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Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males
and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products
demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into
distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include
the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis
proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination
landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of
meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of
both the chromosome axis and crossing over for each stage of meiotic prophase I inMus musculus, Caenorhabditis elegans, and
Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic
landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over
may be different in oogenesis and spermatogenesis.
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Sexually reproducing organisms pass on genetic information
to the next generation through the production of haploid gam-
etes, such as sperm and eggs. Sperm and egg development
initiates with the formation of primordial germ cells during
embryogenesis (reviewed in Spiller et al. 2017). Proliferation
and expansion of these germ cells create a pool of germline
stem cells. The germline stem cells divide asymmetrically to
generate either more stem cells or differentiated germ cells.
Differentiated germ cells transition from mitosis to meiosis
and sexually differentiate to develop into either eggs or sperm
(Table 1).

Meiosis produces gametes, such as sperm and eggs, with
exactly half the number of chromosomes as the original parent

germ cell. To ensure a successful meiosis in most organisms,
there are three events that must occur: (1) homologous chro-
mosomes must pair; (2) homologous chromosomes must re-
pair double-strand DNA breaks (DSBs) to form crossovers,
which forge a physical connection between the chromosomes;
and (3) homologous chromosomes must undergo two succes-
sive segregation events. A crossover allows for accurate seg-
regation of the homologs during meiosis I. Thus, all the pre-
ceding steps to the formation of a crossover are highly regulat-
ed to guarantee that at least one crossover is formed between
each pair of homologous chromosomes. As part of the cross-
over regulation process, crossovers undergo a Bdesignation^ to
limit the number of DSB sites licensed to mature into cross-
overs (Yokoo et al. 2012). When errors occur during meiosis,
the resulting gametes are frequently aneuploid, with either too
many or too few chromosomes. In humans, meiotic errors are
the leading causes of miscarriages and birth defects (reviewed
in Nagaoka et al. 2012).

Both oogenesis and spermatogenesis produce a haploid
gamete containing a complete complement of heritable genet-
ic information. However, a growing body of evidence indi-
cates that meiotic mechanisms differ between oogenesis and
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spermatogenesis. One of the largest mechanistic differences
between oogenesis and spermatogenesis is the developmental
timing and duration of when each process is occurring
(Tables 1 and 2). In mammals, oogenesis occurs during fetal
development in utero, with oocytes eventually arresting and
maintained in late prophase I for decades. A majority of the
defects that occur in human oocytes happen during this
lengthy arrested stage with older oocytes having a higher
chance of being aneuploid due to issues such as protein deg-
radation (reviewed in Nagaoka et al. 2012).

In contrast to oogenesis, spermatogenesis in mammals oc-
curs throughout the lifespan of the organism (Tables 1 and 2).
While the quantity of sperm produced does decrease with
time, no single sperm is stored for decades as is found with
oocytes (Morelli and Cohen 2005). Notably, in organisms
where both spermatogenesis and oogenesis occur at similar
developmental time periods (e.g., throughout the lifespan of
the adult organism; Table 2), the process of spermatogenesis is
executed faster than that of oogenesis. In Caenorhabditis
elegans, while meiotic prophase I of spermatogenesis is com-
pleted in 20–24 h in the adult male, meiotic prophase I of
oogenesis requires 54–60 h to complete in the adult hermaph-
rodite (Jaramillo-Lambert et al. 2007). Similarly, in
Drosophila, spermatogenesis occurs in ~ 5 days, but oogenesis
takes ~ 12 days, with six of these days being spent in early to
mid-pachytene (Gyuricza et al. 2016; Lindsley and Tokuyasu
1980).

Another large difference between spermatogenesis and oo-
genesis is the strength of the checkpoint monitoring for errors
in both DNA damage and chromosome segregation. It has
been well established that during oogenesis the response of
checkpoints to errors is very poor, whereas the checkpoints
during spermatogenesis are so robust that errors are extremely
rare (Morelli and Cohen 2005). Numerous studies have inves-
tigated the differences between the checkpoint responses in
spermatogenesis and oogenesis and these findings have been
extensively reviewed in Morelli and Cohen 2005.

