PPI edges may be 

explored at https://cynetworkbrowser.umt.edu/.
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Figure 2. Networks derived from composite shortest paths from drug targets to drug-affected 
proteins.
(A to C) Graphs showing the sum of shortest paths from each target to each protein whose 

PTMs were more than 2-fold affected by the MET and ALK inhibitor crizotinib (A) and the 

EGFR, ERBB2, and ERBB3 inhibitor gefitinib (Iressa) (B) in H3255 cells treated for 1–24 

hours. A key defining node shape and border colors and edge colors is shown bottom right. 

Directed edges are shown with arrowheads; these indicate one protein acting on another 

protein (for example kinases phosphorylating substrates). Undirected edges without 

arrowheads indicate various other types of interactions. Edge line thickness is proportional 

to the strength of interactions as defined in PPI databases. Node size and color are 

proportional to the changes in PTMs for each protein in response to indicated drug 

treatments (see scale bar; yellow indicates positive change; blue, negative; green; no 

change). Many yellow nodes represent overall increases in acetylation in these graphs (C). 

Fold change for individual PTMs in response to indicated drugs is plotted using heatmaps on 

a blue-yellow scale (see scale bar). Several proteins exhibited phosphorylation decreases 

(represented by blue on the heatmap) and concomitant acetylation increases (represented by 

yellow) in response to gefitinib.
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Figure 3. Heat maps and network showing PTMs affected more than 2-fold by geldanamycin.
(A to C) Heatmaps of PTMs of HSPs (A), proteins involved in endocytosis (B), and proteins 

involved with the cytoskeleton (C) in each of two lung cancer cell lines cultured with serum 

and either untreated or treated with geldanamycin (100 μM for 15 or 24 hours) relative to 

serum-starved, untreated cultures. Scale bar (B) indicates fold change on a blue-yellow 

scale. (D) Network graph plotted as in Figure 2 showing the sum of shortest paths from 

HSP90AA1 and HSP90AB1 (center) to each protein whose PTMs were more than 2-fold 

affected by geldanamycin in H2228 or H3122 cells. Node size and color indicates the sum of 

PTM changes in response to geldanamycin in both cell types (refer to the key in Fig. 2).
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Figure 4. EP300 interactions with PTM-modifying enzymes.
(A) Shown are links in the CFN between EP300 and kinases, phosphatases, acetyl- and 

methyltransferases, and the actin-polymerization-governing GTPases RAC1 and CDC42. In 

cases where there were more than one type of interaction between two proteins in PPI 

databases (see key in Fig. 2), to simplify graphs white edges represent the composite of 

these interactions with the edge weight summed. (B) EP300 interactions with clathrin heavy 

chain (CLTC) and enzymes that modify clathrin and govern EGFR endocytosis. The graph 

shows PTMs linked by black edges to the parent protein, and correlation edges (yellow, 

positive; blue, negative) between PTMs in the PTM CCCN, which depicts PTMs that co-

cluster with edges representing Spearman correlation greater than the threshold of |0.543| as 

defined in fig. S9. Node size and color (refer to the key in Fig. 2) indicates ratios of PTM 

changes in lung cancer cell lines to those in normal lung tissue; see fig. S11 for responses to 

drugs. The combined CFN/CCCN graphs show the individual PTM response as well as the 

sum of all PTMs represented in the parent (gene) node.
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Figure 5. Dually acetylated and phosphorylated proteins: Interactions with bromodomain 
proteins and kinases.
(A) Correlation between different PTM sites on the same protein: different phosphorylation 

sites (p p); phosphorylation and acetylation (p ac); and different acetylation sites (ac ac). 

Homo-PTM correlations (p p; ac ac) are compared to heterologous (p ac) PTMs (both p < 

2.2 × 10−16, Welch two-sample t-test). Individual PTM-PTM correlations are plotted in grey 

under boxplots (top). Correlation density between phosphorylation and acetylation sites on 

the same proteins is also shown (bottom). Similar plots in which tyrosine and serine/

threonine phosphorylation are compared to each other and each to acetylation individually 

are shown in fig. S13. Negative correlations selected for display as edges are highlighted in 

blue. (B) Combined CFN and PTM CCCN for selected proteins modified by both 

phosphorylation and acetylation. In addition to correlation edges, negative Spearman 

correlations less than −0.5 are shown as blue edges (plotted as in Fig. 4B except edges 

connecting proteins to their PTMs are light grey). (C and D) Selected regions of (B) 
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expanded for clarity. (E) CFN interactions between tyrosine kinases, geldanamycin-affected 

dually acetylated and phosphorylated endocytic and cytoskeletal proteins, and bromodomain 

proteins (colored light red). Node size and color (refer to the key in Fig. 2) is in response to 

geldanamycin for (B–D). (F) Comparison of the number of interactions of bromodomain-

containing proteins with: dually modified proteins both phosphorylated and acetylated (p 

ac); those with negative correlations less than −0.5 (p ac neg); all acetylated proteins (all ac); 

all proteins not acetylated (all except ac); all proteins except those both phosphorylated and 

acetylated (all except p ac); and proteins only modified by phosphorylation (p only) or 

methylation (me only). CFN interactions between bromodomain-containing proteins and 

these groups of proteins were retrieved and the number of edges was divided by the number 

of proteins in each group to obtain bromodomain interactions per gene.

