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Chronic obstructive pulmonary disease (COPD) is a multifactorial and

heterogeneous disease that creates public health challenges worldwide. The

underlying molecular mechanisms of COPD are not entirely clear. In this

study, we aimed to identify the critical genes and potential molecular mech-

anisms of COPD by bioinformatic analysis. The gene expression profiles of

lung tissues of COPD cases and healthy control subjects were obtained

from the Gene Expression Omnibus. Differentially expressed genes were

analyzed by integration with annotations from Gene Ontology and Kyoto

Encyclopedia of Genes and Genomes, followed by construction of a pro-

tein-protein interaction network and weighted gene coexpression analysis.

We identified 139 differentially expressed genes associated with the progres-

sion of COPD, among which 14 Hub genes were identified and found to

be enriched in certain categories, including immune and inflammatory

response, response to lipopolysaccharide and receptor for advanced glyca-

tion end products binding; in addition, these Hub genes are involved in

multiple signaling pathways, particularly hematopoietic cell lineage and

cytokine-cytokine receptor interaction. The 14 Hub genes were positively

or negatively associated with COPD by WGCNA analysis. The genes

CX3CR1, PTGS2, FPR1, FPR2, S100A12, EGR1, CD163, S100A8 and

S100A9 were identified to mediate inflammation and injury of the lung,

and play critical roles in the pathogenesis of COPD. These findings

improve our understanding of the underlying molecular mechanisms of

COPD.
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Chronic obstructive pulmonary disease (COPD),

characterized by long-term poorly reversible airway

limitation and persistent respiratory symptoms, is a

common and preventable disease [1]. COPD is pro-

jected to become the third leading cause of all death

by 2030 in the world [2]. Globally, COPD affected

299.4 million people in 2017, with a 71.2% increase in

the prevalence rate compared with 2015, ranking it as

the fifth leading cause of disability-adjusted life years

(DALYs) and the seventh leading noncommunicable

disease cause of years of life lost (YLLs) [3–6]. As

shown in Fig. 1A, we observed a 12.3% increase in

global all-age deaths caused by COPD from 2.85 mil-

lion in 1990 to 3.20 million in 2017 [6–9] and a pre-

dicted increase of 60% by 2020 compared with 1990.

Figure 1B indicated that the all-age standardized death

rate of COPD in males, females, and both sexes sepa-

rately decreased from 1990 to 2015 [6,8], which could

be because of population growth and aging. Although

the COPD death rate varies with different countries,

more than 90% of COPD deaths occurred in low- and

middle-income countries [10]. The global all-age YLLs

with COPD showed a small increase of 7.5% and

3.6% for both sexes and males, respectively, as well as

a 21% decrease for females from 1990 to 2015

(Fig. 1C) [6,8]. In addition, as shown in Fig. 1D [3–

5,7,11–,14], global all-age DALYs caused by COPD

had a small increase of 4.2% during 1990–2015 and

was projected to decline to 57.6 million by 2020. The

age-standardized DALY rate caused by COPD in

females was about twice as high as that of males, and

that in low- and middle-income countries was 6.7 times

higher than in some high-income countries [3]. We

observed that the global all-age years lived with dis-

ability caused by COPD has grown 52.2% from 1990

to 2017. Taken together, COPD has presented a global

public health challenge with high prevalence, mortality

and disability rates, whereas the diagnosis of COPD is

usually made based on spirometry values and clinical

symptoms with a frequent underdiagnosis [15]. Thus, it

is important to explore the underlying molecular mech-

anisms and identify more effective early diagnostic

methods and reliable biomarkers for this disease.

As a large-scale and efficient technique for acquiring

genomic data, microarray-based gene expression pro-

files have been widely used to seek new insights for

biomarkers in many human diseases [16]. Currently,

many studies have been conducted on COPD gene

expression profiles, and these studies have screened

thousands of differentially expressed genes (DEGs)

implicated in the development and progression of this

disease [17,18]. However, the results for the identifica-

tion of DEGs are discrepant among these studies due

to sample heterogeneity and differences in technologi-

cal detection platforms. In this study, we performed an

integrated analysis on some of the gene expression

profiling data based on lung tissues of COPD cases

and control subjects using an unbiased approach aim-

ing to identify the potential molecular mechanisms and

biomarkers for COPD.

We selected two Gene Expression Omnibus microar-

ray datasets on COPD (GSE27597 and GSE106986).

DEGs were identified by R software (Auckland, New

Zealand) and subsequently analyzed using bioinfor-

matic methods including Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichments and construction of protein-pro-

tein interaction (PPI) and weighted gene coexpression

analysis (WGCNA) networks. We screened the DEGs for

potential association with the development and pro-

gression of COPD. Our work may further the under-

standing of the potential molecular mechanisms of

COPD.

Materials and methods

Gene data

Two gene expression datasets, GSE27597 and GSE106986,

were downloaded from the National Center for Biotechnol-

ogy Information Gene Expression Omnibus database

(https://www.ncbi.nlm.nih.gov/geo/). GSE27597 comprises

the expression profile from 64 lung tissue samples from

COPD cases and 16 samples from healthy donors [19].

GSE106986 includes molecular profiling of 19 lung tissue

samples, containing 14 samples from COPD cases and 5

from smokers [20]. The experiments of GSE27597 and

GSE106986 were conducted on the Affymetrix Human

Exon 1.0 ST GeneChip (Affymetrix, Inc., Santa Clara, CA,

USA; GPL5175 platform) and Agilent-026652 Whole

Human Genome Microarray 4x44K v2 (Agilent Technolo-

gies, Inc., Palo Alto, CA, USA; GPL13497 platform),

respectively.#AuthorQuery Rep
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Table 1. Screening up-regulated and down-regulated DEGs in COPD by integrated microarray

DEGs Gene symbol

Up-regulated (62

genes)

PIEZO2, INHBA, VCAM1, RSPO2, CD1C, HSD17B6, AQP3, APLNR, GPD1, EGR2, KCNA, SLC18A2, FRZB, PTGS2,

OLR1, EDNRA, SHISA2, ELF5, LUM, CYSLTR1, BMP5, HPGDS, MS4A2, DCC, FOSB, HHIP, MSMB, CD200,

AMPD1, ICOS, RTKN2, CD83, FABP4, ISLR, GPR174, SLAMF7, WIF1, CTSW, CHIT1, CPA3, BMP1, EGR3,

CX3CR1, EGR1, TREM2, ATF3, ICAM4, C8B, NR4A3, CCL8, HAS2, C4BPA, ITGB6, HBEGF, AGTR2, SERPIND1,

CEACAM5, SFRP2, SELE, HLA-DRB1, HLA-DRB5, FGG

Down-regulated (77

genes)

