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Abstract

Purpose of Review—The purpose of this review is to provide an update on the recent advances 

in the research and clinical care of patients with the major phenotypes of inherited 

cardiomyopathies - hypertrophic, dilated, and arrhythmogenic. Developments in genetics, risk 

stratification, therapies, and disease modeling will be discussed.

Recent Findings—Diagnostic, prognostic, and therapeutic tools which incorporate genetic and 

genomic data are being steadily incorporated into the routine clinical care of patients with genetic 

cardiomyopathies. Human pluripotent stem cells are a breakthrough model system for the study of 

genetic variation associated with inherited cardiovascular disease.

Summary—Next generation sequencing technology and molecular-based diagnostics and 

therapeutics have emerged as valuable tools to improve the recognition and care of patients with 

hypertrophic, dilated, and arrhythmogenic cardiomyopathies. Improved adjudication of variant 

pathogenicity and management of genotype-positive/phenotype-negative individuals are imminent 

challenges in this realm of precision medicine.
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INTRODUCTION

In 1961, John F. Goodwin designed a classification system for cardiomyopathy based on his 

personal observations of cardiac structural and functional changes in 66 patients. His 

tripartite taxonomy identified (1) cardiac dilatation, (2) constriction, and (3) inflow or 

outflow obstruction. This early insight was validated through modern imaging techniques 

and corresponds with three phenotypes we now recognize as dilated cardiomyopathy 

(DCM), restrictive cardiomyopathy (RCM), and hypertrophic cardiomyopathy (HCM), 

respectively [1]. A fourth form of cardiomyopathy, arrhythmogenic right ventricular 

cardiomyopathy/dysplasia (ARVC/D), was identified later [2, 3]. Recognizing the familial 

segregation of these disorders facilitated our understanding of these cardiomyopathies as 

largely monogenic. Almost 60 years after Goodwin’s initial observations about structure and 

function, we can now also classify these cardiomyopathies based on their genetic and 

molecular alterations [4, 5].

Human pluripotent stem cells (hPSCs) provide a unique model system for the study of 

genetic alterations associated with inherited cardiovascular disease (Figure 1). Among their 

advantages, they can be differentiated into any somatic cell type and can generate extremely 

large numbers of cell progeny. Induced pluripotent stem cells (iPSCs) are now the most 

widely used type of hPSCs and are produced by reprogramming human somatic cells with 

the heterologous expression of certain transcription factors [6]. For monogenic disorders, 

iPSCs are an exemplary disease modeling system because they are genetically matched to 

the person from whom they were derived without many of the epigenetic influences that 

might contribute to disease phenotype [7]. Studies performed with iPSCs that have been 

differentiated into cardiomyocytes (iPSC-CMs) have already proven successful in helping us 

understand the cellular consequences of mutations that lead to genetic cardiomyopathies [8].

Recent rapid growth in genetic and genomic technologies has also transformed the clinical 

care of patients with inherited cardiomyopathies. Within the last 15 years, available 

strategies for genetic testing have advanced from targeted multigene cardiomyopathy panels 

to more agnostic platforms, including whole exome and whole genome sequencing [9, 10]. 

Defining the genetic cause of cardiomyopathy through testing provides opportunities for 

disease screening and risk stratification for affected individuals and their family members 

[11]. As our techniques to identify individuals with genetic cardiomyopathy improve, our 

knowledge regarding the genetic architecture of these disorders must keep pace. Here we 

will review the latest bench-to-bedside developments in three major phenotypes of inherited 

cardiomyopathies with a focus on genetics, risk stratification, therapy, and disease modeling.

Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall 

thickness unexplained by cardiac loading conditions and a nondilated LV with preserved or 

increased ejection fraction. A “phenotype-positive” individual is recognized by a maximal 

left ventricular wall thickness ≥ 15 millimeters with ≥ 13 millimeters considered borderline 

[12, 13]. Older echocardiography-based studies in diverse cohorts established the general 

population prevalence of HCM at 0.16–0.23% (~1 in 500) [14–19]. Enhanced phenotype 

detection with advanced diagnostic imaging, widely available commercial genetic testing, 

Reza et al. Page 2

Curr Heart Fail Rep. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protocolized clinical screening of family members, and larger genetic population studies 

offer evidence for a revised prevalence estimate of 1 in 200 [20].

Hypertrophic cardiomyopathy is largely considered to be a monogenic disorder with 

autosomal dominant inheritance caused by variants in genes that encode sarcomere proteins. 