Additionally, the end products of oogenesis and spermato-
genesis are very different: egg and sperm, respectively. During
oogenesis, the chromosomes undergo an asymmetrical divi-
sion with half the genome being segregated into polar bodies
producing only a single viable gamete, which is the largest cell
type in humans. In contrast, spermatogenesis undergoes sym-
metrical divisions duringmeiosis making four viable gametes,
which is the smallest cell type in humans. Additionally, recent
evidence suggests that the large size of the oocyte may con-
tribute to the high frequency of chromosome missegregation
(Kyogoku and Kitajima 2017). Thus, multiple factors may be
contributing to the error-prone nature of oocytes in humans.

While both oogenesis and spermatogenesis need to under-
go all the steps of meiotic prophase I, the mechanisms of how
homologous chromosomes pair, synapse, and recombine ap-
pear to be different for each process. In this review, we discuss
the differences between oogenesis and spermatogenesis at
each stage of meiotic prophase I: leptotene, zygotene, pachy-
tene, diplotene, and diakinesis. Specifically, we focus on the
sex-specific differences in the establishment and formation of
the chromosome architecture and position and distribution of
crossovers in three model organisms where these sexually
dimorphic features are most well characterized: Mus
musculus, Caenorhabditis elegans, and Arabidopsis thaliana
(Tables 2 and 3).

Leptotene: formation of the meiotic
chromosome axes and double-strand DNA
breaks

Leptotene, the first stage of meiotic prophase, begins follow-
ing meiotic DNA replication with a reorganization of the chro-
matin into the meiotic loop-axis structure where loops of DNA
extend out from a central chromosome axis (Fig. 1) (reviewed
in Zickler and Kleckner 1999; Mercier et al. 2015). During
mitosis, it has been shown that cohesins are critical to create

Table 1 Characteristics of eggs and sperm in humans

Oocyte Sperm Reference

Size Largest cell (~ 4,000,000 μm3) Smallest cell (~ 30 μm3) (Kleinhans et al. 1992;
Goyanes et al. 1990)

Number ∼ 20 weeks gestation: several million
At birth: ∼ 1–2 million
At 37.5 years old: ∼ 25,000
At 51 years old: 1000 oocytes

Hundreds of millions (Lobo 2003)

Temperature Basal body temperature 2–4 °C below basal body temperature (Kim et al. 2013)

Produced During fetal development Starting at puberty and continuously
throughout the lifespan

(Morelli and Cohen 2005)

Arrest Dictyate arrest at late prophase
I until puberty

None (Nagaoka et al. 2012; Morelli
and Cohen 2005; Hunter 2017)

Aneuploidy rates 10–70% 1–4% (Nagaoka et al. 2012; Hunter 2017)
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loops for compaction and organization of the chromatin
(Alipour and Marko 2012; Goloborodka et al. 2016). Thus,
the meiotic loop-axis structure is established by a group of
cohesin and cohesin-like proteins known as axial elements.
Although it is unclear why meiotic chromatin assumes this
loop-axis arrangement, one postulation is that this arrange-
ment provides some stiffness and organization to the chromo-
somes to facilitate homolog pairing and recombination (Zhang
et al. 2014). Nevertheless, this loop-axis structure is critical for
the formation and placement of crossovers later during meiot-
ic prophase I progression.

Following the establishment of the meiotic chromatin
structure, homologous chromosomes must identify each other
and pair. In some organisms, like yeast, Arabidopsis, and
mice, the process of identifying the homolog is initiated by
the formation of programmed DSBs (reviewed in Zickler and
Kleckner 2015; Mercier et al. 2015) (Table 2). These DSBs
facilitate homology search by creating a single-strand section
of DNA that searches for the appropriate homologous se-
quence (or repair template) on other chromosomes. In other
organisms, homologous chromosome pairing is initiated by
specific proteins called pairing center proteins (C. elegans),
or by chromatin states (Drosophila) (Dernburg et al. 1996;
MacQueen et al. 2005; Phillips et al. 2009) (Table 2).