IL1R2, CEACAM4, ST6GALNAC3, ITGA10, MERTK, FKBP5, CLEC4E, LAMB1, MGAM, RPS6KA2, FLT1, IRAK3,

SULT1B1, AOX1, SH3PXD2B, RNASE2, IL18R1, CD163, IL1RL1, GRASP, MT1A, S100A12, MMP8, GLT1D1,

TMTC1, S100A8, IL4R, IL18RAP, FLT3, ANPEP, MT1M, SIGLEC10, SPARCL1, SMAP2, TIMP4, ANGPTL1, HIF3A,

PKHD1L1, LILRB3, FPR1, SLED1, LDLRAD3, FAM150B, FPR2, ZBTB16, GCA, ARG1, CXCR2P1, S100A9,

TMEM204, TINAGL1, ABCC8, VCAN, APOLD1, DDIT4, ARRDC2, SERPINA3, PIK3R3, ADM, PNMT, BTNL9,

CRISPLD2, SLCO2A1, VNN2, TUBB1, PSAT1, PPBP, DEFA4, AQP9, TTN, PDK4, MT1L, MT1X, ORM1, CHRM2,

PTX3, EIF1AY

Fig. 1. The global death and burden caused by COPD. (A) Global age-related deaths (millions) caused by COPD in men and women,

respectively, from 1990 to 2020 [6–9]. (B) Global age-related death rates (per 100 000) caused by COPD for both sexes, males and females,

respectively, from 1990 to 2015 [6,8]. (C) Global age-related YLLs (millions) caused by COPD for both sexes, males and female,

respectively, from 1990 to 2015 [6,8]. (D) Global age-related DALYs and years lived with disability (YLD) (millions) by COPD for both sexes

from 1990 to 2020 [3–5,7,11–,14].
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Table 2. Screening 139 DEGs in COPD by integrated microarray. AveExpr, average expression; FDR, false discovery rate

Gene symbol logFC AveExpr t P-value FDR

IL1R2 �3.724170635 4.910345092 �14.57070196 5.24E�25 8.38E�21

CEACAM4 �1.546190038 3.289938835 �14.11578934 3.65E�24 2.92E�20

ST6GALNAC3 �1.509348297 4.115922297 �13.72934365 1.93E�23 1.03E�19

ITGA10 �1.304452408 4.156071544 �13.3424854 1.05E�22 4.18E�19

MERTK �1.371100619 5.743922084 �13.22669655 1.74E�22 4.99E�19

FKBP5 �2.553152066 5.964790869 �13.21010646 1.87E�22 4.99E�19

CLEC4E �2.102592383 3.712865442 �12.2724444 1.22E�20 2.44E�17

LAMB1 �1.236900341 6.51036255 �12.11282186 2.51E�20 4.31E�17

MGAM �1.918275604 3.743487329 �12.0971852 2.69E�20 4.31E�17

RPS6KA2 �1.051171425 6.235125074 �11.99287281 4.32E�20 6.28E�17

FLT1 �1.43735859 5.302047032 �11.6588263 1.98E�19 2.43E�16

IRAK3 �1.440362949 5.407265256 �11.53504535 3.48E�19 3.71E�16

PIEZO2 1.165120322 5.154801689 11.4846069 4.38E�19 4.38E�16

SULT1B1 �1.966128566 3.712292447 �11.44142282 5.34E�19 5.02E�16

AOX1 �1.498003567 4.380016656 �10.80239392 1.02E�17 8.14E�15

SH3PXD2B �1.360072374 4.796109196 �10.45348254 5.15E�17 3.92E�14

RNASE2 �2.214352488 3.502846585 �10.41707921 6.11E�17 4.44E�14

IL18R1 �1.552709013 4.479557525 �10.21566115 1.56E�16 1.04E�13

CD163 �2.353331128 6.483508901 �10.18905044 1.77E�16 1.13E�13

IL1RL1 �2.008254697 5.747865421 �10.06701534 3.13E�16 1.88E�13

INHBA 1.437565757 4.698423572 10.06451042 3.17E�16 1.88E�13

VCAM1 1.58323448 4.54949487 9.975765691 4.80E�16 2.74E�13

GRASP �1.019125221 5.351837423 �9.953904434 5.32E�16 2.93E�13

RSPO2 1.22508185 4.281279622 9.943524241 5.59E�16 2.98E�13

CD1C 1.320908918 4.048138575 9.847836259 8.75E�16 4.51E�13

HSD17B6 1.611303762 5.543589418 9.811225763 1.04E�15 5.03E�13

MT1A �2.003809136 5.341700669 �9.802106469 1.08E�15 5.10E�13

AQP3 1.465444106 6.255672988 9.709215286 1.68E�15 7.66E�13

S100A12 �2.381911789 3.793860618 �9.658062064 2.13E�15 9.26E�13

APLNR 1.462761779 4.060794485 9.514044214 4.19E�15 1.76E�12

GPD1 1.162408188 4.425391991 9.418745073 6.56E�15 2.65E�12

EGR2 1.7756242 5.312493191 9.415498145 6.66E�15 2.65E�12

MMP8 �1.963376342 1.850422771 �9.410996945 6.80E�15 2.65E�12

KCNA3 1.127720579 5.181587794 9.376872801 7.99E�15 2.98E�12

SLC18A2 1.155076678 4.861252305 9.375465524 8.04E�15 2.98E�12

GLT1D1 �1.354253187 4.134707596 �9.333414043 9.80E�15 3.33E�12

TMTC1 �1.221922174 4.907718006 �9.2268097 1.62E�14 5.28E�12

S100A8 �1.984436486 6.732435285 �9.226677546 1.62E�14 5.28E�12

IL4R �1.016737627 6.13438495 �9.220088063 1.67E�14 5.34E�12

IL18RAP �1.20706302 4.403623117 �9.181902429 2.00E�14 6.26E�12

FRZB 1.108947075 4.570621342 9.054280215 3.64E�14 1.08E�11

PTGS2 1.909599543 5.385732252 9.037623232 3.94E�14 1.14E�11

FLT3 �1.068728329 2.955444457 �9.011875495 4.44E�14 1.24E�11

OLR1 1.516024757 5.630156756 9.006280553 4.56E�14 1.24E�11

ANPEP �1.451754311 4.687966342 �9.001861447 4.66E�14 1.24E�11

MT1M �2.585708871 5.454959847 �8.990902454 4.90E�14 1.29E�11

SIGLEC10 �1.464287775 4.29164058 �8.960779525 5.65E�14 1.46E�11

EDNRA 1.016233852 5.691095587 8.939250683 6.25E�14 1.56E�11

SHISA2 1.00660372 5.288052754 8.886393339 8.02E�14 1.94E�11

SPARCL1 �1.096814178 7.567105051 �8.760826399 1.45E�13 3.30E�11

SMAP2 �1.030733342 6.515681918 �8.593715399 3.17E�13 6.73E�11

TIMP4 �1.656076369 4.229601784 �8.456527093 6.04E�13 1.19E�10

ELF5 1.521617319 4.673219557 8.448782695 6.26E�13 1.21E�10

ANGPTL1 �1.111036176 3.340161894 �8.413321275 7.39E�13 1.37E�10

HIF3A �1.065614158 4.526630285 �8.386705336 8.38E�13 1.52E�10
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Table 2. (Continued).

