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SUMMARY The use of viruses infecting bacteria (bacteriophages or phages) to treat
bacterial infections has been ongoing clinically for approximately 100 years. Despite
that long history, the growing international crisis of resistance to standard antibiot-
ics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial
of efficacy, this phage therapy is not yet a mainstream approach in medicine. One
explanation for why phage therapy has not been subject to more widespread imple-
mentation is that phage therapy research, both preclinical and clinical, can be insuf-
ficiently pharmacologically aware. Consequently, here we consider the pharmacological
obstacles to phage therapy effectiveness, with phages in phage therapy explicitly
being considered to serve as drug equivalents. The study of pharmacology has tradi-
tionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We
therefore separately consider the difficulties that phages as virions can have in trav-
eling through body compartments toward reaching their target bacteria (pharmaco-
kinetics) and the difficulties that phages can have in exerting antibacterial activity
once they have reached those bacteria (pharmacodynamics). The latter difficulties, at
least in part, are functions of phage host range and bacterial resistance to phages.
Given the apparently low toxicity of phages and the minimal side effects of phage
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therapy as practiced, phage therapy should be successful so long as phages can
reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those
bacteria. Greater awareness of what obstacles to this success generally or specifically
can exist, as documented in this review, should aid in the further development of
phage therapy toward wider use.

KEYWORDS bacteriophage therapy, phage clearance, phage movement, phage
resistance, spectrum of activity, phage circulation

INTRODUCTION

Bacteriophage therapy (phage therapy) has remained for decades outside the
scientific and clinical mainstream. Due to the rise in the frequency of multidrug-

resistant bacterial infections (1, 2), often described as a “crisis” of antibiotic resistance
(3, 4), phage therapy could potentially become more widespread as an antibacterial
strategy (5). The therapeutic potential of phages has been highlighted in numerous
recent reviews (2, 6–24), and the specific advantages of phage therapy over antibiotic
therapy are abundant (25). They include (i) an ability of phages to increase in number
in situ at the site of infection in the course of antibacterial treatment; (ii) the generally
low toxicity of phages used for treatment; (iii) phage target specificity, which can limit
the disruption of nontarget bacteria; (iv) the ability of phages to treat either antibiotic-
resistant or antibiotic-tolerant infections; and (v) the typical ease of discovery of phages
as agents with novel antibacterial activities.

It is not just antibiotic resistance that is a problem. In the past decade, we have
observed a revolution in our understanding of the importance of the human micro-
biome in terms of its richness, variability, and key role in maintaining human health
(26–31). The overuse of broad-spectrum antibiotics (32, 33), contributing to substantial
changes in microbiome diversity (34–37), has reduced our ancestral microbial heritage,
causing negative effects on human health. Industrialization and the Western lifestyle,
which are widely associated with the overuse of antibiotics, correlate with increases in
immune, metabolic, and cognitive diseases, including obesity, diabetes, asthma, aller-
gies, inflammatory bowel disease, and autism (31, 37–39). Bacteriophages, in contrast
to many antibiotics, are quite narrow in terms of their spectra of activity (40), and they
thereby can be substantially more selective in terms of their impact on microbiomes.
Consistently, high-throughput analyses of the microbiota in individuals treated with
bacteriophages have revealed no substantial changes in the microbiome composition
following treatment (41–45). This difference and others between bacteriophages and
antibiotics make phages attractive as modern antibacterial therapeutics.

The phage features which can provide important advantages can also bring chal-
lenges and potential difficulties for the successful development of phage therapy. High
specificity makes it difficult to find phages or even phage combinations that are able
to treat wide ranges of bacterial pathogens. This makes empirical (presumptive)
treatment using phages challenging. Phages are also large, replication-competent,
nucleoprotein complexes. As a result, their pharmacokinetics in animals and humans
are unlike those typically observed with small-molecule antibacterial drugs. Phages
especially differ from classical antibacterials in terms of their ability to pass through
various bodily barriers. Phages also differ in their potential to elicit immune responses,
in contrast to small-molecule drugs, which immunologically may serve only as simple
haptens (46–51).

Bacteriophages together represent the most diverse semiautonomous biological
entities in the world (52–56). This makes it difficult to reach broad conclusions or
identify general rules concerning phage-bacterium or phage-body interactions. As a
result, there can exist numerous poorly appreciated obstacles to phage therapy suc-
cess, obstacles which often can differ depending on the phage employed and the
bacterium targeted and also in terms of the characteristics of the treated organism. At
the same time, however, phages collectively represent an abundant source of naturally
occurring antibacterial agents, possessing diverse mechanisms of antibacterial activity.
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Nevertheless, phage therapy efforts have resulted in microbiological as well as clinical
successes, i.e., the elimination of targeted pathogens and/or substantial improvements
in infection-associated signs and symptoms. This is evidenced by the successful phase
I/II efficacy trial of Wright et al. (57), but also by the success of numerous clinical cases
of phage treatment, both in recent times and over multiple decades in the past (6–12,
17, 18, 20, 22, 58–65).

As with any endeavor, it can be useful to have a rational means of identifying and
correcting deficiencies to, for example, improve phage treatments (20, 66, 67). Here, we
provide a review of potential pharmacological obstacles to phage therapy success, in
particular, to improve pharmacological awareness during experimentation with phage
therapy (see the Appendix). This we do from both pharmacodynamic and pharmaco-
kinetic perspectives. With pharmacodynamics, we consider the phage impact on
body-associated bacteria, particularly in terms of the basic principles of the phage host
range and the bacterial evolution of resistance to phages, as these factors can impact
the antibacterial effectiveness of a given phage titer once that has been achieved in
situ. With pharmacokinetics, we consider what is known about the potential for the
body to impact the ability of phages to reach target bacteria at sufficient concentra-
tions (titers). Emphasis there is on phage movement (pharmacokinetically known as
absorption and distribution) as well as phage clearance (equivalent pharmacokinetically
to metabolism and excretion). See Fig. 1 for a summary. We avoid assessment of the
magnitude of the impacts of various factors, as these tend to vary from system to
system, and such comparisons otherwise have not been well considered in the
literature. The general goal is to help guide phage researchers and interested clinicians
toward greater success with phage therapy.

PHARMACODYNAMIC OBSTACLES

Pharmacodynamics is the study of the impact of drugs on the body, where “body”
includes associated microorganisms (microbiota). These impacts can consist of efficacy
effects as well as side effects. Phage-associated side effects may be reduced by ensuring
a better purity of phage preparations, e.g., by removal of endotoxin (68–71), and by
avoiding phages which encode bacterial virulence factors, e.g., by the use of bioinfor-
matics (72–74). Bacterial virulence factor genes tend to not be associated with strictly
or professionally lytic phages (75, 76). Efficacy effects are especially impacted by the
phage host range, along with the bacterial evolution of phage resistance (Fig. 2), as
addressed in this section. These are what bacteria are affected by phages (host range)
and to what extent bacteria can change genetically in terms of their ability to be
affected by phages (resistance). We consider these issues largely in terms of general
principles. A more detailed look at phage host range is covered elsewhere (40, 77–79).
Bacterial resistance mechanisms have also been recently reviewed (40, 80–83), as, too,
has the bacterial evolution of phage resistance along with phage mechanistic and
evolutionary responses (84–86).