Grimes et al. Page 28

Sci Signal. Author manuscript; available in PMC 2019 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Geldanamycin induces changes in lipid raft localization of dually phosphorylated/
acetylated proteins.
(A) Outline of cell fractionation experiments that separate organelles including different 

populations of endosomes (org1–4, top) and detergent-sensitive and -resistant membranes 

including lipid rafts (raft1–4, bottom). Org1–3 contain lysosomes and endosomes with 

different sedimentation velocity, respectively; org4 contains soluble, cytoplasmic proteins; 

raft1 contains detergent-sensitive proteins; raft2–4 are detergent-resistant fractions of 

decreasing equilibrium density (10, 46, 47). (B-E) H3122 and H3255 cells treated with 

geldanamycin (“geld.”) or not treated (“C.”) were fractionated and total protein amounts in 

each fraction [4 organellar fractions (“org.”) and 4 raft fractions (“raft.”) were determined in 

3 separate experiments by mass spectrometry (B and C, H3122 cells) and, for a select few, 

by Western blotting (D, H3255 cells; E; cell type indicated). Mass spectrometry data 

(expressed as heat maps in B) and Western blot data (D, and fig. S14) were used to calculate 

the amount of each protein in each cell fraction as a proportion of the total in the whole cell, 
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which is the sum of protein amounts in all cell fractions. The heat maps in (C) and (E) show 

fold change abundance in treated cells relative to control cells for each fraction for mass 

spectrometry and Western blot data, respectively. 168/218 dually phosphorylated and 

acetylated proteins with negative correlations between these PTMs were detected in this 

experiment. Many exhibited changes in the raft2 fraction (p = 0.05394, Welch two sample t-

test). 45/108 proteins whose PTMs changed significantly in response to geldanamycin (Fig. 

3) were detected by mass spectrometry in this experiment; collectively their amounts 

increased in the raft2 fraction (p = 0.01457). Of the six bromodomain-containing proteins 

detected, most decreased in the raft2 fraction (p-value = 0.04832 for all the bromodomain-

containing proteins). Mass spectrometry data expressed as the amount of proteins in cell 

fractions are in table S2.
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Figure 7. Clusters of proteins dually modified by different PTMs.
(A and C) Correlations between different PTM sites on the same protein plotted as in Fig. 

5A. Homo-PTM correlations (me me; ac ac; p p) are significantly different from 

heterologous PTM correlations (me ac; p me; p < 2.2 × 10−16 in all cases). (B and D) 

Selected proteins modified by (B) acetylation and methylation, and (D) phosphorylation and 

methylation are shown with CFN links to PTM modifying enzymes as described in Fig. 4B. 

These figures highlight two cliques of PTM CCCN edges that co-clustered and had a high 

Spearman correlation. Negative correlations between different PTMs on the same protein are 

indicated by blue edges. Node size and color (refer to the key in Fig. 2) reflects total of all 

PTM ratios in the data set.
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Figure 8. Pathways to SMARCA4 and NKX2–1.
(A) Gene expression data from 29 NSCLC cell lines from the Cancer Cell Line 

Encyclopedia (CCLE; ref. 49) plotted on a blue-red scale (key; ref. 50). NKX2–1 and 

SMARCA4 (highlighted) are among the most dysregulated genes in lung cancer. (B) CFN 

and CCCN path from EP300 to NKX2–1 and SMARCA4, where node size and color (refer 

to the key in Fig. 2) indicates total ratio data for all experiments where lung cancer cell lines 

were compared to normal lung tissue. (C) Shortest paths from EGFR and MET to 

transcription factors in a CFN derived from PPI dataset with highly curated molecular 

interactions with a focus on direct interactions for which there is strong evidence (20, 55). 

Note that DDX5 and NCOA2 bind to NKX2–1 and SMARCA4 as in (B). Node size is CFN 

betweenness and node color is normalized betweenness defined as CFN betweenness 

divided by the betweenness from all PPI datasets before filtering.
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Figure 9. Dual PTMs may function as dueling PTMs.
(A) Venn diagram showing the overlap among proteins modified by more than one type of 

PTM. A similar Venn diagram in which tyrosine and serine/threonine phosphorylation are 

separated is shown in fig. S15A. (B) Schematic of the findings. Proteins in molecular 

signaling pathways modified by more than one PTM have different sets of interacting 

proteins (5, 6). PTM-driven interactions occur through recognition of specifically modified 

amino acid residues by protein domains listed under the PTM type in the figure. Acetylated 

(Ac) proteins interact with bromodomain and BET (Bromodomain and extraterminal 

domain) proteins (green); methylated proteins interact with proteins containing Tudor 

domains if methylated on arginine (RMe); or Chromo, PWWP (‘Pro-Trp-Trp-Pro’), and 

MBT (malignant brain tumor) domains if methylated on lysine (KMe) (purple). 

Phosphorylated proteins interact with several protein families (red): tyrosine phosphorylated 

proteins (pY) interact with SH2 (SRC-homology domain 2) and PTB (phosphotyrosine 
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binding) domains; serine/threonine phosphorylated proteins (pS/T) interact with a variety of 

proteins including 14–3-3 protein family members, and proteins containing the domains 

WW (domain with 2 conserved Trp residues), FHA (forkhead-associated domain), WD40 

(WD or beta-transducin repeats), and LRR (leucine-rich repeats). Our data suggest that 

where inverse correlations exist between different PTMs, these may function as exclusive 

“OR” (XOR) switches to direct alternative cellular outcomes. This principle applies to 

phosphorylation vs. acetylation; phosphorylation vs. methylation; and methylation vs. 

acetylation.
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