Gene symbol logFC AveExpr t P-value FDR

PKHD1L1 �1.402091953 3.533210448 �8.281317436 1.37E�12 2.29E�10

LUM 1.008125744 6.388824425 8.261829056 1.50E�12 2.45E�10

CYSLTR1 1.017621995 4.334713339 8.231060286 1.74E�12 2.78E�10

LILRB3 �1.182035723 3.930324211 �8.201110624 2.00E�12 3.11E�10

FPR1 �1.497358339 5.123265733 �8.165184027 2.36E�12 3.63E�10

BMP5 1.082572 4.856866963 8.039056504 4.26E�12 6.14E�10

HPGDS 1.178976758 4.9661482 7.971057179 5.85E�12 8.07E�10

SLED1 �1.418643068 4.176703046 �7.93529438 6.92E�12 9.42E�10

MS4A2 1.127545704 4.501069641 7.934255426 6.95E�12 9.42E�10

DCC 1.107054924 4.066396917 7.874112823 9.20E�12 1.21E�9

LDLRAD3 �1.132183539 4.777010972 �7.827670594 1.14E�11 1.42E�9

FAM150B �1.326763929 3.661484534 �7.801467295 1.29E�11 1.57E�9

FOSB 2.16754811 6.605909434 7.722677313 1.86E�11 2.20E�9

FPR2 �1.585779616 4.015151074 �7.702560188 2.04E�11 2.40E�9

ZBTB16 �1.704030574 5.808698383 �7.660799671 2.48E�11 2.87E�9

GCA �1.036962474 4.831056628 �7.646120016 2.65E�11 3.03E�9

HHIP 1.361681455 6.338309941 7.624501498 2.93E�11 3.28E�9

CD200 1.045448111 4.105658515 7.579848564 3.61E�11 3.95E�9

ARG1 �1.363394352 2.024018729 �7.54254425 4.29E�11 4.60E�9

AMPD1 1.043721979 3.103940463 7.443735113 6.77E�11 6.85E�9

ICOS 1.222541378 4.277643563 7.41874473 7.59E�11 7.59E�9

CXCR2P1 �1.15616615 4.439580145 �7.399724607 8.29E�11 8.23E�9

S100A9 �1.545635339 5.747693368 �7.378920244 9.12E�11 9.01E�9

RTKN2 1.696929199 6.166705232 7.344341435 1.07E�10 1.03E�8

TMEM204 �1.048529786 6.26406167 �7.165974961 2.43E�10 2.11E�8

CD83 1.134658456 5.71435664 7.163495775 2.45E�10 2.12E�8

FABP4 1.58545563 4.778254935 7.12319994 2.95E�10 2.51E�8

TINAGL1 �1.026326535 5.532226715 �7.093847539 3.38E�10 2.84E�8

ABCC8 �1.278473261 3.740007718 �7.069781506 3.77E�10 3.09E�8

VCAN �1.162194417 5.676393323 �7.050563618 4.11E�10 3.29E�8

ISLR 1.017944512 5.018753667 7.010420181 4.94E�10 3.80E�8

APOLD1 �1.385170588 5.098238511 �6.976021904 5.78E�10 4.35E�8

DDIT4 �1.34772118 5.257280573 �6.808572358 1.23E�9 8.33E�8

ARRDC2 �1.061269085 5.499220509 �6.762488227 1.52E�9 1.01E�7

GPR174 1.391314128 4.486280437 6.747714106 1.63E�9 1.07E�7

SERPINA3 �1.612709918 5.391772667 �6.745585747 1.64E�9 1.07E�7

PIK3R3 �1.190376757 5.660292101 �6.728449631 1.77E�9 1.14E�7

SLAMF7 1.083604552 4.392800911 6.727219831 1.78E�9 1.14E�7

WIF1 1.237156067 6.258872842 6.708747667 1.94E�9 1.24E�7

ADM �1.075662424 5.196278444 �6.701236397 2.00E�9 1.28E�7

PNMT �1.051631588 4.068574241 �6.553848929 3.88E�9 2.30E�7

CTSW 1.07957302 4.747480058 6.545368949 4.04E�9 2.38E�7

BTNL9 �1.132836349 5.578696855 �6.494296937 5.07E�9 2.82E�7

CHIT1 1.774209888 5.594573377 6.490067624 5.17E�9 2.87E�7

CRISPLD2 �1.078448778 5.7156417 �6.459148182 5.93E�9 3.26E�7

CPA3 1.002710147 5.278769406 6.398904433 7.75E�9 4.12E�7

BMP1 1.049814522 5.450758141 6.3426456 9.95E�9 5.12E�7

SLCO2A1 �1.051736858 6.743524273 �6.312993603 1.13E�8 5.69E�7

VNN2 �1.015536891 4.57616008 �6.274690529 1.34E�8 6.55E�7

TUBB1 �1.110536854 3.804924924 �6.264199999 1.41E�8 6.82E�7

PSAT1 �1.190066031 3.005323949 �6.258737184 1.44E�8 6.94E�7

EGR3 1.186935902 4.097335491 6.248573488 1.51E�8 7.22E�7

CX3CR1 1.284828947 5.212105592 6.144966898 2.38E�8 1.08E�6

EGR1 1.194905541 7.538328018 6.08564001 3.08E�8 1.35E�6

TREM2 1.128703086 3.987081843 6.03163178 3.90E�8 1.67E�6
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Data preprocessing and screening for DEGs

The probe set IDs of two datasets were converted into gene

symbols using the R software and annotation packages.

The two datasets were merged into one array dataset and

then batch normalized using R packages (sva and limma

3.40.6). The DEGs between COPD cases and control sub-

jects were identified using the limma package in R 3.60. A

P-value <0.05 after being adjusted by false discovery rate

and |log2FC > 1, where FC represents fold change, were

applied together as the cutoff for DEGs screening.

GO and KEGG pathway enrichment analysis of

DEGs

GO enrichment of the DEGs on the biological process (BP),

molecular function (MF) and cellular component (CC) cate-

gories was performed using a DAVID online tool (https://da

vid.ncifcrf.gov/) [21,22]. KEGG pathway enrichment analy-

sis was performed by using the KOBAS 3.0 online analysis

database (http://kobas.cbi.pku.edu.cn/) [23].

Construction of the PPI network

STRING database (https://string-db.org/) is frequently

used for identifying the protein interactions [16,24].

STRING database contains huge amounts of experimental

and text mining data [25]. CYTOSCAPE is an open source

bioinformatic software platform used for integrating gene

expression profiles and visualizing molecular interaction

networks. CYTOSCAPE plugin cytoHubba provides multiple

topological analysis methods on Hub genes, regulatory net-

works and drug targets for experimental biologists [26]. In

this study, we used STRING database to identify the inter-

actions between the identified DEGs. A confidence score

>0.4 was used as the cutoff criterion. In addition, Hub

DEGs were identified with CYTOSCAPE version 3.6.1 (1999

Free Software Foundation, Inc., Boston, MA, USA) with

cytoHubba plugin according to the rank of connection

degree (number) for each gene, which is represented by the

different degrees of color (from red to yellow): the role of

the gene is greater in the PPI network with the darker color

of the gene [26].