Variants in two genes, beta-myosin heavy chain (MYH7) and myosin-binding protein 3 

(MYBPC3), are responsible for disease in about 50% of individuals with familial HCM [21–

24]. Less than 10% of cases can be attributed to seven other genes that encode sarcomere 

proteins: cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), alpha-tropomyosin 

(TPM1), cardiac alpha-actin (ACTC1), regulatory myosin light chain (MYL2), essential 

myosin light chain (MYL3), and cysteine and glycine-rich protein 3 (CSRP3) [25–31]. In 

addition to variants in the genes above, other genetic and environmental factors with a range 

of effect sizes are believed to contribute to the variable penetrance and expression of HCM. 

At least 15 additional sarcomere and non-sarcomere genes have been implicated in HCM, 

however variants in these and other “missing causal genes” occur less frequently and in 

smaller families resulting in weaker evidence for causality [32, 33]. In ~40% of HCM cases, 

the causal genes remain unknown [34].

Individuals with HCM become symptomatic due to diastolic dysfunction, left ventricular 

outflow tract (LVOT) or intracavitary obstruction, myocardial oxygen supply-demand 

mismatch, and atrial and ventricular arrhythmias. Beta-adrenergic receptor blockers remain 

the mainstay of pharmacologic treatment and are used to decrease obstruction, increase 

diastolic duration, and reduce myocardial ischemia [35]. Disopyramide, in combination with 

beta-blockers, is used to alleviate obstructive symptoms and to the reduce LVOT gradient 

[36]. In patients who do not respond to or cannot tolerate beta-blockers, symptomatic benefit 

can be achieved with nondihydropyridine calcium channel blockers such as diltiazem and 

verapamil [37]. Septal reduction strategies (surgical septal myectomy and alcohol septal 

ablation) are reserved for patients with severe symptomatic LVOT obstruction despite 

maximally tolerated or optimal pharmacologic therapy. At experienced centers, surgical 

myectomy now has a <1% 30-day operative mortality with a majority of patients 

experiencing symptom relief [38–40]. Left ventricular assist device implantation has 

emerged as a mechanical support strategy for patients with end-stage HCM. In the largest 

published series of continuous flow left ventricular assist device therapy in HCM and 

restrictive cardiomyopathy (RCM), overall survival of HCM and RCM patients was similar 

to that of traditional dilated cardiomyopathy (DCM) patients. Survival was worse for those 

with a preimplant left ventricular end diastolic dimension of < 5.0 centimeters [41]. HCM 

patients comprise ~1% of heart-only transplant recipients in the United States, and their 

post-transplant survival is comparable to those with non-HCM diagnoses [42, 43].

Ventricular arrhythmias and sudden cardiac death (SCD) are the most feared complications 

of HCM. Accordingly, risk stratification algorithms aim to identify individuals at increased 

risk for SCD who would benefit from prophylactic implantable cardioverter defibrillator 

(ICD) implantation. The 2011 American College of Cardiology Foundation/American Heart 

Association HCM guidelines highlighted five conventional risk factors, drawing primarily 

from observational studies, for the estimation of SCD risk: (1) a family history of SCD; (2) 

maximal left ventricular wall thickness ≥ 30 millimeters; (3) unexplained syncope; (4) 
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nonsustained ventricular tachycardia; and (5) abnormal blood pressure response to exercise 

[12]. In a departure from the U.S. framework, the 2014 European Society of Cardiology 

guidelines added a Class I recommendation for the use of a new SCD risk prediction model 

– HCM Risk-SCD [13]. HCM Risk-SCD was derived from a retrospective, multi-center 

longitudinal cohort study of 3,675 consecutive patients with the goal to provide a 5-year 

individualized risk estimates of SCD. Variables in the model include age, severity of left 

ventricular hypertrophy, left atrium size, LVOT gradient, family history of SCD, 

nonsustained ventricular tachycardia, and unexplained syncope. HCM Risk-SCD was 

internally validated and improved risk prediction (c-statistic from 0.54 to 0.7) compared to a 

more traditional model using four major risk factors [44]. A few smaller external validation 

efforts have suggested that the HCM Risk-SCD model is superior to previous models, 

however the most recently published validation study found that it performed well at lower 

and higher levels of risk but less well at intermediate risk levels [45–49]. Late gadolinium 

enhancement on cardiac magnetic resonance imaging (CMR), another potential risk marker, 

has been shown to be associated with SCD but has not yet been incorporated into formal 

prediction models [50, 51]. The highly anticipated Hypertrophic Cardiomyopathy Registry, 

planned to conclude in 2022, aims to improve SCD prognostication with international 

prospective analyses of clinical, imaging, genetic, and biomarker data [52].