Since the mechanisms of homolog pairing still remain
largely unclear, the sexually dimorphic properties and mech-
anisms of pairing are also not well understood. Mutant analy-
ses from different organisms suggest that organisms have
evolved multiple ways to pair homologous chromosomes
(Zickler and Kleckner 2015, 2016; Mercier et al. 2015).
Nevertheless, even for those organisms, such as C. elegans,
where the proteins involved are known, it is not clear how
these proteins and the chromosome-wide chromatin states co-
ordinate this pairing process (MacQueen et al. 2005; Phillips

et al. 2009; Wynne et al. 2012; Rog and Dernburg 2013;
Dombecki et al. 2011).

Sex-specific differences have been identified in both the
establishment of the meiotic loop-axis structure and the pro-
cessing of DSBs. While both spermatogenesis and oogenesis
assemble the meiotic loop-axis structure, the chromosomes do
not end up being the same lengths upon the completion of this
process. Further, both spermatogenesis and oogenesis similar-
ly initiate the formation of DSBs with the conserved endonu-
clease Spo11, but how these programmed DSBs are both
resected and processed in each sex is different (Baudat et al.
2000; Grelon et al. 2001; Dernburg et al. 1998). Currently, the
most comprehensive studies identifying sex-specific differ-
ences in chromosome axes and DSB processing have been
done in mice; thus, our discussion will begin with Mus
musculus.

Mus musculus

In mice, as well as humans, females have longer meiotic chro-
mosome axes than males (Gruhn et al. 2013; Morelli and
Cohen 2005). While it remains unknown why females have
longer chromosome axes, mutant analyses of axis proteins
indicate that there are sex-specific differences in the require-
ments for specific axial proteins during meiosis. Thus, a dif-
ference in the organization of the axis proteins might provide
an explanation for these differences in chromosome axis
lengths.

One of the axial proteins that displays sex-specific phe-
notypes upon knockout is the meiotic cohesin protein
RAD21L. Specifically, RAD21L is required for chromo-
some axis formation and fertility in males, but not in
females (Herran et al. 2011). Instead, rad21L mutant fe-
males display no defects in meiotic chromosome axis

Table 2 Summary of developmental and chromosomal contexts of meiosis between organisms

Sexes Reproductive

organ

Timing of meiosis DSB formation Chromosome classification

(centromere position)

Mus musculus Male Testes Starts at puberty and occurs

throughout lifespan

Required for homolog pairing

and occurs prior to synaptonemal

complex assembly

Acrocentric

Female Ovary During fetal development

Caenorhabditis

elegans

Male Gonad Occurs throughout lifespan Not required for homolog

pairing and occurs within

the context of assembled

synaptonemal complex

Holocentric

Hermaphrodite Larval L4 stage undergoes both oogenesis

and spermatogenesis then, at adulthood,

switches to only oogenesis which

continues throughout lifespan

Arabidopsis

thaliana

Male Anthers Annual plant (flowers after ~ 3 weeks) Required for homolog pairing

and occurs prior to synaptonemal

complex assembly

Metacentric and

acrocentricFemale Ovaries
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formation; however, they do display an age-dependent
fertility defect that might be caused by a rapid depletion
of oocytes (Herran et al. 2011).

An additional axial protein, SMC-1ß, also displays sex-
specific differences upon knockdown, with males arresting
in the middle of prophase I and females displaying sister chro-
matid cohesion defects at metaphase II (Revenkova et al.
2004). However, unlike rad21L mutants, smc1-ß mutants
cause similar defects in chromosome organization in both
males and females, with both exhibiting reduced axis lengths
and recombination defects (Revenkova et al. 2004). Taken
together, the delay in meiotic failure for females likely reflects
the less restrictive checkpoint control of oogenesis (reviewed
in Morelli and Cohen 2005).