Phage Host Range

This section considers general principles of phage host range as they apply to phage
treatments that either do or do not require phage population growth, in situ, to be
successful. Theoretically, we can distinguish different aspects of phage host range in
terms of phage functionality while infecting bacteria (40). For example, the range of
bacteria that a phage is able to infect but not kill could be described as a transductive
host range, i.e., those bacteria that a given phage is capable of transferring DNA to. For
phage therapy, however, most relevant are a phage’s bactericidal host range and its
productive host range. That is, at a minimum, phage therapy requires that phages kill
bacteria. It can be helpful or even crucial, however, for phages to also be able to
produce new phages in situ during treatments.

Payne and colleagues (46, 87) distinguished approaches to phage therapy into what
can be described as “passive” versus “active” treatments. Passive treatments supply
sufficient phage numbers to the targeted bacteria, i.e., inundative densities (49, 88–90),
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to kill a sufficient majority of these bacteria to control infection even absent phage
production of new virions in situ. Active phage treatment, in contrast, explicitly involves
the production of new phages during infection of the bacteria in situ. In terms of phage
host range, passive treatments are dependent on phage bactericidal activity, while
active treatments are also dependent on in situ phage virion production. For active
treatments to be successful, sufficient numbers of bacteria individually supporting
sufficiently large phage burst sizes to achieve inundative phage densities must also be
present.

Host range-type obstacles to active treatment go beyond merely blocking phages
from producing new virions. Specifically, the dynamics of phage population growth are
such that a phage’s potential to reach bacterium-inundative densities, through in situ
replication, is also dependent on the densities of those bacteria that are able to support
phage population growth and is dependent as well on phage burst sizes; for detailed
modeling of phage-bacterium dynamics, such as during phage therapy, see references
46, 47, 87, 91, and 92. For example, if achieving 108 phages/ml were required to

FIG 1 General principles of obstacles to phage therapy success. Pharmacokinetics refers to the impact of the body on
drugs, while pharmacodynamics is described as the impact of the drug on bodies, with body in both cases including both
body tissues and the associated microbiome. Pharmacokinetic obstacles are obstacles to drug movement, i.e., drug
movement to the site of drug action, as well as problems with drug persistence within the body. Pharmacodynamic
obstacles consist of bacterial mechanisms of resistance to phages, which can range from absolute (the infecting phage is
inactivated, while the infected bacterium survives) to partial (neither the phage nor the bacterium survives) and which can
consist of more subtle impacts of phage functionality (the bacterium does not survive but the phage infection vigor is
compromised but not fully compromised, e.g., phage burst sizes are smaller or phages do not even adsorb to the
phage-resistant bacterium). Not indicated in the figure are secondary pharmacodynamic issues, particularly, toxicities and
side effects, which were not an emphasis of this review.
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inundate bacterial populations in a timely manner (49, 90), then this would be impos-
sible given 105 bacteria/ml and a burst size of 100 or 106 bacteria/ml and a burst size
of 10, each of which could generate peak phage titers of, at best, only about 107/ml.
Thus, bacterial densities may or may not be sufficient to support phage population
growth to inundative densities, even if the phages used can display, in situ, relatively
large burst sizes.

Bacteria which are less physiologically active may not support phage burst sizes that
are as large as those determined in the laboratory (93). Notably, changes in bacterial
physiology or other changes in bacterial gene expression in response to specific in situ
circumstances may affect the number of phages produced or reduce the number of
receptor molecules required for phage adsorption that are found on bacterial surfaces
(94). Furthermore, not all bacterial strains that may be treated using a given phage may
be able to support relatively large burst sizes or rapid virion adsorption, even given
optimal bacterial physiologies. Thus, even given sufficient densities of targeted bacteria
and satisfactory phage growth characteristics, as determined in vitro, it may still be
difficult to achieve adequate levels of phage population growth to result in successful
active treatments in vivo.

Even with passive treatments, it can be helpful if phages are nonetheless able to
produce new virions in the course of killing targeted bacteria, if only for the sake of
being conservative in terms of maximizing phage numbers and, thereby, the impact of

FIG 2 Obstacles to phage action, given a phage-bacterium encounter. These pharmacodynamic obsta-
cles collectively consist of bacterial mechanisms of resistance to phages. These in turn serve to define a
given phage’s host range and, thereby, spectrum of activity. Three concepts of host range are presented,
where phages can adsorb onto but may or may not kill or successfully infect the bacteria (but which may
thereby still result in phage transduction of genetic material), where phages can kill bacteria but may or
may not otherwise successfully infect the bacteria (referred to as a bactericidal host range; i.e., the
phages do not necessarily produce new phage virions, but this bactericidal activity is still key for
successful passive phage therapy), and where phages can kill the bacteria and, in the process, produce
new virions (which is referred to as a productive host range and which is key for active phage therapy).
Note that even if phages are allowed to produce virions, phage productivity while infecting a given
bacterium, such as in terms of the phage burst size, may still be reduced to levels lower than expected
or desired due to bacterial properties, i.e., productivity lower than may be desirable for phage therapy
purposes. Shown to the lower left are various general mechanisms of bacterial resistance to phages,
which are color coded to indicate what aspect of the host range they affect.
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the phages on bacteria. That is, under most circumstances, for either passive or active
treatments, it can be helpful to employ phages that have host ranges which include the
targeted bacteria and that are productive under actual treatment conditions. To
counter the issue of not all phages being able to adequately impact all targeted
bacteria under all desired conditions, it is a common practice to gather up phages into
multiphage-type cocktails. Such cocktails essentially are a form of phage-only combi-
nation therapy (10, 95, 96).

Bacterial Resistance to Phages

This section considers general principles of bacterial resistance evolution, especially
as resistance can serve as an obstacle to the efficacy of phage therapy. Bacterial
mechanisms of resistance to phages can be differentiated into those that can be
described as innate (which consist of encounter blocks, adsorption resistance, pene-
tration blocks, immunity to superinfection, abortive infection systems, restriction-
modification systems, and phage growth limitation systems) and a minority that can be
described as adaptive (i.e., CRISPR-Cas systems) (97). For phage therapy, there are two
key issues with bacterial resistance and associated mechanisms (40, 80). The first issue
is that bacterial resistance to phages limits the applicability of phages for presumptive
use (as empirical treatments). This especially applies to monophage treatments but
also can make it challenging to keep phage cocktails up to date. For organizational
purposes, we refer to phage resistance that can dominate pathogen populations prior
to phage treatment as “community resistance.” The second issue is bacterial resistance
to phages, as this can evolve during the course of phage therapy (82, 83, 85, 98–100).
We describe this as “treatment resistance.”