WGCNA on COPD

WGCNA may be used for screening modules (clusters) of

highly correlated genes and for calculating module mem-

bership (MM) measures, in which the module eigengene

or an intramodular Hub gene is used to summarize such

Table 2. (Continued).

Gene symbol logFC AveExpr t P-value FDR

ATF3 1.034162475 4.884273698 5.696410877 1.65E�7 5.92E�6

PPBP �1.424569764 3.860588827 �5.646955582 2.04E�7 7.16E�6

ICAM4 1.390911425 5.019641081 5.625030952 2.24E�7 7.74E�6

DEFA4 �1.206319405 2.718323142 �5.614366702 2.34E�7 8.06E�6

C8B 1.199289417 3.724442441 5.595043977 2.54E�7 8.65E�6

NR4A3 1.153028606 4.646253713 5.56155394 2.93E�7 9.79E�6

CCL8 1.533954481 3.932933151 5.448623389 4.71E�7 1.48E�5

AQP9 �1.182290805 4.835881555 �5.430616006 5.08E�7 1.56E�5

HAS2 1.525864945 3.562127425 5.306311934 8.51E�7 2.44E�5

TTN �1.043207507 3.817413024 �5.293238479 8.98E�7 2.56E�5

C4BPA 1.055176798 7.356691544 5.268476209 9.95E�7 2.79E�5

ITGB6 1.140444449 6.076736655 5.260091655 1.03E�6 2.86E�5

PDK4 �1.021408815 6.733080202 �5.134267178 1.72E�6 4.47E�5

HBEGF 1.032852155 5.680806271 5.061817586 2.31E�6 5.73E�5

MT1L �1.182918274 2.526143932 �4.990697548 3.08E�6 7.38E�5

MT1X �1.137570423 3.368378253 �4.974584006 3.29E�6 7.77E�5

AGTR2 1.364930071 3.524442993 4.842112874 5.57E�6 0.000119643

ORM1 �1.331793001 2.918107873 �4.800748967 6.56E�6 0.000138298

CHRM2 �1.011281909 2.379732249 �4.689445874 1.01E�5 0.000200001

SERPIND1 1.253485683 3.227485742 4.600275561 1.43E�5 0.000265554

CEACAM5 1.121861431 3.16229753 4.495719542 2.14E�5 0.000368719

SFRP2 1.129656517 4.14961175 4.486856217 2.21E�5 0.000377179

SELE 1.138034748 3.853029685 3.80214458 0.00026654 0.003035211

PTX3 �1.402248844 4.135304651 �3.574413207 0.000577009 0.005747801

HLA-DRB1 2.096264176 4.01015487 3.496867141 0.000745469 0.007027456

HLA-DRB5 2.134896841 3.007061623 3.473802838 0.000803932 0.007481531

EIF1AY �1.506138016 3.020677733 �3.35747922 0.00117078 0.010029593

FGG 1.286056757 4.918716551 2.965432506 0.003905804 0.026040868

MSMB 1.936339164 3.146192242 2.931036227 0.00432076 0.028265267
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modules, and eigengene network methodology is used for

relating modules to one another and to external sample

traits [27]. In this study, the WGCNA package was used to

identify coexpression modules for the merged and stan-

dardized array datasets (GSE27597 and GSE106986). In

brief, first, a weighted adjacency matrix containing pair-

wise connection strengths was constructed based on the

selected soft threshold power (b = 11) on the matrix of

pairwise correlation coefficients. Then, the connectivity

measure per gene was calculated by summing the

connection strengths with other genes; modules were

defined as branches of a hierarchical clustering tree by

using a dissimilarity measure, and each module was

assigned a color. Subsequently, module preservation R

function was used to assess the module structure preser-

vation. Finally, the module eigengene was used for sum-

marizing the gene expression profiles of each module,

and each module eigengene was regressed on case trait

(COPD) and smoking status by using the linear model in

the limma R package.

Fig. 2. Hierarchical clustering heatmap of 139 DEGs screened on the basis of |FC| > 1 and a corrected P < 0.05. Red represents the up-

regulated DEGs, and green represents down-regulated DEGs.
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Results

Identification of DEGs in COPD

After batch normalization on the integrated dataset

from GSE27597 and GSE106986 by the sva and limma

packages, 139 DEGs were identified using the limma

package (corrected P < 0.05; |log2FC| > 1) (Tables 1

and 2). The cluster heatmap of the top 139 DEGs is

shown in Fig. 2. Among them, 62 genes were up-regu-

lated and 77 genes were down-regulated, which is

shown in Fig. 3.

GO enrichment analysis of DEGs

GO analysis was done on the DEGs against BP, MF

and CC terms. Biological annotation of the DEGs

with COPD was identified using the DAVID online anal-

ysis tool. As shown in Fig. 4, GO functional enrich-

ments of the DEGs with a P-value <0.05 were

obtained. Significant results of the GO enrichment

analysis of the DEGs associated with COPD were

shown in Table 3. In the BP category, the DEGs were

mainly involved in inflammatory response, immune

response and response to lipopolysaccharide. In the

MF category, the DEGs were mainly enriched in

receptor activity and receptor for advanced glycation

end products (RAGE) receptor binding. In the CC cat-

egory, the DEGs were mainly involved in the extracel-

lular region and space, the integral component of the

plasma membrane, the plasma membrane and the

external side of the plasma membrane (Fig. 5).

KEGG pathway analysis of DEGs

We analyzed the DEGs using the KOBAS 3.0 online

analysis database. As shown in Table 4, the DEGs

were enriched in 48 pathways, especially hematopoietic

cell lineage and cytokine-cytokine receptor interaction.

The genes and pathway nodes are represented by CY-

TOSCAPE version 3.6.1 software (1999 Free Software

Foundation, Inc., Boston, MA, USA) that was used to

calculate the topological characteristics of the network

and determine each node (Fig. 6).

PPI network analysis of DEGs

The 139 DEGs were applied for construction of PPI net-

works using STRING. After removing the discrete and

partially connected nodes, the PPI network data of

Fig. 3. Volcano plots of differential gene expression data between

two sets of samples. Red represents the up-regulated DEGs, and

green represents down-regulated DEGs. adj.,P.Val, adjusted P-

value.

Fig. 4. GO enrichment analysis of DEGs in COPD. GO analysis divided DEGs into three functional groups: BPs, cell composition and MF.