Other known meiotic cohesin and cohesin-like proteins,
such as REC8 and STAG3, both display very similar pheno-
types betweenmales and females.When either rec8 or stag3 is
mutated, both sexes are infertile due to defects in homolog
pairing and recombination (Winters et al. 2014; Caburet
et al. 2014; Fukuda et al. 2014; Xu et al. 2005).

Additionally, double mutant analysis of rec8 or rad21L with
stag3 in males suggests that these proteins might function as
distinct complexes at different regions of the chromosomes
(Ward et al. 2016). While REC8/STAG3 seem act as the pri-
mary centromeric cohesin complex (Ward et al. 2016), the
RAD21L cohesin complexes promote heterochromatic clus-
ters or Bchromocenters^ and may facilitate DSB-independent
homolog pairing (Ward et al. 2016; Ishiguro et al. 2014).
Thus, the organization of the chromosomes by these cohesins
may play a larger role in homolog pairing than was previously
thought. Notably, the REC8/STAG3 cohesin complexes have
not been extensively studied in female mice, where RAD21L
is not required to establish the meiotic axis structure (Herran
et al. 2011). These sex-specific differences in the requirement
for RAD21L bring up intriguing possibilities that (1) chromo-
some axis–driven homolog recognition may be different be-
tween males and females, or (2) this form of homolog pairing
might be a male-specific feature of meiosis.

Following the establishment of the meiotic chromosome
axes, programmed DSBs are formed similarly in males and
females, but the initial processing of these DSBs differs. DSBs
are created by the topoisomerase-like protein SPO11, and the
5′ end of the DNA is resected to reveal a short single-strand
section of DNA that is then coated in the single-strand DNA
binding recombinases RAD51 and DMC1 (Baudat et al.
2000; Tarsounas et al. 1999; Hunter 2015; Zickler and
Kleckner 2015). Both of these proteins facilitate the repair of
these DSBs as either crossovers or noncrossovers in both
males and females (reviewed in Hunter 2015). Interestingly,
the early DSB processing protein TEX15 is critical for loading
of DMC1 and RAD51 in only males (Yang et al. 2008). tex15
mutant females display no defects in loading DMC1 or
RAD51 (Yang et al. 2008). Additionally, mice heterozygous
for a dominant dmc1mutant that is unable to facilitate recom-
bination abolishes recombination only in males, with young,
heterozygous mutant females having no defects in crossing
over (Bannister et al. 2007). Furthermore, single-strand
DNA sequencing methods suggest that males resect back the
5′ end of the DSB more than females (Brick et al. 2018).
Taken together, the differences between males and females
in both the processing of DSBs and the requirement of specific
recombination proteins may indicate different mechanisms of
repair between the sexes.

Sex-specific differences in mutant phenotypes are a
reoccurring theme in mouse meiosis; therefore, it is important
to analyze mutant phenotypes in both males and females
(Morelli and Cohen 2005). The sexually dimorphic features
of the chromosomes axis have revealed that the organization
of the axial elements may be different between the sexes.
Furthermore, these distinct axial organizations might generate
different recombination landscapes in spermatocytes and
oocytes.

cohesin

axial element

RAD51/DMC1

note: In C. elegans, DSB formation
occurs within the context of an 
assembled synaptonemal complex

ssDNA
DSB
end

dsDNA (wrapped
around histones)