Community resistance. Community resistance can be addressed in part via ongoing
community monitoring, i.e., at the town, region, country level, etc., of locally circulating
bacterial strains. This is a collective monitoring of patients in terms of the phage
susceptibility characteristics of bacterial pathogens. In this way, phage resistance
patterns may be recognized before large numbers of patients present with bacterial
infections that are caused by newly community-prevalent strains. Thereby, standard-
ized phage cocktails can be kept up to date, thus allowing for more effective presump-
tive treatment (10, 96). Though more complicated than targeting single bacterial
species, it is also possible to keep phage cocktails targeting multiple possible patho-
gens current for presumptive use via community monitoring, as is the case with
commercially available formulated phage products produced in the former Soviet
Union (7, 8).

Bacterial testing for phage susceptibility—and, thereby, for phage resistance as
well— can instead be undertaken immediately prior to the initiation of treatments, thus
allowing for treatments that are not presumptive. The first approach is particularly
applicable where delays in the start of treatments, such as on the order of days, would
not be critical. This matter of timing is not necessarily absolute, however, as improve-
ments in technology that deliver faster testing for bacterial susceptibility to treatment
phages should eventually allow for the more rapid initiation of treatments, i.e., on the
order of hours or even minutes rather than days. The testing of bacterial susceptibility
to different phage types, in any case, can range from testing analogous to phage typing
to determinations of plaque formation (101–103) and to other, more sophisticated
phage-based technologies (104, 105).

Treatment resistance. The underlying theory concerning treatment resistance is
that a single round of phage therapy, whether it consists of a single or, instead, multiple
phage dosings, may not succeed on its own in curing a bacterial infection, i.e., due to
the evolution of phage-resistant bacterial strains (82). Though arguably logical, this
concern that bacterial infections will tend to resist being cured due to phage resistance
evolution is not always valid; i.e., even treatments with monophages can be clinically
successful (58, 60, 62, 106) and are not necessarily associated with an increase in the
numbers of phage-resistant bacteria, or this increase can be substantially delayed (107,
108). The evolution of phage resistance, however, is likely of greater concern when
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treating immunocompromised individuals (22, 109, 110). Importantly, it is crucial to
keep in mind that there is a substantial difference between (i) phage-resistant bacteria
arising during phage treatments, as they very often will (see next paragraph), and (ii)
those phage-resistant bacteria flourishing following phage treatment, that is, to the
point where these mutated bacteria contribute substantially to the persistence of the
bacterial infection (79, 111, 112).

Based on mutation rates, it is nearly a certainty that most, though not all, bacterial
populations making up bacterial infections contain small numbers of viable bacterial
mutants which have acquired resistance to treatment phages even prior to phage
application. In the absence of positive selection, however, these resistant populations
will not tend to dominate bacterial populations and otherwise may not be problematic,
should they display either reduced fitness or reduced virulence relative to phage-
sensitive bacteria (79, 82, 85). Furthermore, the survival of such mutants can be of lower
probability with treatment with phage cocktails than with treatment with monophages.
That is, except in cases of cross-resistance, a bacterium would need to mutate twice or
more to achieve resistance to the multiple phages making up a cocktail. Individual
phage-resistant bacterial mutants are therefore likely to be infected and killed by a
different phage making up the cocktail, despite having evolved resistance to one
phage. This scenario represents the key underlying utility of combination therapies, like
those routinely harnessed for treating cancers (99) or tuberculosis (100).

Optimizing for dealing with community versus treatment resistance. We can
consider, theoretically, the potential to generate cocktails which are effective for
addressing community versus treatment resistance. Specifically, for a cocktail to be
effective against treatment resistance, that cocktail must contain at least two phages
whose host ranges relevantly include the targeted bacterium. This is because it is only
with two active ingredients that the power of combination therapies against the
evolution of resistance may be harnessed. In contrast, to be effective against commu-
nity resistance, a cocktail needs to contain at least one phage that will kill a targeted
bacterium.

It is certainly possible for cocktails to contain two phage types that are active against
a given target bacterium. Nevertheless, a cocktail that has been optimized for a
relatively broad spectrum of activity, e.g., by covering at least a single target species,
and for a relative lack of excessive complexity (not too many constituent phages) will
be difficult to optimize, especially if at least two phage types are required to target each
possible bacterial target. In short, community resistance is logically more easily com-
batted than treatment resistance by employing preformulated phage cocktails. Regard-
less, successful treatment is dependent on the phages reaching the targeted bacteria
in sufficient numbers, which is an issue of pharmacokinetics.

PHARMACOKINETIC OBSTACLES

Pharmacokinetics refers to the study of what happens to drugs, in terms of their
movement and persistence, once they have entered a body. Pharmacokinetic obstacles
therefore refer to those body aspects which limit the ability of a drug to build up to and
then maintain effective concentrations over sufficient spans of time, ideally in associ-
ation with targeted tissues. Traditionally, pharmacokinetics is differentiated into four
categories. These are absorption, distribution, excretion, and metabolism. Absorption
and distribution refer to movement within a body, with absorption describing move-
ment into the blood and distribution referring to movement into other body tissues,
particularly from out of the blood. Important as well is movement simply within body
compartments, e.g., within the gastrointestinal tract, within the lungs, within bacterial
biofilms, etc. Excretion also is movement but consists of movement out of the body,
while metabolism refers to phage inactivation within the body. Collectively, we refer
here to excretion and metabolism as “phage clearance,” which can also serve as a
pharmacokinetic obstacle to phage therapy success. Failures in phage absorption or
distribution or excessive phage excretion or inactivation represent obstacles to phage
therapy success.
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Accessibility of Bacteria to Phages within Bodies

Phages can be given orally, injected, or applied directly (locally) to selected organ or
infection sites; e.g., they can be sprayed into the lungs or applied directly to an infected
wound. To function as an antibacterial agent, the applied virions must then be able to
physically reach the target bacteria in sufficient quantities. The pathway of such
movement can be relatively simple, as is seen with some topical applications, or instead
it can be somewhat complex, as is the case with systemic phage application targeting
bacteria associated with nonblood tissues. In addition, with topical and oral adminis-
tration, natural barriers decrease the amount of active phage entering the body. The
study of such virion movement and its limitations, it should be noted, is what many
consider to represent the essence of the study of the pharmacokinetics of phage
therapy. Here, we discuss different routes of phage movement into and within the
body, along with obstacles to that movement toward penetration to the target
bacteria.

Absorption via injection. Injections most easily overcome important body defen-
sive barriers and have been demonstrated to be the most effective routes of systematic
phage delivery. Injections in more modern approaches to phage therapy are commonly
used, especially in preclinical animal models. These routes include the intraperitoneal
(i.p.) (113–118), intramuscular (i.m.) (119–124), and subcutaneous (s.c.) (116, 125, 126)
routes or direct injection into the blood intravenously (i.v.) (127–132). Administration by
i.v. has also been applied to humans (133, 134) and has been reviewed by Speck and
Smithyman (135).