In addition to clinical and imaging data, incorporating genetics into SCD risk prediction has 

shown some correlation with clinical outcomes. In a cohort that spanned nearly 30 years, 

HCM phenotype-positive carriers of likely pathogenic or pathogenic sarcomeric and non-

sarcomeric variants had increased risks of all-cause death, cardiovascular death, heart 

failure-related death, and SCD/aborted SCD [53]. Despite pathogenic sarcomere variants 

being associated with an increase in heart failure events, there was no difference in events 

between MYH7 and MYBPC3 carriers in another study [54]. Overall, genotype status has 

been correlated with long-term outcomes but it alone cannot predict patient-specific 

outcomes given the contribution of modifying genetic, epigenetic, and environmental 

factors.

Although it may seem logical to obtain as much genetic data as possible for incorporation 

into risk prediction, the method of acquisition is important. Expanded gene panel testing did 

not significantly increase the sensitivity of pathogenic variant detection over a smaller panel 

in a broad referral population [55]. Newer agnostic platforms have shown more promise. In a 

comparison of whole genome sequencing (WGS) to multipanel gene testing, WGS identified 

19 of 20 variants called as pathogenic, likely pathogenic, or uncertain significance and 

provided one new diagnostic finding. However, WGS also identified more variants of 

uncertain significance and secondary genetic findings, emphasizing the importance of 

expertise in clinical genetics and genomics when translating WGS to clinical care [9]. In an 

Australian HCM cohort in which targeted panel testing had not previously identified causal 

variants, WGS found a pathogenic or likely pathogenic variant in 20% of families and 

identified plausible disease-causing intronic and mitochondrial variants [10]. These 

technologies may serve to expand the population of “genotype-positive/phenotype-negative” 

individuals.
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To date, pharmacologic and interventional therapies for HCM have not targeted the 

underlying genetic defect or affected intermediary pathways. However, experimental 

disease-modifying and molecular therapies are under development. The VANISH (Valsartan 

for Attenuating Disease Evolution in Early Sarcomeric HCM) trial is a multicenter, double-

blind, placebo-controlled, phase II, randomized clinical trial to assess the safety and efficacy 

of valsartan in attenuating HCM disease progression in unaffected or mildly affected 

sarcomeric variant carriers with New York Heart Association Class I-II symptoms [56]. 

Mavacamten is an oral small molecule that regulates cardiac myosin ATPase and was shown 

to prevent hypertrophy and reduce myocyte disarray and interstitial fibrosis in murine 

models [57]. The safety and efficacy of mavacamten in symptomatic obstructive HCM is 

being tested in PIONEER-HCM, a phase 2 open-label trial. Preliminary data show that 

mavacamten reduces post-exercise peak LVOT gradient, resting LVOT gradient, and 

subjective dyspnea scores while increasing peak exercise oxygen consumption [58]. 

Modeling with iPSC-CMs also demonstrate the potential to link sarcomere variant status 

with targeted pharmacologic therapy. Mutant iPSC-CMs generated from 10 affected and 

unaffected family members with an MYH7 missense variant exhibited contractile arrhythmia 

and cellular enlargement in the setting of abnormal calcium handling. A similar phenotype 

was displayed by iPSC-CMs with a different MYH7 missense variant. Both sets of these 

phenotypes could be normalized with verapamil treatment [59, 60]. Despite the preliminary 

nature of these results, it is evident that the genetic era of HCM is rapidly shifting focus to 

targeted therapeutics.

Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM) is characterized by ventricular enlargement with depressed 

myocardial contractility. This ventricular dysfunction often progresses to overt heart failure 

with reduced ejection fraction, making it the most common indication for adult heart 

transplantation worldwide [61]. Heart failure symptoms are the most frequent clinical 

manifestation of DCM, however it can also present with arrhythmia, SCD, and 

thromboembolic events. DCM is typically diagnosed by the detection of enlarged left 

ventricular dimension by echocardiography or cardiac magnetic resonance imaging. In first-

degree relatives of individuals with newly diagnosed idiopathic DCM, left ventricular 

echocardiographic deformation parameters (strain, strain rate, fractional shortening) were 

significantly impaired compared to age- and sex-matched controls suggesting that familial 

DCM may be detectable prior to the development of left ventricular cavity enlargement [62].