DSB

Fig. 1 Leptotene. During leptotene, meiotic chromosomes begin to
organize into a loop-axis DNA structure where loops of DNA extend
out from a chromosome axis. Depicted is a pair of homologous chromo-
somes in dark and light blue with the lines of the chromosomes
representing double-strand DNA (dsDNA) wrapped around histones.
For simplicity, only one sister chromatid of each homolog is shown.
The loop-axis structure is formed by cohesins (maroon rings) and axial
elements (green). To facilitate homolog pairing and form crossovers,
double-strand DNA breaks (DSBs, represented by the yellow star) are
made and resected to reveal a region of single-strand DNA (ssDNA). This
single-strand DNA is coated in the recombinase proteins RAD51/DMC1
(purple) and underdoes a search process for homologous sequences. For
simplicity, the other end of the DSB is not depicted, but it will also be
resected and coated in RAD51/DMC1. In C. elegans, homolog pairing
occurs prior to the formation of DSBs and DSBs are made within the
context of assembled synaptonemal complex
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Caenorhabditis elegans

Similar tomice, worms also display sex-specific differences in
chromosome axis proteins. Mutant males for the kleisin
cohesin protein REC-8 have highly aneuploid sperm that
cause severe defects in fertility (Severson et al. 2009). In com-
parison, rec-8 mutant oocytes display only slight defects in
fertility, likely due to the presence of other cohesin proteins
COH-3 and COH-4 which compensate for the loss of REC-8
(Severson et al. 2009; Severson andMeyer 2014). Currently, it
is unknown whether coh-3 and coh-4 mutants cause male
infertility, but oocytes that are triple mutant for rec-8, coh-4,
and coh-3 are infertile (Severson et al. 2009, Severson and
Meyer 2014). Together, all three cohesin proteins are required
for sister chromatid cohesion and axis formation during
oogenesis.

Although worms display sex-specific differences in the re-
quirement for certain chromosome axis proteins, it is un-
known if oocytes and spermatocytes in worms have different
chromosome axis lengths. It is intriguing to speculate that
worms could be establishing different axes in each sex, which
might cause sex-specific changes in the chromosome axis
length. Moreover, these sex-specific dependencies on certain
axis proteins might set up a foundation for sex-specific chang-
es in DSB processing and repair. Currently, it is unclear in
worms if spermatocytes and oocytes display differences in
DSB formation and processing. However, studies in oocytes
have started to shed light on the mechanisms behind DSB
formation and processing, and these mechanisms are
discussed in a recent review (Yu et al. 2016).

Arabidopsis thaliana

In Arabidopsis thaliana, males have longer chromosome axes
than females (Drouaud et al. 2007). Similar to mice, it is un-
clear why one sex forms longer chromosome axes. Notably,
this increase in chromosome length does correlate with an
increase in crossing over (see the BPachytene: establishment
of crossovers between homologs^ section below). Although
the sex with the longer chromosome axes varies among spe-
cies, sex-specific differences in chromosome length may be a
conserved feature of meiosis.

Similar to worms and mice, Arabidopsis displays sex-
specific differences in the cohesin proteins that assemble the
chromosome axis. The meiosis-specific kleisin REC8, also
known as SYN1, has three other closely related proteins
(SYN2, SYN3, and SYN4). SYN2 and SYN4 are thought to
function in mitotic cells. Knockdown of syn3 results in sex-
specific differences, with female syn3 mutants displaying
more severe defects than male syn3 mutants (Yuan et al.
2012). In both sexes, knockdown of syn3 causes delays in
chromosome pairing and partial synapsis, but only female
syn3 mutants have aberrant chromosome segregation (Yuan

et al. 2012). Knockdown of SYN3 results in complete termi-
nation of the oogenesis process, whereas males produce pollen
with only a slight reduction in pollen viability (Yuan et al.
2012). However, RNAi knockdown is highly variable in
Arabidopsis and studies have shown that genetic mutants
may not always phenocopy the protein knockdown mutants
(Siaud et al. 2004; Li et al. 2004). Nonetheless, these studies
reaffirm the importance in assaying mutants in both sexes.