Green represents BP category, blue represents cell composition category and red represents MF category.
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Table 3. GO analysis of DEGs associated with COPD

Term ID Category Description Count P-value Bonferroni

GO:0006954 BP Inflammatory response 18 9.11E�9 0.0000088

GO:0006955 BP Immune response 18 4.26E�8 0.0000412

GO:0032496 BP Response to lipopolysaccharide 9 0.0000513 0.04832

GO:0002523 BP Leukocyte migration involved in inflammatory response 4 0.0000782 0.072795

GO:0007155 BP Cell adhesion 14 0.0000787 0.073195

GO:0002576 BP Platelet degranulation 7 0.000175 0.155654

GO:0030198 BP Extracellular matrix organization 9 0.000178 0.157584

GO:0050729 BP Positive regulation of inflammatory response 6 0.000292 0.245789

GO:0006935 BP Chemotaxis 7 0.000438 0.344834

GO:0071294 BP Cellular response to zinc ion 4 0.000438 0.345355

GO:0045926 BP Negative regulation of growth 4 0.000438 0.345355

GO:0045600 BP Positive regulation of fat cell differentiation 5 0.00053 0.400817

GO:0050832 BP Defense response to fungus 4 0.001263 0.705093

GO:0060326 BP Cell chemotaxis 5 0.001801 0.824787

GO:0030593 BP Neutrophil chemotaxis 5 0.001906 0.841641

GO:0010043 BP Response to zinc ion 4 0.002927 0.941058

GO:0001501 BP Skeletal system development 6 0.004843 0.990808

GO:0007165 BP Signal transduction 19 0.00503 0.992337

GO:0002437 BP Inflammatory response to antigenic stimulus 3 0.0062 0.997541

GO:0030178 BP Negative regulation of Wnt signaling pathway 4 0.008258 0.999668

GO:0007263 BP Nitric oxide-mediated signal transduction 3 0.009889 0.999932

GO:0071356 BP Cellular response to tumor necrosis factor 5 0.011676 0.999988

GO:0001666 BP Response to hypoxia 6 0.012312 0.999994

GO:0050776 BP Regulation of immune response 6 0.014105 0.999999

GO:0035924 BP Cellular response to vascular endothelial growth factor stimulus 3 0.014331 0.999999

GO:0002035 BP Brain renin-angiotensin system 2 0.015897 1

GO:0070488 BP Neutrophil aggregation 2 0.015897 1

GO:0006952 BP Defense response 4 0.016421 1

GO:0032868 BP Response to insulin 4 0.016421 1

GO:0050900 BP Leukocyte migration 5 0.016519 1

GO:0001816 BP Cytokine production 3 0.016818 1

GO:0035987 BP Endodermal cell differentiation 3 0.019474 1

GO:0042476 BP Odontogenesis 3 0.019474 1

GO:0032689 BP Negative regulation of interferon-gamma production 3 0.020864 1

GO:0010033 BP Response to organic substance 3 0.020864 1

GO:0071549 BP Cellular response to dexamethasone stimulus 3 0.022294 1

GO:0007204 BP Positive regulation of cytosolic calcium ion concentration 5 0.022427 1

GO:1900625 BP Positive regulation of monocyte aggregation 2 0.023751 1

GO:2001179 BP Regulation of interleukin-10 secretion 2 0.023751 1

GO:0032602 BP Chemokine production 2 0.023751 1

GO:0070295 BP Renal water absorption 2 0.023751 1

GO:1902042 BP Negative regulation of extrinsic apoptotic signaling pathway via

death domain receptors

3 0.0284 1

GO:0042742 BP Defense response to bacterium 5 0.028971 1

GO:0030307 BP Positive regulation of cell growth 4 0.029638 1

GO:0002793 BP Positive regulation of peptide secretion 2 0.031543 1

GO:0032673 BP Regulation of interleukin-4 production 2 0.031543 1

GO:0032119 BP Sequestering of zinc ion 2 0.031543 1

GO:0072593 BP Reactive oxygen species metabolic process 3 0.031676 1

GO:0018108 BP Peptidyl-tyrosine phosphorylation 5 0.034254 1

GO:0045786 BP Negative regulation of cell cycle 3 0.035093 1

GO:0042493 BP Response to drug 7 0.03518 1

GO:0007160 BP Cell-matrix adhesion 4 0.035316 1

GO:0006953 BP Acute-phase response 3 0.038646 1

GO:0002381 BP Immunoglobulin production involved in immunoglobulin-mediated

immune response

2 0.039273 1
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DEGs were imported into the cytoHubba of CYTOSCAPE

version 3.6.1, and a complex network of the DEGs was

constructed. As shown in Figs 7 and 8, 14 Hub DEGs

were obtained, including C-X3-C motif chemokine recep-

tor 1 (CX3CR1), proplatelet basic protein (PPBP), pros-

taglandin-endoperoxide synthase 2 (PTGS2), formyl

peptide receptor 1 (FPR1), formyl peptide receptor 2

(FPR2), vascular cell adhesion molecule 1 (VCAM1),

S100 calcium binding protein A12 (S100A12), arginase 1

(ARG1), early growth response 1 (EGR1), CD163, fib-

rinogen gamma chain (FGG), orosomucoid 1 (ORM1),

S100 calcium binding protein A8 (S100A8) and S100 cal-

cium binding protein A9 (S100A9).

WGCNA network construction in lung tissues

A WGCNA network was first constructed using lung

tissue expression data from cohorts GSE27597 and

GSE106986, independent of COPD status and

smoking status (ever/current smoking versus non-

smoking). A total of 2942 DEGs were selected (a

corrected P < 0.05) and subsequently used to iden-

tify modules of coexpressed genes using a hierarchi-

cal clustering procedure. The corresponding

branches of the resulting dynamic clustering tree

and module are shown as colored bands under-

neath the cluster tree. We then merged the highly

similar dynamic clustering modules into the merged

dynamic modules (cut height = 0.25) (Fig. 9). We

identified nine modules ranging in size from 113

genes in the Purple module to 1081 in the Grey

module. A module eigengene, a weighted average

of the module gene expression profiles, was used to

summarize the expression profiles of transcripts in

a given module through their first principal compo-

nent.

Table 3. (Continued).

Term ID Category Description Count P-value Bonferroni

GO:0008285 BP Negative regulation of cell proliferation 8 0.039604 1

GO:0043408 BP Regulation of mitogen-activated protein kinase cascade 3 0.042329 1

GO:0002548 BP Monocyte chemotaxis 3 0.044219 1

GO:0045429 BP Positive regulation of nitric oxide biosynthetic process 3 0.046139 1

GO:0010042 BP Response to manganese ion 2 0.046942 1

GO:0038084 BP Vascular endothelial growth factor signaling pathway 2 0.046942 1

GO:0005576 CC Extracellular region 44 2.35E�14 3.22E�12

GO:0005615 CC Extracellular space 40 4.29E�14 5.89E�12

GO:0005887 CC Integral component of plasma membrane 32 2.71E�8 0.00000371

GO:0005886 CC Plasma membrane 56 0.00000132 0.000181

GO:0009897 CC External side of plasma membrane 10 0.0000284 0.003882

GO:0031093 CC Platelet alpha-granule lumen 5 0.000713 0.093083

GO:0005578 CC Proteinaceous extracellular matrix 8 0.003704 0.398509

GO:0070062 CC Extracellular exosome 32 0.011945 0.807247

GO:0030666 CC Endocytic vesicle membrane 4 0.012698 0.826358

GO:0031012 CC Extracellular matrix 7 0.02228 0.954358

GO:0030669 CC Clathrin-coated endocytic vesicle membrane 3 0.03651 0.993875

GO:0048471 CC Perinuclear region of cytoplasm 10 0.039931 0.996238

GO:0004872 MF Receptor activity 10 0.0000321 0.009231

GO:0050786 MF RAGE receptor binding 4 0.0000611 0.017515

GO:0004908 MF Interleukin-1 receptor activity 3 0.001097 0.271869

GO:0005201 MF Extracellular matrix structural constituent 4 0.013171 0.97833

GO:0017147 MF Wnt protein binding 3 0.02166 0.998215

GO:0004896 MF Cytokine receptor activity 3 0.028658 0.999776

GO:0035662 MF Toll-like receptor 4 binding 2 0.029063 0.999801

GO:0004982 MF N-formyl peptide receptor activity 2 0.029063 0.999801

GO:0008201 MF Heparin binding 5 0.030385 0.999866

GO:0008083 MF Growth factor activity 5 0.031597 0.999907

GO:0004714 MF Transmembrane receptor protein tyrosine kinase activity 3 0.031677 0.999909