Clinical trials have conventionally distinguished DCM patients on the basis of ischemic 

versus nonischemic idiopathic etiologies, with the latter comprising 30% to 40% of 

participants [63]. Recent meta-analyses suggest a 23% prevalence estimate of familial DCM, 

indicating an important genetic contribution to these nonischemic idiopathic DCM cases [64, 

65]. Familial DCM has been defined by the presence of (1) > 2 affected relatives with DCM 

or (2) a relative of a DCM patient with unexplained sudden death before the age of 35 years, 

however these definitions have not been uniformly applied across studies [66, 67]. Cases of 

nonfamilial or sporadic DCM have also been shown to have genetic bases, although the 

frequency of this finding is unknown [68]. In addition, the phenotypes of DCM attributed to 

nongenetic causes, such as hypertension, valvular disease, and toxin exposure, may be 
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influenced by genetic and epigenetic factors. Overall, the true prevalence of genetically-

mediated DCM remains undetermined due in part to this heterogeneity in classification.

A genetic cause of cardiomyopathy can be identified in 30% to 40% of patients with familial 

DCM [69]. The majority of these causes are inherited in an autosomal dominant fashion 

with variable penetrance and expressivity. The most commonly mutated gene in familial 

DCM is titin (TTN), followed by lamin-A/C (LMNA), myosin-7 and −6 (MYH7 and 

MYH6), sodium channel protein type 5 subunit alpha (SCN5A), MYBPC3, and TNNT2 
[70]. Autosomal recessive, X-linked recessive, and mitochondrial inheritance patterns have 

also been described [71]. Variants in over 50 genes that regulate a broad diversity of cellular 

functions have been associated with familial DCM. These genes encode proteins required for 

myocardial force generation, force transmission, sarcomere integrity, cytoskeletal and 

nuclear architecture, electrolyte homeostasis, mitochondrial function, and transcription. 

Efforts to capture this locus and allelic heterogeneity has led to the expansion of targeted 

DCM testing panels offered by clinical diagnostic laboratories. The ensuing improvements 

in diagnostic sensitivity have been countered by a higher number of inconclusive results at a 

greater cost [72]. Genome sequencing is being investigated as an alternative to multigene 

panel sequencing and has shown high accuracy for variant detection along with the added 

capacity to interrogate noncoding regions of the genome [73, 74].

Despite these advances in genetic testing, there are only a few genotype-phenotype 

correlations that can be made in familial DCM. Truncating variants (nonsense, frameshift, 

splice site) in TTN, a massive sarcomeric protein, are believed to cause 20% to 25% of 

familial DCM [75, 76]. In an integrated analysis of TTN sequence, protein, transcriptional, 

and phenotypic data of more than 5,200 individuals, individuals with DCM associated with 

TTN truncating variants experienced worse left ventricular function, more sustained 

ventricular tachycardia, and poorer heart failure outcomes compared to individuals with 

DCM without TTN truncating variants [76]. However, TTN truncating variants have also 

been identified in control and general population reference datasets, although the prevalence 

is lower [75, 77]. There is also a high prevalence of TTN missense variants in individuals 

without DCM - 23 variants per individual on average in the Exome Sequencing Project [78]. 

The clinical significance of these variants remains unclear, but iPSC modeling has provided 

some mechanistic insight. iPSC-CMs generated from DCM patients with either TTN 
truncating or missense variants displayed deficits in contractile function and limited 

compensatory reserve mechanisms in response to mechanical and β-adrenergic stress [79]. 

These phenotypes were similarly reproduced in genome-edited wild-type iPSC-CMs into 

which TTN truncating variants had been introduced [79].

Pathogenic variants in LMNA are the second most common cause of inherited DCM, 

occurring in 5% to 8% [80, 81]. LMNA encodes 2 proteins, lamins A and C, which are 

involved in many cellular processes including nuclear to cytoplasmic transport, 

mechanosignaling, and gene expression regulation. iPSC-CMs with either a LMNA 
nonsense or missense mutation exhibited increased nuclear bleb formation, micronucleation, 

and apoptosis upon electrical stimulation [82]. Pathogenic LMNA variants are inherited in 

an autosomal dominant pattern and are predictive of poor arrhythmic and heart failure-

related outcomes [83, 84]. The clinical signatures of LMNA-associated DCM include 
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dysrhythmias (sinus and atrioventricular nodal dysfunction, atrial fibrillation, ventricular 

tachycardia, ventricular fibrillation, SCD) and progressive left ventricular systolic 

dysfunction, often necessitating advanced therapies. Multiple studies have described the 

high rate of appropriate ICD therapies for ventricular arrhythmia in DCM patients with 

disease-causing LMNA variants who had borderline or normal left ventricular systolic 

function and did not meet otherwise traditional criteria for ICD implantation [85–87]. The 

role of prophylactic ICD implantation in mitigating SCD risk has been addressed in both 

European and U.S. consensus documents, and ICD implantation should be addressed 

especially when individuals undergo pacemaker implantation for LMNA-associated 

conduction disease [88, 89].