Sex-specific differences in fertility are also found upon
knockdown of the cohesin subunit, SCC2. Male scc2mutants
are completely sterile, while female scc2 mutants are only
partially sterile (Sebastian et al. 2009). This fertility difference
could be explained by incomplete knockdown of SCC2 in
females, but it is also possible that females depend differently
on SCC2 than males during meiosis. However, due to the
caveats mentioned above about RNAi knockdown in
Arabidopsis, future experiments are necessary to determine
if females do have a less severe defect in the SCC2 mutants.

Differences in the requirement for axis proteins may cause
changes in chromosome axis organization, thereby resulting
in the different lengths of the chromosome axes between
males and females. Furthermore, changes in the organization
of the axis might also influence recombination since the sex
that has the longer axis has more crossing over. Thus, future
experiments examining the organization of the axis proteins
and how this organization relates to downstream repair events
might reveal how the chromosome axis directs DSBs and
recombination.

Zygotene: initiation of synaptonemal complex
assembly

Once homologous pairing has been established, the homologs
begin to align and assemble the synaptonemal complex (SC),
which initiates the transition from leptotene to zygotene
(Fig. 2). The SC is a highly conserved, tripartite protein com-
plex that functions to maintain homolog pairing and facilitate
recombination (reviewed in Cahoon and Hawley 2016). The
SC contains three regions known as the lateral elements, the
central region, and the central elements (Fig. 2). The lateral
element, also known as axial elements prior to the assembly of
the SC, run along either homolog and connects the other SC
proteins to the chromatin. The central region proteins lie with-
in the middle region between the two homologs and contain
the transverse filament proteins that create the bridge that links
the two lateral elements together. The central elements are
located in the center of the SC and are thought to provide
support for the central region proteins. Additionally, recent
evidence in both flies and worms demonstrated that the SC
and the axis components are dual layered with each layer of
SC connecting one sister chromatid of each homolog (Cahoon
et al. 2017; Kohler et al. 2017).
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In some organisms, such as mice and yeast, the assembly of
the SC initiates at multiple regions along the chromosomes
that corresponds with sites of DSBs (reviewed in Cahoon
and Hawley 2016). In other organisms, like worms and flies,
the SC assembles prior to the formation of DSBs (reviewed in
Cahoon and Hawley 2016). Notably, SC assembly in flies, and
possibly worms, still occurs from multiple regions along the
chromosomes; however, it is unclear what is driving the as-
sembly of the SC from the interstitial chromosomal sites
(Tanneti et al. 2011; Nabeshima et al. 2011). Once SC assem-
bly begins, the complex is rapidly built until the chromosomes
are synapsed from telomere to telomere.

Similar to the axial elements, the SC also exhibits sexually
dimorphic features. These sexually dimorphic features of the
SC are likely due to the fact that the SC assembles upon axial
elements with sexually dimorphic features. In particular, the
lateral elements of the SC interact with the cohesins in the
chromosome axis and many of the sex-specific differences
in the SC involve the lateral element proteins. Although it is

not known whether the SC of C. elegans or A. thaliana dis-
plays sexually dimorphic features, several lines of evidence in
mice indicate sex-specific differences in the lateral element.

M. musculus

In mice, two lateral element proteins, SYCP2 and SYCP3,
display sex-specific phenotypic differences where mutants of
either protein cause sterility in males and subfertility in fe-
males (Yuan et al. 2000, 2002; Yang et al. 2006, 2008).
Additionally, FKBP6 is an SC protein that only causes defects
in males, even though FKBP6 localizes to the SC in females
(Crackower et al. 2003). Currently, the role of FKBP6 in fe-
malemeiosis is unclear. Future experiments examiningmutant
phenotypes in both sexes are critically important because
these sex-specific disparities in mutant phenotypes something
that repeatedly occurs in mouse meiosis (Morelli and Cohen
2005).

sycp2 and sycp3 mutants exhibit altered assembly of the
SC. In sycp2 and sycp3mutant males, the SC fails to assemble
(Yang et al. 2006; Yuan et al. 2002). However, in sycp2 and
sycp3 mutant females, the SC partially assembles, crossover
numbers are decreased, and fertility is partially reduced (Yang
et al. 2006, Yuan et al. 2002). Interestingly, sycp3 mutant
females display an age-dependent fertility defect similar to
that of rad21L mutants (Yang et al. 2006; Yuan et al. 2002).
Notably, it is still unclear whether the sycp3 mutant females
also display a similar oocyte depletion phenotype as found in
rad21L mutant females.