GO:0050544 MF Arachidonic acid binding 2 0.036196 0.999976

GO:0005160 MF Transforming growth factor-beta receptor binding 3 0.03807 0.999987

GO:0005178 MF Integrin binding 4 0.042233 0.999996

GO:0042803 MF Protein homodimerization activity 11 0.042565 0.999997

GO:0004875 MF Complement receptor activity 2 0.043278 0.999997
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Coexpression modules associated with COPD

To pinpoint modules associated with COPD and

smoking status, we analyzed the association of each of

the nine module eigengenes with the two traits. As

shown in Fig. 10 and Table 5, all nine modules were

significantly correlated with COPD and smoking sta-

tus. Four modules were negatively associated with

COPD and smoking status, marked Tan, Brown, Blue

and Cyan, indicating that genes in these modules were

predominantly down-regulated in COPD cases and

those who had a history of smoking. However, five

modules, in Green yellow, Purple, Black, Red and

Grey, were positively associated with COPD cases and

smoking status, showing that genes in these modules

are predominantly up-regulated with the traits.

Four of these nine gene modules, in Cyan, Purple,

Red and Grey, attracted our attention in that 14 Hub

genes were identified as DEGs from the PPI analysis,

including CX3CR1, PPBP, PTGS2, FPR1, FPR2,

S100A12, ARG1, EGR1, CD163, VCAM1, FGG,

ORM1, S100A8 and S100A9. We calculated gene sig-

nificance (GS) versus each MM. We found that the 14

Hub genes were also either positively or negatively

associated with COPD (Table 6). CX3CR1, PPBP,

PTGS2, VCAM1, S100A12, ARG1, EGR1, CD163,

S100A8 and S100A9 were significantly associated with

each MM, whereas FPR1, FPR2 and ORM1 were cor-

related with each MM except Red MM, and FGG was

correlated to each MM except the Purple MM. In

addition, we found that the Purple (CX3CR1), Red

(EGR1, VCAM1 and PTGS2) and Grey (ARG1, FGG,

and PPBP) genes most significantly correlated with

GS for COPD were also the important MM elements

(Fig. 11).

Discussion

In this study, we performed an integrated analysis on

the gene expression profiles from lung tissues with or

without COPD, aiming to identify the DEGs and

related key signaling pathways for the disease. We

identified 139 DEGs, including 62 up-regulated genes

and 77 down-regulated genes. In addition, GO analysis

showed that the 139 DEGs associated with COPD

were involved in 60 BPs, 16 MFs and 12 CCs. Among

these categories, the most important BPs included

inflammatory response, immune response and response

to lipopolysaccharide; the most important MFs

included receptor activity and RAGE receptor binding;

and the most important CCs included extracellular

region and space, integral component of plasma mem-

brane, plasma membrane and external side of plasma

Fig. 5. Distribution of DEGs in COPD for the most significant GO-enriched functions.
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Table 4. KEGG pathway analysis of DEGs associated with COPD

ID Pathway Gene count Corrected P-value DEGs

hsa04640 Hematopoietic cell lineage 7 4.07E�6 FLT3, IL4R, HLA-DRB1, HLA-DRB5,

IL1R2, CD1C, ANPEP

hsa04060 Cytokine-cytokine receptor interaction 10 4.07E�6 FLT3, FLT1, CCL8, IL4R, INHBA, CX3CR1,

IL1R2, IL18RAP, PPBP, IL18R1

hsa05150 Staphylococcus aureus infection 5 0.000147 HLA-DRB1, FPR2, FGG, FPR1, HLA-DRB5

hsa05166 Human T-lymphotropic virus type 1 infection 8 0.000174 PIK3R3, HLA-DRB1, ATF3, HLA-DRB5,

VCAM1, IL1R2, EGR2, EGR1

hsa05321 Inflammatory bowel disease 5 0.000174 HLA-DRB1, IL18RAP, IL4R, HLA-DRB5,

IL18R1

hsa04514 Cell adhesion molecules 6 0.000456 SELE, HLA-DRB1, ICOS, HLA-DRB5,

VCAM1, VCAN

hsa04151 Phosphoinositide 3-kinase-Akt signaling

pathway

8 0.000732 CHRM2, PIK3R3, ITGA10, IL4R, LAMB1,

DDIT4, ITGB6, FLT1

hsa05146 Amoebiasis 5 0.000732 C8B, PIK3R3, ARG1, LAMB1, IL1R2

hsa04668 Tumor necrosis factor signaling pathway 5 0.001006 VCAM1, PIK3R3, SELE, PTGS2, IL18R1

hsa04080 Neuroactive ligand-receptor interaction 7 0.00112 CHRM2, FPR2, AGTR2, APLNR, EDNRA,

CYSLTR1, FPR1

hsa05200 Pathways in cancer 8 0.001401 DCC, FLT3, ZBTB16, LAMB1, PIK3R3,

HHIP, PTGS2, EDNRA

hsa04614 Renin-angiotensin system 3 0.00144 CPA3, AGTR2, ANPEP

hsa04610 Complement and coagulation cascades 4 0.002727 FGG, C8B, C4BPA, SERPIND1

hsa05310 Asthma 3 0.003037 HLA-DRB1, HLA-DRB5, MS4A2

hsa00750 Vitamin B6 metabolism 2 0.003805 PSAT1, AOX1

hsa05202 Transcriptional misregulation in cancer 5 0.005115 FLT3, ZBTB16, FLT1, NR4A3, IL1R2

hsa04933 AGE-RAGE signaling pathway in diabetic

complications

4 0.005115 VCAM1, PIK3R3, SELE, EGR1

hsa04510 Focal adhesion 5 0.007653 PIK3R3, ITGA10, ITGB6, LAMB1, FLT1

hsa04672 Intestinal immune network for IgA production 3 0.007653 HLA-DRB1, ICOS, HLA-DRB5