Injections can be both efficient and very fast in delivering bacteriophages to the
blood. Active phages are typically observed in blood circulation within the first hour
and have even been observed in less than 5 min (136–142). Differences in the timing
of phage access to the blood compartment can depend on the site of an injection;
however, i.v. injections, of course, provide immediate delivery. Phage arrival in the
blood was observed sooner after i.p. injection than after i.m. or s.c. injection. Injection
by the i.p. route also resulted in higher phage titers than i.m. or s.c. injection, correlating
with more effective protection of experimental animals from lethal septicemia (126).
Together, these observations seem to imply, not surprisingly, that the fewest obstacles
to phage absorption occur when phage is given by injection, though some injection
routes (e.g., the i.v. route) present fewer obstacles than others. Alternatively, it is
possible to inject phages directly into infected tissues (63). In that case, systemic
circulation is bypassed and, thereby, distribution obstacles to phage movement are
reduced, as are issues concerning phage clearance from the blood (see below).

Obstacles to per os (oral) delivery. Among the various administration routes, oral
delivery is usually the most convenient and most likely to be accepted by patients, as
many drugs are administered orally. Oral administration of phages is not a consistently
effective route of phage delivery to the systemic circulation, however, owing in part to
unreliable phage absorption from the gastrointestinal tract. For example, Jun et al. (143)
showed that i.p. injection allowed for the appearance of active phages in the blood
3 h sooner than oral application, with the maximum phage titer in the blood being
reached as soon as 6 h prior to the peak being achieved by the orally administered
phage (143). Analysis of the available experimental reports shows that only approxi-
mately 20% of oral applications were efficient in all investigated individuals, while 33%
resulted in no penetration in any individuals of a studied group (42, 112, 113, 119, 123,
143–162). Consistently, no active bacteriophages were detected in blood in a human
safety trial where T4 phages were given orally, despite the confirmed successful gut
transit of the active phage (154), although phage presence in the blood was tested for
only at the end of the trial.

Oral delivery is, of course, also fully applicable for targeting infections located in the
gastrointestinal tract and can be considered an in situ delivery. Such delivery can still
be inefficient, however, absent overcoming the stomach acid obstacle. Phages in
particular are often sensitive to extreme pH values, such as those associated with
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stomach acidity, though they are also sensitive to the lower pH of the skin or vagina
(163–166). Requirements for phage passage through gastric juices can thus serve as an
obstacle to oral phage delivery, whether toward systemic delivery or toward in situ
delivery. Consequently, acidity neutralizers are often applied or advised to improve
phage transfer through the stomach (167).

Toward in situ oral phage treatment of cholera-infected patients, Monsur et al. (168)
demonstrated that very high phage doses (1013 to 1014 PFU), together with phage
propagation on infecting bacteria, resulted in phage concentrations in feces that were
higher than 1011 PFU/g. The resulting phage absorption, however, was nevertheless still
inefficient, reaching only approximately 102 PFU/ml of patient blood. These findings
suggest that obstacles to phage absorption from the small intestine can be profound
even when phage passage through the stomach is efficient. This problem of inefficient
phage absorption following oral delivery can be counteracted to some extent by
increasing the phage dose, since the efficacy of phage penetration from the gastroin-
testinal tract is positively correlated to the phage dose applied (158). In small-animal
models, such as rodents and chickens, the minimum oral doses used for the systematic
delivery of phages have been about 107 to 109 PFU per animal (108, 148, 158), but the
concentrations achieved in blood were poor, and it is uncertain at what point increas-
ing phage numbers might saturate absorption out of the gut.

In contrast, a high potential for transcytosis across the small intestine wall, thereby
resulting in absorption, has been calculated from in vitro intestinal cancer cell cultures,
with more than 3 � 1010 phages estimated to be absorbed every day (approximately
3.5 � 105 PFU per second) (169). The discrepancy between the seemingly easy trans-
location demonstrated in vitro and problems with achieving high phage titers in blood
after oral administration suggests that in vivo obstacles to phage delivery from the gut
to the blood are likely important determinants of this pharmacokinetic characteristic.
The blocking role may specifically be played by the intestinal lymph node system, as
postulated by Smith et al. (170). Lymph nodes are filters with a 70-kilodalton cutoff that
prevent molecules from entering the parenchyma and high endothelial venules (171),
whereas the sizes of most phages are measured in megadaltons (e.g., the T4 phage
head is 194 MDa). Wolochow and colleagues (145, 148) demonstrated that in the
gastrointestinal tract, phages are absorbed into the lymph nodes rather than into the
blood. This pathway is consistent with the absorption pathways of large drug carriers
(nanocapsules). These drug carriers, when absorbed from the gastrointestinal tract, also
reach the blood and organs by first traveling through the lymphatic system (172–174).
Phages may thus be predisposed to being filtered out by intestinal lymph nodes.
Considering the results of phage oral delivery reported from in vivo models, however,
we hypothesize that the filtering of phages by lymph nodes is not absolute. Thus,
filtering could be inefficient enough to result in oral delivery exposing phages, despite
this substantial obstacle to systemic delivery. Nevertheless, the possibility of the
existence of other mechanisms of body resistance to phage absorption from the
gastrointestinal tract cannot be excluded.

Topical delivery, absorption, and obstacles to phage distribution into biofilms.
Topical delivery is the application of phages to surfaces. Inhalation of phages, for
example, can result in topical phage delivery (175), though it can also result in systemic
delivery (i.e., absorption). Compared to i.p. and i.m. injections in animal models,
however, inhalation has resulted in poor absorption efficacy (176, 177). Topical phage
delivery to the lungs by inhalation, in contrast, has successfully been demonstrated
many times to be capable of controlling respiratory tract infections (16, 178–185).
Moreover, in mice with experimental pneumonia, the effectiveness of phage therapy
was found to be dose dependent (186). Indeed, just as with direct phage application to
a site of infection, we have an expectation that topical phage delivery, so long as
phages are capable of reaching the targeted bacteria by such routes (as discussed
especially in terms of biofilms below), should generally present fewer obstacles to
phage penetration to bacteria than systemic delivery by any route.

More familiarly in terms of topical delivery is delivery to the skin, mucous mem-
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branes, or, especially, wounds. Such delivery is usually not intended for phage absorp-
tion into the blood but also is distinct from the goal of phage distribution since the
phages do not have to move to new locations in order to reach their target bacteria.
On the other hand, in many cases with topical delivery, what these phages are being
delivered to is biofilms, arguably requiring a distribution-like phage movement into
those biofilms.