In addition to DCM, other multisystem diseases associated with LMNA mutations, also 

called laminopathies, include limb-girdle muscular dystrophies, Charcot-Marie-Tooth 

neuropathy, autosomal Emery-Dreifuss muscular dystrophy, and lipodystrophy syndromes 

(e.g. Hutchinson- Gilford progeria syndrome).

While mutations in other genes such as SCN5A, filamin C (FLNC), and phospholamban 

(PLN) have been associated with high-risk features in DCM, the wide genetic heterogeneity 

and variable penetrance and expressivity has limited further translation to clinical 

management [90–92]. A number of studies have more specifically characterized the cellular 

and molecular consequences of mutations in DCM-associated genes with iPSC modeling 

(Table 1). The most intensively studied familial DCM iPSC lines to date were derived from a 

family whose affected members harbor a missense R173W variant in TNNT2. Compared to 

control line iPSCs generated from unaffected family members, the mutant iPSC-CMs 

exhibited abnormal calcium handling, reduced contractility, and myofibrillar disarray, which 

were exacerbated with β-adrenergic stimulation [93]. Other studies have demonstrated the 

potential of genome editing for phenotype correction; corrected iPSC-CMs showed reversal 

of calcium handling abnormalities caused by an in-frame deletion variant in PLN [94].

Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia

Histopathologically, ARVC/D is characterized by the replacement of right ventricular 

myocardium by fibrous and fatty tissue. This fibrofatty infiltration predominantly involves 

the right ventricular (RV) free wall leading to thinning and aneurysmal enlargement [3, 95]. 

Inflammatory lymphocytic and histiocytic infiltrates, focal necrosis, and apoptosis have been 

observed in biopsy specimens, prompting investigation into the nebulous relationship 

between myocarditis and ARVC/D [96, 97]. The classical clinical phenotypes of RV 

precordial T-wave inversions, recurrent ventricular arrhythmia, and RV enlargement and 

failure first described in 1982 still comprise the basis for the updated international task force 

criteria used to diagnose ARVC/D [3, 98]. Common but alarming clinical presentations 

include exercise-induced syncope and SCD. Available therapies aim to reduce SCD risk and 

alleviate heart failure and arrhythmic symptoms. Left ventricular involvement, manifested by 

inferior and/or lateral T-wave inversions, ventricular arrhythmias with right bundle branch 

block morphology, and pump dysfunction, has been described as a distinct pattern of disease 

expression, leading some to suggest a nomenclature revision to “arrhythmogenic 

cardiomyopathy” [99]. Similar to other genetic cardiomyopathies, pathologic, 
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electrocardiographic, echocardiographic, and MRI phenotypes are used to make the 

diagnosis. However, ARVC/D is the only cardiomyopathy in which the presence of a known 

pathogenic variant is currently incorporated into the diagnostic framework [98].

Most often, causal genes in ARVC/D cases encode the desmosomal proteins plakophilin-2 

(PKP2), desmoplakin (DSP), desmoglein-2 (DSG2), desmocollin-2 (DSC2), and junction 

plakoglobin (JUP) which are critical to intercellular adhesion, signal transduction, and 

maintenance of tissue integrity [100–104]. Variants in these genes are typically inherited in 

an autosomal dominant pattern with incomplete penetrance and variable expression and have 

been identified in 33% to 63% of probands [105]. The estimated overall rate of successful 

genetic screening in individuals who meet international task force diagnostic criteria is 50% 

[106]. In multiple cohorts, only 30% to 40% of at-risk relatives carrying identified 

desmosomal variants fulfill diagnostic task force criteria [107, 108]. Sex-related hypotheses 

for this variable penetrance are based on observations of lower disease expressivity in 

women carrying desmosomal gene mutations and more malignant outcomes, including SCD, 

in men [109, 110]. Sex differences in reproductive hormones and in rates of participation in 

endurance athletics, a risk factor for early manifestation and progression of disease, have 

been proposed as reasons for this discrepancy [111]. Digenic inheritance and compound 

heterozygosity are frequent and can manifest with more severe phenotypes, further 

complicating the narrative of simple monogenic inheritance [112]. These issues with genetic 

diagnosis along with the need for advanced imaging and electrophysiologic evaluation (i.e. 