hsa05145 Toxoplasmosis 4 0.007715 HLA-DRB1, PIK3R3, LAMB1, HLA-DRB5

hsa04978 Mineral absorption 3 0.007715 MT1X, MT1A, MT1M

hsa04923 Regulation of lipolysis in adipocytes 3 0.009035 PIK3R3, PTGS2, FABP4

hsa05221 Acute myeloid leukemia 3 0.009074 FLT3, ZBTB16, PIK3R3

hsa04380 Osteoclast differentiation 4 0.009515 LILRB3, PIK3R3, FOSB, TREM2

hsa01100 Metabolic pathways 12 0.00997 PSAT1, HPGDS, ARG1, ST6GALNAC3,

AOX1, PNMT, HSD17B6, AMPD1,

PTGS2, CHIT1, MGAM, ANPEP

hsa04145 Phagosome 4 0.015537 HLA-DRB1, TUBB1, HLA-DRB5, OLR1

hsa05140 Leishmaniasis 3 0.015831 HLA-DRB1, PTGS2, HLA-DRB5

hsa04512 Extracellular matrix-receptor interaction 3 0.02016 ITGA10, ITGB6, LAMB1

hsa05410 Hypertrophic cardiomyopathy 3 0.02016 TTN, ITGA10, ITGB6

hsa05222 Small-cell lung cancer 3 0.021463 PIK3R3, PTGS2, LAMB1

hsa05414 Dilated cardiomyopathy 3 0.023455 TTN, ITGA10, ITGB6

hsa05323 Rheumatoid arthritis 3 0.023455 HLA-DRB1, FLT1, HLA-DRB5

hsa04062 Chemokine signaling pathway 4 0.023572 CX3CR1, PIK3R3, CCL8, PPBP

hsa04915 Estrogen signaling pathway 3 0.027527 FKBP5, PIK3R3, HBEGF

hsa04024 cAMP signaling pathway 4 0.027527 CHRM2, PIK3R3, HHIP, EDNRA

hsa04810 Regulation of actin cytoskeleton 4 0.032602 CHRM2, PIK3R3, ITGA10, ITGB6

hsa00350 Tyrosine metabolism 2 0.032602 AOX1, PNMT

hsa05020 Prion diseases 2 0.032602 C8B, EGR1

hsa05143 African trypanosomiasis 2 0.032602 VCAM1, SELE

hsa05330 Allograft rejection 2 0.038438 HLA-DRB1, HLA-DRB5

hsa04722 Neurotrophin signaling pathway 3 0.038438 IRAK3, PIK3R3, RPS6KA2

hsa05332 Graft-versus-host disease 2 0.042328 HLA-DRB1, HLA-DRB5

hsa04940 Type I diabetes mellitus 2 0.04503 HLA-DRB1, HLA-DRB5

hsa04973 Carbohydrate digestion and absorption 2 0.047746 MGAM, PIK3R3
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Table 4. (Continued).

ID Pathway Gene count Corrected P-value DEGs

hsa05322 Systemic lupus erythematosus 3 0.048708 HLA-DRB1, C8B, HLA-DRB5

hsa04930 Type II diabetes mellitus 2 0.049139 ABCC8, PIK3R3

hsa05144 Malaria 2 0.049139 VCAM1, SELE

hsa05030 Cocaine addiction 2 0.049139 SLC18A2, FOSB

Fig. 6. The significant KEGG pathways

enrichment of DEGs. Green represents

down-regulated DEGs, blue represents up-

regulated DEGs and red represents the

signaling pathway.

Fig. 7. PPI network and Hub DEGs. Hub

DEGs were identified with CYTOSCAPE

version 3.6.1 with cytoHubba plugin,

according to the rank of connection

degree (number) for each gene, which is

represented by the different degrees of

color (from red to yellow): the role of the

gene is greater in the PPI network with

the darker color of the gene. Red, saffron

yellow and yellow represent Hub DEGs.
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membrane. This finding accords with the knowledge

that COPD is characterized by chronic inflammation

in the lung and airways [28,29]; immune response

mediates the development of COPD caused by the

harmful stimuli [30–32]; lipopolysaccharide may lead

to increased airway and systemic inflammation, and

contribute to the progressive deterioration of lung

function [33,34]; and RAGE is a ‘driving force’ for

cigarette smoke (CS)-induced airway inflammation in

COPD [35].

KEGG pathway analysis indicated that 48 pathways

corresponded to these DEGs associated with COPD.

Two pathways including hematopoietic cell lineage

and cytokine-cytokine receptor interaction were most

important. This finding is in line with the results from

previous studies [18,32].

The PPI network of proteins encoded by DEGs iden-

tified 14 Hub DEGs associated with COPD, including

CX3CR1, PPBP, PTGS2, FPR1, FPR2, VCAM1,

S100A12, ARG1, EGR1, CD163, FGG, ORM1, S100A8

and S100A9. All of these Hub genes were involved in

the most important two BPs, two MFs or five CCs

revealed by GO analysis, and were mainly implicated in

multiple pathways identified by KEGG analysis in this

study. Those results indicate that these Hub DEGs are

involved in the development and progression of COPD

by playing important biological roles in multiple signal-

ing pathways.

Using WGCNA on the merged expression profile from

two cohorts of lung tissues with COPD and healthy con-

trols, we identified a set of gene signatures based on the

14 Hub genes. The increased expression of CX3CR1,

FGG, EGR1, VCAM1 and PTGS2 is positively associ-

ated with COPD, and the underexpression of PPBP,

FPR1, FPR2, S100A12, ARG1, CD163, ORM1, S100A8

and S100A9 is negatively associated with COPD.

CX3CR1 plays an important role in the development

of chronic inflammatory lung diseases, such as COPD

and emphysema, by contributing to structural destruc-

tion and remodeling. Chemoattractant inflammatory

cells releasing CX3CR1, such as CD8�/CD4, dendritic

cells, cd T lymphocytes, natural killer cells and mono-

cytes/macrophages, may lead to mononuclear cell

Fig. 8. PPI network identified Hub DEGs. Numbers represent

connection points of the 14 Hub genes identified by the cytoHubba

plugin.

Fig. 9. Network construction identifies

distinct modules of coexpressed genes.

The network was constructed using the

lung tissue expression dataset of

GSE27597 and GSE106986. The cluster

dendrogram was produced by average

linkage hierarchical clustering of genes

using 1 � topological overlap as

dissimilarity measure. Modules (Dynamic

Tree Cut) and similarly merged modules

(Merged dynamic) of coexpressed genes

were assigned colors corresponding to the

branches indicated by the horizontal bar

beneath the dendrogram (merged cut

height = 0.25).
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accumulation in the parenchyma and lung vessel walls,

release mediators to induce injury, stimulate prolifera-

tion and chemoattractant inflammatory cells [36]. In

addition, CX3CR1+ mononuclear phagocytes may

induce an innate immune response to CS via producing

interleukin-6 and tumor necrosis factor-a, and con-

tribute to emphysema [37].

PTGS2 (COX-2), an important mediator of inflam-

mation, was shown to be involved in inflammation

response and associated with COPD pathogenesis [38–

41]. The decreased activity of PTGS2 may protect

smokers against the development of COPD [40]. Fur-

thermore, FPR1 and FPR2 were reported to be

involved in recruitment and activation of inflammatory

Fig. 10. WGCNA heatmap. Using the default

parameter setting and all DEGs

(n = 2942), we identified nine gene

modules using WGCNA that were positively

or negatively associated with COPD and

smoking trait. Each row corresponds to a

module eigengene and each column to a

clinical trait (COPD and smoking status).