Obstacles to phage movement into biofilms are generally considered to consist of
extracellular polymeric substances (EPS), which make up the biofilm matrix but which
also, in the case of capsule material, can be associated with non-biofilm-associated
bacteria as well. That EPS can serve as a bacterium-imposed barrier to phage adsorp-
tion, however, is not in fact certain. On the one hand, some phages exist which display
EPS depolymerase enzymes in association with their virions (187), which would seem to
be present to allow phages to reach bacterial surfaces that are otherwise unreachable
(188). Alternatively, however, these enzymes may simply allow an acceleration of the
adsorption process, and it has even been argued that they can allow EPS to serve as a
primary receptor for phage interaction with bacteria (188, 189). On the other hand,
biofilm clearance has been shown to be achieved without prior consideration of phage
carriage of EPS depolymerase enzymes (190–195), or EPS depolymerases may not have
much impact, if they are present (196). Whether or not biofilms can in fact consistently
impose pharmacokinetic obstacles to phage access to bacterial surfaces therefore
remains uncertain for a majority of treatment phages.

Tissue delivery (distribution). Major organs that are commonly investigated for
phage presence following their systemic delivery are the spleen and liver. Phages can
enter these organs from the blood within minutes (197–199) and within 1 to 3 h can
achieve high intraorgan titers that are often even higher than those in the blood (119,
124, 127, 129, 144). The spleen and liver are key elements of the mononuclear
phagocyte system (MPS; which was previously also called the reticuloendothelial
system [RES]) (119). Few obstacles to phage entrance into these organs from the blood
thus exist, though it is nevertheless questionable whether phages truly remain available
for adsorption onto extracellular bacteria after such sequestration. The acquisition of
phages by these organs should thus generally be viewed more as a form of phage
clearance from the blood rather than phage distribution to the spleen or liver.

Other organs can also be easily penetrated by phages, though they do not as readily
accumulate phages. Plaque-forming units have been recovered from skeletal muscles,
bone marrow, kidneys and bladder, heart, thymus, and the salivary glands and saliva
following administration by various routes (50, 116, 119, 120, 144, 147, 155, 158, 161,
183, 197, 200–202). Thus, infections in these body sites can potentially be controlled by
bacteriophages which have been delivered to systemic circulation, particularly to the
extent that phages can leave the blood and move to sites of infection due to, for
example, blood vessel damage. Phages can also penetrate from the blood to the
gastrointestinal tract (119, 121, 144, 158, 197, 203), though this seems less practical,
given the effectiveness of oral delivery for achieving considerable phage titers in the
gastrointestinal tract. Thus, obstacles to phage distribution do not appear to be found
in terms of phage movement though the blood vessels found in these organs. These
obstacles, rather, block phage movement out of vessels, such as into interstitial fluid.
Nevertheless, the efficiency of such movement and, in particular, the impact of bacterial
infections breaching blood vessels sufficiently to allow phage movement locally out of
the blood, thereby overcoming obstacles to phage distribution, are poorly understood.

Bacteriophages have been demonstrated in animal brains (114, 116, 120, 144, 183,
201, 204) and have also been used to successfully control intracerebral infections (204),
in spite of a blood-brain barrier that is often challenging to drug distribution (205).
Blood-to-tissue phage concentration ratios in rodents suggest that shortly after i.p.
administration, i.e., after 2 and 6 h, most phages detected in brain tissue were probably
still, in fact, in the blood, but at 24 h after administration, phages reportedly had
effectively crossed the blood-brain barrier (116). The blood-brain barrier is thus an
expected obstacle to phage distribution to the brain, not surprisingly, but a barrier
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which may also be breached, perhaps especially in the case of bacterial infection of the
brain. The extent to which infections explicitly impact phage movement out of the
blood and, indeed, the mechanism of such movement have nevertheless, to the best
of our knowledge, not been well characterized.

Phages delivered systemically may penetrate into the lumen of the lungs (176, 201).
The efficiency of this delivery, however, has been questioned by Takemura-Uchiyama et
al. (118). They observed phages in bronchoalveolar lavage fluid (BALF) only in animals
that had been challenged with bacteria and not in the unchallenged group, concluding
that bacterial infection might cause micropores in tissues (including blood vessel
endothelium), thereby facilitating phage diffusion from the bloodstream. Semler at al.
(117) successfully controlled bacterial pulmonary infections by phage inhalation but
not by i.p. administration. Thus, phage penetration from blood to the lumen of the
respiratory tract is not necessarily efficient. As long as the infection does not involve the
deeper tissue layers surrounding the lungs, inhalation seems to be the most efficient
way of therapeutic phage delivery into the lumen of the lungs.

Intranasal administration to mice was efficient in the delivery of filamentous phages
to the brain, though morphologically different forms of the same phages, which were
described to be “spheroid” by the authors, were not able to penetrate in that way (206).
This suggests that optimal delivery routes may be different for different phages as well
as for different types of bacterial infections. Phage distribution as well as absorption is
likely dependent at least on the general characteristics of the phage virion morphology
but is potentially also dependent on other features not yet identified, such as the
specific characteristics of the proteins making up the phage capsids. It is nevertheless
of interest that the nasal delivery of certain phages may at least potentially present
fewer obstacles to brain delivery than systemic delivery, possibly due to anatomical
proximity. This superiority, as noted above, is likely limited in terms of what phages are
applied and, indeed, might not be superior given the occurrence of brain bacterial
infections.

Although phages seem to gain access to many tissues relatively easily, it is unknown
if they are able to achieve inundative concentrations at sites of bacterial infection
through movement (absorption and distribution) alone. Achieving inundative phage
concentrations, in turn, is essential for achieving phage therapy success (87, 91). The
potential for therapeutic phages to penetrate into specific organs or tissues can be
increased by molecular engineering of phage virions, specifically by the display on
phage surfaces of small peptides that promote phage accumulation in these tissues as
so-called specific molecular addresses (207). This idea relates to the fundamental
studies of Pasqualini and Ruoslahti (208) and Ruoslahti (209), who demonstrated the
potential of homing peptides specific to selected organs. Notably, many peptides that
can facilitate the delivery of nanoparticles to selected tissues were identified by the use
of phage display libraries, i.e., pools of phages presenting short peptides on virions
(153, 210–217). These observations directly indicate the applicability of phage display
of short peptides for improving phage targeting inside the body, specifically for
increasing phage delivery to the site of a localized infection, i.e., toward improved
pharmacokinetics.

Clearance of Phages from Bodies

Metabolism and excretion are considered here primarily from the perspective that
they serve as reducers of phage densities in situ and, thereby, as obstacles to the
buildup and maintenance of phage densities. Collectively, we describe this as phage
clearance from bodies. Metabolism as a phage means of inactivation involves actual
virion breakdown or the binding of inactivating substances to virions. This generally
occurs postabsorption or after local or in situ phage delivery. Excretion, in contrast, is
drug movement out of the body in a drug-intact form.

In the gastrointestinal tract and on mucosal surfaces, phages can be affected by
proteases. Experimental data available so far suggest, however, that bacteriophages
demonstrate limited sensitivity to digestive enzymes (e.g., trypsin), but this differs
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between phage types. Notably, other proteases, such as proteinase K or papain, can
easily inactivate phages resistant to trypsin (218–223). Unfortunately, so far there are no
experimental reports available to assess the effects exerted on phages specifically by
tissue proteases or those enzymes secreted onto the mucosal surfaces of the lungs. We
have also discussed phage inactivation by gastric juices (see above), though this is more
an inefficiency in phage delivery than inactivation postdistribution or postabsorption.