The ability for females to be subfertile in the absence
of specific axial or lateral element proteins may be the
result of the poor checkpoint response in oogenesis
allowing for chromosome segregation when homolog
pairing and/or recombination are defective. However,
some of the axial and lateral element mutants display no
defects in fertility suggesting that the structure and possi-
bly the composition of the SC may be different in each
sex. Since no sex-specific SC proteins have been identi-
fied yet, the composition of the SC appears to be the same
between male and female mice (Agostinho et al. 2018).
Despite this similar protein composition, the width or dis-
tance between the lateral elements of the SC is ~ 60 nm
shorter in females than in males (Agostinho et al. 2018).
This decrease in SC width in female mice is likely the
result of positioning the transverse filament protein,
SYCP1, deeper into the lateral element, thereby suggest-
ing that the organization of the proteins within the lateral
element may differ in females (Agostinho et al. 2018).
Moreover, sex-specific differences in SC width is not
unique to mice. In the silk worm, Bombyx mori, females
have an SC width that is ~ 30–40 nm shorter than that in
males (von Wettstein et al. 1984).
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Fig. 2 Zygotene. At zygotene, homologous chromosomes (dark and
light blue lines that represent double-strand DNA wrapped around
histones) have paired and the synaptonemal complex (SC) starts to as-
semble. The SC consists of three parts: lateral elements, central region,
and central element. The lateral elements (light purple) assemble along-
side the axial elements (green) and cohesins (maroon rings). The central
region contains the transverse filament proteins (red and orange), which
span the distance between the two homologs and interact with the lateral
elements. The central element (pink) contains a group of proteins that are
thought to help to stabilize the middle of the SC. Although many of the
steps of DSB repair are thought to occur during pachytene, some of the
repair processes are initiated in zygotene. The dashed-circle region indi-
cates a region where the single-strand DNA (ssDNA) coated in RAD51/
DMC1 recombinase proteins (purple) is initiatingDSB repair. TheDSB is
represented by the yellow star
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Currently, there are not any published studies in metazoans
for how changes in the SC width may affect meiosis.
However, in yeast, mutants that alter the width of the SC cause
defects duringmeiosis leading to reduced spore viability (Sym
and Roeder 1995). While there are some caveats with these
experiments, these studies raise interesting questions about
how the width of the SC might affect DSB repair. Since
DSB repair occurs on the chromosome axis, a DSBmust reach
across the width of the SC to reach the homolog to enable
repair as a crossover (Borde and de Massy 2013). In yeast, it
has been shown that the Dmc1/Rad51-coated single-strand
DNA can span distances up to 400 nm, which is much larger
than the ~ 100-nm width of the SC (Brown et al. 2015). Thus,
modulating the width of the SC could affect the efficiency or
stability of a single-strand DNA molecule accessing the ho-
molog as a repair template. Overall, ongoing studies may re-
veal connections between SC width and regulation of
recombination.

Pachytene: establishment of crossovers
between homologs

Fully synapsed chromosomes are a hallmark of the pachytene
stage of prophase I, with synapsis being maintained until the
end of this stage (Fig. 3). Additionally, during pachytene, most
(if not all) DSBs are repaired as either crossovers of

noncrossovers. Interestingly, an excess of DSBs is created to
ensure that at least one of these breaks is repaired as a cross-
over per homolog pair. Thus, the fate of the DSB being proc-
essed as a crossover or noncrossover is a highly regulated
process.