CMR, signal-averaged electrocardiogram, electroanatomic mapping) required to diagnose 

ARVC/D likely contribute to underestimation of familial disease.

Non-desmosomal genes including CTNNA3 (alpha T-catenin), CDH2 (N-cadherin), 

TMEM43 (transmembrane protein 43), LMNA, TTN, PLN, RYR2 (ryanodine-receptor type 

2), and SCN5A have been associated with ARVC/D, although with different electrical 

phenotypes [105]. Similar to HCM and DCM, the expansion of WES and WGS into genetic 

evaluation for ARVC/D has raised issues regarding the interpretation of rare desmosomal 

and non-desmosomal variants and of variants of unknown significance. Classification of 

desmosomal missense variants has been particularly problematic with some PKP2 variants 

being reclassified after initially being thought to be pathogenic [105]. Segregation studies to 

inform pathogenicity are limited in ARVC/D by small family sizes and incomplete 

penetrance. Five genes implicated in ARVC/D pathogenesis (PKP2, DSP, DSG2, DSC2, 

TMEM43) are included in the American College of Medical Genetics and Genomics list of 

59 medically actionable genes recommended for return of results in clinical genomic 

sequencing [113]. While this genome-first approach could provide an early opportunity for 

disease prevention, the lack of evidence regarding the appropriate diagnostic evaluation, risk 

stratification, lifestyle modification, and follow-up for these presumed genotype- positive/

phenotype-negative individuals should be addressed.

iPSC modeling for ARVC/D has mirrored the complexities of eliciting disease phenotypes in 

humans. The most intensively studied ARVC iPSC lines to date were derived from two 

unrelated individuals, one homozygous for a PKP2 variant that causes a splicing defect and 

the other heterozygous for a PKP2 frameshift variant [114]. The iPSC-CMs from these 

individuals manifested ARVC-related phenotypes only when they were treated with five 
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adipogenic factors which led to increased lipogenesis and apoptosis and abnormal calcium 

handling. In another study, iPSC-CMs from two patients heterozygous for different PKP2 
frameshift variants had increased lipid accumulation and desmosomal disruption in standard 

differentiation conditions, and these phenotypes became exaggerated with treatment with 

adipogenic factors [115]. Similar findings were observed in another study with iPSC-CMs 

from an individual heterozygous for a PKP2 missense mutation [116]. While certainly 

provocative, extrapolation of these findings to causality for disease development in native 

human myocardium is still premature.

CONCLUSION

Classification of the genetic cardiomyopathies has long relied upon pattern recognition of 

cardiac structure and function. Rapid progress in next generation sequencing technology, 

bioinformatics, and functional genomics has facilitated the personalization of diagnosis and 

management for individuals with hypertrophic, dilated, and arrhythmogenic 

cardiomyopathy. These tools are becoming more widely available and less expensive and 

hold great potential for mechanistic insight into inherited cardiovascular disorders. 

Standardizing and centralizing clinically relevant genomic knowledge will be imperative for 

accurate variant annotation, precise risk stratification, and achievement of optimal outcomes.
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Figure 1. 
Human pluripotent stem cells for modeling of genetic cardiomyopathies
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Table 1

Cardiomyopathies modeled with human pluripotent stem cell cells

Disease modeled Mutated gene Type of variant Reference

Dilated cardiomyopathy TTN Truncating, Missense [79]

TNNT2 Missense [93]

LMNA

PLN In-frame deletion [94]

DES Missense [117]

Hypertrophic cardiomyopathy MYH7 Missense [59, 60]

Arrhythmogenic right ventricular cardiomyopathy/dysplasia PKP2 Splicing defect, Frameshift, Missense [114–116]

Duchenne muscular dystrophy DMD Frameshift, Nonsense [118, 119]

Barth syndrome TAZ Frameshift, Missense [120]

Left ventricular noncompaction TBX20 Nonsense [121]

GATA4 Missense [122]

Restrictive cardiomyopathy FLNC Missense [123]

TTN, titin; TNNT2, cardiac troponin T; LMNA, lamin A/C; PLN, phospholamban; DES, desmin; MYH7, beta-myosin heavy chain; PKP2, 
plakophilin 2; DMD, dystrophin; TAZ, tafazzin; TBX20, T-box 20; GATA4, GATA binding protein 4; FLNC, filamin C
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