Here, we especially consider the impact of the vertebrate immune system on phage
clearance, focusing on nonspecific versus antigen-specific mechanisms. These are
phages as particles (nonspecific) and phages as protein complexes (specific), respec-
tively, and also phage excretion (nonspecific) and phage metabolism (specific), respec-
tively. Note that the potential for phage maintenance in distinct tissues is currently
mostly unrecognized, except in the liver, spleen, and blood (119, 129). As a conse-
quence, the impact of metabolism on phage clearance is generally considered from the
perspective of as it occurs across whole bodies rather than as it occurs in specific
locations, again, other than in association with the liver, spleen, and blood.

Nonspecific phage clearance via excretion. Renal clearance is involved in the
excretion of many drugs, with the result being removal of the drug into the urine. The
molecular weight cutoff for glomerular filtration is thought to be 30 to 50 kDa, that is,
for removal from the blood by kidney nephrons. The passage of larger objects has also
been demonstrated, and with disease, size sieving by the kidneys can be substantially
increased (224, 225). As evidenced by experimental reports, the nonspecific clearance
of bacteriophages by excretion does not appear to be highly effective. Although
phages have been detected in the kidneys and/or urine either in animals (116, 125, 137,
144, 150) or in humans (149, 159), in most cases phage excretion was not seen in all
individuals. In addition, high levels of quantitative variability can be observed between
individuals. In humans treated orally for various types of infections, phages were
detected in the urine of 87.3% (n � 55) of treated children (159) and in that of 35%
(n � 26) of treated adults (149). Urine titers, however, were a few orders of magnitude
lower than blood titers in the same individuals (116, 125, 137, 144, 150). Schultz and
Neva (226) proposed 109 PFU given by i.v. injection to be the minimum dose necessary
to result in phage detection in the urine of mice.

Since bacteriophages can be stable in human and animal urine in vitro (201, 227,
228), low phage titers in urine simply suggest low rates of passage into the glomerular
filtrate. From a practical perspective, in the case of phage therapy of bladder infections,
phage administration directly into the urinary tract (229–231) will likely help to achieve
higher therapeutic concentrations of therapeutic phages than systemic administration.
The rates of renal excretion of phage virions nonetheless do not appear to result in
substantial obstacles to maintaining phage densities elsewhere in the body.

Nonspecific phage clearance via phagocytosis (metabolism). Poor phage removal
via the renal route does not in itself result in the prolonged blood circulation of active
phages. The phage half-life in the blood of mice, for example, has been estimated to be
2.2 to 4.5 h in different models (198, 199, 232). Reports of the half-lives from animal
models of antibiotic pharmacokinetics cover a wide range, from approximately 0.5 h to
more than 7 h (233–239), which seems comparable to the phage half-lives measured
(198, 199, 232) (notably, half-lives in mice should translate to longer half-lives in
humans, due to known differences between the two species). A simple explanation for
why phages escape renal clearance can be derived from quantum dot studies that
make use of particles of defined size. Large model particles (�8 nm) were not found in
the bladder but instead were trapped by the mononuclear phagocyte system (MPS)
(240). Thus, we can conjecture that the major feature directing phage particles to the
MPS rather than renal filtration is the large size of phage particles, i.e., particles that are
typically much larger than 8 nm. This affects the renal sieving cutoff that prevents the
efficient excretion of phages, as well as the MPS capability to capture larger objects.

The potential correlation between phage size and its rate of clearance has
been investigated only once, by Hajek (130). Phage T2 (Myoviridae, approximately
90 by 200 nm in size) was removed much faster than the phiX174 phage (Microviridae,
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approximately 30 nm in diameter) from newborn-pig circulation. This suggests that
large phage virions could be easier to filter out in vivo, via the MPS, than smaller ones,
and it further implies that small phages may be characterized by more favorable
pharmacokinetics (i.e., they potentially can circulate and be bioavailable in the system
for longer), while the large ones appear to be removed faster, at least from blood.

The liver and spleen are considered to be the main organs that immunologically
filter out blood-circulating phages (119, 124, 127, 129, 144, 197–199). Since these
organs are key elements of the MPS, as they are settled by numerous phagocytes, they
are considered to be not only major phage traps but also organs which are actively
engaged in phage neutralization. Only very scarce data allow for comparisons between
the spleen and liver in terms of their effectiveness in phage neutralization, however. On
the one hand, the spleen is the organ where active phages can be detected at the
highest titers and for the longest periods, even for many days after administration (116,
119, 120, 137, 144, 198, 241, 242). Such high levels of measured trapping could be a
result of the more effective filtration of phages, but they could also be due to less
effective phage neutralization.

Inchley (129) investigated phage accumulation in tissues by the detection of radi-
ation from 51Cr-labeled T4 phages rather than by the determination of the phage
plaquing ability. He showed that 70 to 90% of the applied 51Cr was observed in the
liver. Thus, even though both liver and spleen accumulate phage particles very effec-
tively, it is probably the liver that most rapidly inactivates phages. Other parts of the
MPS, such as the lymph nodes, are less often involved, but as suggested above, they are
also capable of sequestering as well as neutralizing bacteriophages (50, 112). Phago-
cytosis can result not only in direct neutralization of a bacteriophage (50, 51, 119, 129,
243) but also, potentially, in antigen presentation by antigen-presenting cells, mainly
dendritic cells and macrophages.

Nonspecific phage clearance via the complement system (metabolism). A poten-
tially underestimated element of innate immunity that contributes to phage neutral-
ization in vivo is the serum complement system. This enzymatic cascade mediates
the removal of invading microorganisms without specific recognition (244). Although
phages are not pathogenic, bacterial viruses nevertheless are also susceptible to
complement system activity (50, 136, 245). In addition to directly destroying viral
particles, proteins of the complement cascade facilitate phagocytosis, thereby serving
as opsonizing agents, which has the effect of enhancing phage sequestration as well as
inactivation in vivo (130, 131, 246).

The degree of phage susceptibility to neutralization by the complement system
affects the duration of active phage circulation in the animal or human body. Notably,
long-circulating phages, which are mutants that remain actively circulating in the blood
longer than the parental phages, have been shown to be more effective as therapeutic
agents (115, 247). Typically, these phage variants are selected by repeated passage in
living animals (by injection-recovery from blood), but Sokoloff et al. (248) linked phage
susceptibility to neutralization in vivo to phage interaction with the serum complement
system. They used phage display technology to identify amino acids that, when
exposed on phage virions, caused a long-circulating phenotype in rats and then
demonstrated that exposed peptides with a C-terminal arginine or lysine on phage
virions resulted in decreased phage susceptibility to neutralization by serum comple-
ment. Thus, phages can be engineered to escape nonspecific neutralization, or if they
are engineered without consideration of interaction with the complement system, they
may become more sensitive to this form of neutralization (249).