Positive associations are red, and negative

associations are green. HCS, history of

smoking.

Table 5. Correlation of module eigengene with COPD and smoking status traits

WGCNA modules Gene number

Merged COPD dataset Smoking status

Correlation P-value Correlation P-value

Tan 353 �0.69 8E�13 �0.33 0.002

Brown 244 �0.5 2E�6 �0.36 9E�4

Blue 202 �0.54 1E�7 �0.58 9E�9

Cyan 467 �0.61 1E�9 �0.51 1E�6

Green yellow 105 0.58 9E�9 0.43 5E�5

Purple 113 0.57 2E�8 0.48 5E�6

Black 256 0.63 2E�10 0.51 9E�7

Red 121 0.63 2E�10 0.38 4E�4

Grey 1081 0.82 3E�21 0.67 4E�12

Table 6. Fourteen Hub genes positively or negatively associated with COPD and each MM. P, P-value for COPD or each MM

Gene Located module GS.COPD P GS.COPD P.MM Cyan P.MM Grey P.MM Purple P.MM Red

CD163 Cyan �0.739974023 1.33E�15 4.23E�21 8.88E�10 0.00249 2.57E�5

FPR1 Cyan �0.662223538 9.25E�12 7.92E�23 5.84E�7 6.61E�5 0.07339

FPR2 Cyan �0.63983063 7.43E�11 1.37E�21 4.51E�7 6.73E�5 0.07508

ORM1 Cyan �0.459721444 1.23E�5 3.81E�20 0.00014 0.00196 0.70155

S100A12 Cyan �0.721577872 1.41E�14 1.50E�14 2.82E�7 4.13E�5 0.00278

S100A8 Cyan �0.70598989 9.04E�14 6.83E�18 4.01E�7 0.00026 0.01347

S100A9 Cyan �0.623468037 3.07E�10 7.84E�20 4.68E�6 0.00049 0.04290

ARG1 Grey �0.632480057 1.42E�10 0.02374 2.47E�10 0.00054 2.19E�9

FGG Grey 0.304097261 0.00519 0.00646 0.005969 0.2425 3.39E�8

PPBP Grey �0.520314885 4.61E�7 5.44E�6 0.001842 0.0388 0.01072

CX3CR1 Purple 0.553212675 5.84E�8 0.00133 9.38E�10 1.81E�13 4.46E�5

EGR1 Red 0.549754835 7.33E�8 0.00127 2.09E�6 0.03903 1.80E�14

PTGS2 Red 0.698684808 2.07E�13 0.00341 2.42E�11 4.99E�5 1.10E�28

VCAM1 Red 0.7344482490 2.75E�15 0.00947 2.66E�12 5.70E�13 3.14E�16
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cells induced by CS, and play important roles in lung

inflammation, injury and the pathogenesis of COPD

[42–45].

S100A8, S100A9, and S100A12 might induce neu-

trophil and monocyte chemotaxis, adhesion to fibrino-

gen and diapedesis, and neutrophil migration to

inflammatory sites [46,47], and have been identified as

key biomarkers in inflammatory diseases including

COPD and neutrophil-dominated infections [35,48,49].

The mRNA levels of S100A8, S100A9 and S100A12

may be regulated by RAGE, which was shown to con-

tribute to CS-induced airway inflammation in COPD

[35]. This is consistent with our result in this study

that the RAGE pathway including S100A8, S100A9

and S100A12 is important in the development of

COPD.

Fig. 11. COPD absolute GS versus MM. WGCNA calculation of GS to COPD versus MM. In oversimplified terms, MM is a measure of how

‘tight’ genes cluster within the module, or mathematically, how close gene expression is to the module eigenvalue. A gene with high MM

and GS identifies Hub genes that are both key components to the underlying BP and highly associated with the trait of interest. The GS for

COPD was plotted. (A) Cyan represents MM. (B) Grey represents MM. (C) Purple represents MM. (D) Red represents MM.
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EGR1 is an autophagy regulator gene that plays

important roles in cellular homeostasis, airway remod-

eling and control of inflammatory immune response; it

is also a significant risk factor for susceptibility to

COPD [50–52]. EGR1 may be induced by CS and

involved in proinflammatory mechanisms that are

likely associated with the development of COPD [51],

whereas Egr-1�/� mice were observed to resist CS-in-

duced autophagy, apoptosis and emphysema [53].

These findings exhibit a critical role for EGR1 in CS-

induced inflammatory immune response and COPD,

and effective inhibition of EGR1 may attenuate airway

remodeling and inflammation associated with the

pathology of COPD.

CD163, a carefully regulated component of the

innate immune response to infection and a macro-

phage receptor for bacteria, was shown to play impor-

tant roles in functional pulmonary defense elements

and the inflammatory immune response of the respira-

tory system [54,55]. Overexpression of CD163 on lung

alveolar macrophages may be implicated in the patho-

genesis of COPD and poor lung function [56].

ARG1 was shown to contribute to asthma pathogen-

esis by inhibiting nitric oxide production, modulating

fibrosis, regulating arginine metabolism and inhibiting

T cell proliferation, and it involves the initiation of

adaptive T helper 2 cell-mediated allergic lung inflam-

mation by regulating group 2 innate lymphoid cells

[57–60], whereas ARG1 ablation in the lung may

enhance peripheral lung function but have little effect

on airway inflammation [61]. The role of ARG1 in

COPD needs to be studied in the future.

ORM1 appears to function in regulating the activity

of the immune system during the acute-phase reaction

and has been identified as an acute exacerbation of

COPD-specific immunomodulatory mediator [62].

PPBP serves as a potent neutrophil chemoattractant

and activator, and its elevated expression in the bron-

chial mucosa might be involved in the pathogenesis of

COPD [63,64]. In addition, VCAM1 was shown to

express in endothelial cells of atopic asthma cases, but

not COPD cases [65], and present an association with

lung function [66]. FGG was found to be involved in

blast lung injury resistance via promoting tissue-pro-

tective adenosine signaling [67]. In the lung tissues of

COPD cases, its mRNA expression was reported to

correlate with the burden of particulate matter in total

lung and lung parenchyma [68].

In conclusion, we have identified 139 candidate

DEGs associated with the progression of COPD. The

results from bioinformatic analysis are in agreement

with those from previous cell and animal models and

human studies. Our results showed that nine Hub

genes, CX3CR1, PTGS2, FPR1, FPR2, S100A12,

EGR1, CD163, S100A8 and S100A9, potentially medi-

ated inflammation and injury of the lung, and play

critical roles in the pathogenesis of COPD. The roles

of five Hub genes, including PPBP, ARG1, FGG,

VCAM1 and ORM1, identified to be associated with

COPD in this study need to be confirmed in the

future. These findings could improve our understand-

ing of the underlying molecular mechanisms of COPD

and provide us with insights for drug target discovery

for the disease.
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