Specifically, long-circulating phages selected by Vitiello et al. (250) had a mutation
causing the substitution of glutamic acid for lysine in the phage major capsid protein.
Display of this particular amino acid may decrease interactions of components of the
complement system with the phage, equivalent to the findings for the modifications
investigated by Sokoloff et al. (248). Thus, though the authors proposed lower phage
susceptibility to the MPS (i.e., phagocytosis) as the causative mechanism of their longer
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circulation, a role for increased relative resistance of phages to neutralization by the
complement system is possible as well.

Antigen-specific phage clearance. Elements of the immune system can neutralize
phage particles even when no specific response to bacteriophages has yet developed
(see above), but the neutralization of phage virions is not limited to nonspecific
responses. Indeed, the ability of phage virions to induce specific antibodies has been
observed many times in animals (50, 108, 122, 178, 245, 251–255) and in humans (133,
256, 257). Antibodies are typically considered to potentially have a devastating effect
on bacteriophages (50, 128, 133, 146, 178, 256, 258) and thereby potentially on phage
therapy. As pointed out by Jerne (259) and Jerne and Avegno (260), however, only a
fraction of phage virion-specific antibodies are expected to be virion neutralizing.

In humans, no phage-specific antibodies were detected in healthy volunteers
treated with bacteriophages per os (154). Consistently, after therapeutic applications,
antibody induction can be rather weak, thereby not affecting the phage ability to
control bacterial infections (261). This corresponds to the fact that the efficient induc-
tion of specific antibodies requires sufficient time and antigen doses. Typically, a full
response develops only weeks after phage exposure (108, 157, 262), and it can
therefore be observed only many days after the time necessary to complete treatment
(263). Consequently, antibodies seem to be a problem particularly envisioned for
recurring phage applications, that is, when the same patient is treated repeatedly over
long periods with the same phage (264). This perhaps is particularly a problem given
systemic rather than topical exposure to phages for the treatment of systemic rather
than gastrointestinal infections.

Phage cocktails are often recommended as a remedy to the problem of bacterial
resistance to phages as well as to the challenge of developing ready-to-use phage
preparations with a sufficiently broad spectrum of activity (see above). Mixed prepa-
rations of many phages, especially of somewhat unrelated phages, however, will
obviously contain a wider collection of phage antigens than preparations of single
phages. They therefore would be capable of inducing specific immune responses to
more phages than monotherapy. Phage antigenicity should thus be considered when
generating optimal phage cocktails. That is, the use of antigenically very similar phages,
but phages that still have complementary host ranges, would be preferable for cocktail
generation to the use of mixtures with antigenically distinct phages. Nevertheless,
general knowledge of phage antigenicity is currently very limited (245) and does not
allow even for estimation of whether cocktails containing antigenically similar natural
phages, versus antigenically similar engineered phages, could be made available (265).
With the development of therapeutic phage collections, identification of phage-specific
epitopes could be an important part of phage characterization, adding to the well-
established characterization of phage host range, and such characterization would also
be able to screen for potentially undesirable genes in phage genomes.

Protection from clearance. Phages seem to be able to counteract the neutralizing
action of the immune response. That is, they show some immunity-silencing activity
that could contribute to prolonged phage maintenance in the body, as can be
concluded from ex vivo testing of immunological cells and mathematical modeling (68,
266). Phage pharmacokinetics can also be markedly changed by the encapsulation of
bacteriophages. Most available reports documenting the use of encapsulated phages in
vivo indicate the prolonged release of phages, which seems to be similar to constant
release and different from the release achieved with bolus administration (166, 267,
268). Encapsulation not only delivers prolonged release but also protects bacterio-
phages from inactivation by possible chemical stress (e.g., gastric secretions) or by
immunological factors. As has been demonstrated, encapsulated phages are able to
remain active in a living system for longer (longer circulation), which can translate into
antibacterial efficacy in vivo which is better than that of a relevant but nonencapsulated
phage (166, 269).

Obstacles to successful phage therapy that may be related to high rates of phage
neutralization by immune system factors can thus potentially be decreased by making
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phages less visible to the immune system, including by the use of various types of
encapsulation. A prerequisite to this kind of solution is, of course, a lack of or a minimal
impact of phage encapsulation on the ability of phages to infect bacteria, or at least an
effect that is less than the beneficial effect of encapsulation on improving phage
survival in vivo and the resulting better access of the phages to bacterial cells. Note that
an earlier effort to protect virions from immune system effects involved particle
PEGylation, i.e., conjugation to virions of monomethoxy-polyethylene glycol (132). One
aspect common to all encapsulation technologies is that while they protect dosed
phages, they have no impact on phage virions that are generated in situ, such as during
the course of active treatments.

CONCLUSIONS

Obstacles to drug functioning can interfere with drug penetration into target
tissues, drug retention in association with those tissues, and the impacts of the drug on
those tissues once sufficient drug densities have been reached. Pharmacokinetic ob-
stacles are those which interfere with drug density buildup and retention in the vicinity
of target tissues, collectively, drug movement, while pharmacodynamic obstacles are
ones that interfere with drug action once the concentration of the drug is built up and
the drug is retained in association with target tissues. Approaching drug development
in a pharmacologically aware manner thus requires appreciation of potential obstacles

FIG 3 Effects of pharmacokinetics and pharmacodynamics on bacteriophages in bodies. The ability of phages to penetrate into
a bacterium-containing living system and to reach specific sites of bacterial infection is crucial for achieving an effective
therapeutic concentration by the phage. The phage concentration decreases due to body responses, mainly due to the
pressure of the immune system, with a prominent contribution of nonspecific mechanisms of inactivation. Phage host range
defines the applicability of phage therapy at the practical level of the available phage strains. Bacterial resistance mechanisms
limit a phage’s host range and related spectrum of activity as an antibacterial drug. MAC, membrane attack complex.
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to pharmacokinetic as well as pharmacodynamic functioning. Here, we have cata-
logued such obstacles to the success of phage therapy that include, on the pharma-
codynamic side, phage host range and bacterial resistance to phages and, on the
pharmacokinetic side, the balance between phage movement and phage clearance
from the body (Fig. 3). Both better awareness and better characterization of potential
obstacles should result in more efficient development of phage therapy as a
successful modern antibacterial strategy.

APPENDIX: PHAGE THERAPY PHARMACOLOGICAL AWARENESS

Selectively toxic antibacterial agents—agents toxic for the bacteria and not for the
patient—are useful because of their potential to disrupt harmful bacteria without also
harming bodies. Therefore, a major concern in antibiotic development, indeed, for drug
development generally, is to identify agents which can be effective without at the same
time excessively harming treated individuals (270). Broad therapeutic windows, i.e., the
difference between effective doses and harmful doses, can, as a consequence, remove
many of the constraints on pharmaceutical use and, thereby, on pharmaceutical
development. Why try harder if patients, without such additional effort, are both cured
and not significantly harmed? Thus, with phage therapy, which has generally been
deemed nonharmful, there has been substantial technology development without a
corresponding robust development of extensive pharmacological awareness. This is
seen particularly in terms of pharmacokinetics, such as possible restrictions on phage
movement to target bacteria. It is also relevant to phage therapy pharmacodynamics,
especially considerations of how many phages must be delivered to the target bacteria
to consistently achieve efficacy. Here, we consider the reasons that pharmacology has
been a less prominent aspect of many phage therapy studies than it has been, e.g., for
antibiotics.

One reason, as alluded to in the previous paragraph, is that during phage therapy
phages have generally tended to be relatively safe, with few side effects (16, 42, 58, 271,
272), perhaps especially in modern, purified forms (61, 62, 64, 273, 274). This allows the
exploration of phage therapy without excessive concerns over safety, thereby resulting
in a strong emphasis on efficacy without much consideration of the subtleties of
properly balancing antibacterial effectiveness against toxicity issues. Consequently,
phage therapy development has focused almost entirely, first, on finding serviceable
phages (77, 273, 274) and, second, on determining what delivery routes tend to result
in the greatest effectiveness and/or convenience (11), and this is rather than focusing
on reduced toxicity.

A second reason for the relative absence of pharmacological awareness in phage
therapy development is that phages, unlike most drugs, are often able to increase their
numbers in the course of effecting their bactericidal activity. This property has the
consequence of further reducing the need to more formally explore phage therapy
pharmacokinetics. That is, in many cases it seems that if only phages can reach the
target bacteria, then phage therapy can be successful, even without necessarily reach-
ing the bacterial targets at inherently inundative doses. Therefore, there is little need to
worry about issues of phage delivery from a quantitative perspective; only a qualitative
perspective is needed. Of course, phages still need to reach those bacteria at some level
to be effective, so pharmacokinetics are not irrelevant. Furthermore, it is well under-
stood that not all bacterial concentrations are sufficient to support adequate in situ
phage population growth (41, 45–47, 91, 275).

A consequence of this second point—that phages in fact can replicate to higher
densities while interacting with target bacteria in situ—is that with phage character-
ization for phage therapy, there is much less consideration of minimum inhibitory
concentrations (MICs). Indeed, due to phage replication, it can be difficult even to
conceptually define a phage MIC (89). Phages also display single-hit killing kinetics; that
is, only a single phage is typically required to kill a single bacterium (92). This, too,
makes the concept of MIC difficult to apply to phages. There also is little tradition in
phage therapy of analyzing phage antibacterial performance beyond facile host range
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analyses (40), with a typical attitude being that if one phage isolate does not prove to
be effective, then another phage may simply be substituted in its place (10, 96).
Nonetheless, there is a growing movement to attempt to link phage in vitro properties
with phage therapy success (181, 274, 276, 277), though clear limitations to this
approach exist (278, 279).

Lastly, as an approximately 100-year-old technology, phage therapy was not devel-
oped using the standard, modern approach to drug development, that is, beginning
with extensive preclinical testing, which is followed by multiple phases of clinical trials.
For many decades, phage therapies instead were primarily developed in the course of
clinical experimentation (7–9, 12, 18, 20). More recently, much of phage therapy clinical
use has taken place under the guise of compassionate care, otherwise known as
expanded access (58, 60–62, 280–282). Though animal models have certainly been
relevant to phage therapy development in modern times (16, 20, 22), the focus of
compassionate use understandably tends to be on curing patients, and this is rather
than a focus on detailed microbiological or immunological analyses, iterative improve-
ments to procedures, or detailed published documentation of individual phage treat-
ments.

A combination of relatively low toxicity, an ability of phages to amplify in concen-
tration (particularly in association with targeted tissues, in this case, in association with
the targeted bacteria), difficulties in even defining standard measures of in vivo utility
(such as MIC), and a tradition of testing in vivo in the clinic rather than in the laboratory
has resulted in an often bypassing of many pharmacological norms in phage therapy
development. Nevertheless, improvements in pharmacological awareness during
phage therapy development should be useful, particularly toward obtaining a better
understanding of the bases of treatment failures, especially in light of the need to fit
phages into more standard routes toward regulatory approval (283, 284).
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S, Rogóż P, Jończyk-Matysiak E, Dąbrowska K, Majewska J, Borysowski
J. 2016. Phage therapy: combating infections with potential for evolv-
ing from merely a treatment for complications to targeting diseases.
Front Microbiol 7:1515. https://doi.org/10.3389/fmicb.2016.01515.

19. Abedon ST. 2017. Bacteriophage clinical use as antibacterial “drugs”:
utility and precedent. Microbiol Spectr 5:BAD-0003-2016. https://doi
.org/10.1128/microbiolspec.BAD-0003-2016.

20. Abedon ST. 2018. Phage therapy: various perspectives on how to
improve the art, p 113–127. In López-Baena CMAF (ed), Host-pathogen
interactions. Humana Press, Totowa, NJ.

21. Sybesma W, Rohde C, Bardy P, Pirnay JP, Cooper I, Caplin J, Chanishvili
N, Coffey A, De Vos D, Scholz AH, McCallin S, Puschner HM, Pantucek R,
Aminov R, Doskar J, Kurtbke DI. 2018. Silk route to the acceptance and
re-implementation of bacteriophage therapy—part II. Antibiotics (Ba-
sel) 7:E35. https://doi.org/10.3390/antibiotics7020035.

22. Abedon ST. 3 July 2018. Use of phage therapy to treat long-standing,
persistent, or chronic bacterial infections. Adv Drug Deliv Rev. https://
doi.org/10.1016/j.addr.2018.06.018.

23. Kortright KE, Chan BK, Koff JL, Turner PE. 2019. Phage therapy: a
renewed approach to combat antibiotic-resistant bacteria. Cell Host
Microbe 25:219 –232. https://doi.org/10.1016/j.chom.2019.01.014.

24. Gupta P, Singh HS, Shukla VK, Nath G, Bhartiya SK. 2019. Bacteriophage
therapy of chronic nonhealing wound: clinical study. Int J Low Extrem
Wounds 18:171–175. https://doi.org/10.1177/1534734619835115.

25. Loc-Carrillo C, Abedon ST. 2011. Pros and cons of phage therapy.
Bacteriophage 1:111–114. https://doi.org/10.4161/bact.1.2.14590.

26. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. 2012.
Going viral: next-generation sequencing applied to phage populations
in the human gut. Nat Rev Microbiol 10:607– 617. https://doi.org/10
.1038/nrmicro2853.

27. Human Microbiome Project Consortium. 2012. Structure, function and
diversity of the healthy human microbiome. Nature 486:207–214.
https://doi.org/10.1038/nature11234.

28. Integrative HMP (iHMP) Research Network Cosnortium. 2014. The Inte-
grative Human Microbiome Project: dynamic analysis of microbiome-
host omics profiles during periods of human health and disease. Cell
Host Microbe 16:276 –289. https://doi.org/10.1016/j.chom.2014.08.014.
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