Many proteins are involved in whether a DSB is repaired as
a crossover or a noncrossover; however, the exact mechanism
of how specific DSBs are selected to become crossovers or
noncrossovers is currently unclear (reviewed in Hunter 2015;
Mercier et al. 2015). In many organisms, studies have shown
that specific proteins are recruited to crossover-designated
DSBs, but how those specific proteins are recruited to specific
DSBs is unknown. Additionally, in mammals, the DNA bind-
ing site for the histone methyltransferase PRDM9 occurs near
regions that will form crossovers, and these genomic regions
are referred to as hotspots (Grey et al. 2018). Although
PRDM9 adds open chromatin marks to histone H3 (mono-,
di-, and trimethylation of K9 and K36), how PRDM9 directs
crossovers to be formed at these locations is unclear (Eram
et al. 2014; Koh-Stenta et al. 2014; Powers et al. 2016). A
recent review on this topic examines the most current models
for how PRDM9-directed crossover designation might occur
(Grey et al. 2018).

Moreover, PRDM9 is not the only mechanism involved in
crossover designation in mammals because a small fraction of
crossovers will occur in regions with no PRDM9-binding
sites, and it is unknown how DSBs in these regions are select-
ed to be repaired as a crossover (reviewed in Gray and Cohen
2016). Since PRDM9 is not found outside of mammals, these
non-PRDM9-marked crossovers might use an ancestral mech-
anism similar to how other organisms designate crossovers.

The SC, likely through recruitment of the DNA repair ma-
chinery, is highly involved in recombination both in the regu-
lation of crossover distribution and in the repair of the DSB
(Cahoon and Hawley 2016; Hunter 2015). Misregulation of
SC assembly or disassembly results in alterations in crossing
over (Cahoon and Hawley 2016; Libuda et al. 2013). Thus,
the sex-specific differences found in the SC and the chromo-
some axes may factor into the regulation of recombination. In
fact, sex-specific differences in crossover distributions have
been found in many organisms (Bherer et al. 2017; Sardell
et al. 2018; Johnston et al. 2017; Wellenreuther et al. 2013;
Labonne et al. 2007; Burt et al. 1991; Singer et al. 2002;
Bennett et al. 1986). Moreover, in humans, protein variants
in both crossover proteins and SC proteins cause sex-specific
changes in recombination (Halldorsson et al. 2019). For ex-
ample, the same variant of the crossover protein RNF212 in
humans is associated with the highest recombination rates in
males and the lowest recombination rates in females, while a
variant of the SC protein SYCP3 is associated changes in
distal crossing over in only males (Kong et al. 2008;
Halldorsson et al. 2019). Since the meiotic chromatin archi-
tecture is formed prior to recombination, it is intriguing to
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Fig. 3 Pachytene. At pachytene, the homologs (dark and light blue lines
that represent double-strand DNA wrapped around histones) have fully
synapsed with the SC assembled from telomere to telomere. Both cohesin
(maroon rings) and axial elements (green) are lost at the site of the DSB to
facilitate in the repair of the break as either a crossover (depicted) or
noncrossover (not depicted)
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speculate that the differences in chromatin structure between
males and females may be involved in the sex-specific differ-
ences in crossover distribution along the chromosome arms.

M. musculus

In both mice and humans, where females have longer chro-
mosome axes, females have more crossovers than males
(Morelli and Cohen 2005; Gruhn et al. 2013). Notably, in
mice, this increase in crossovers is not due to an overall in-
crease in the number of DSBs (Brick et al. 2018; de Boer et al.
2015). Additionally, most of the recombination hotspots are
utilized in both sexes, but there does appear to be sex-biased
strength of the hotspots, with some hotspots being more active
in one sex than the other (de Boer et al. 2015; Brick et al.
2018).

The regulation of these sex-biased hotspots may be con-
trolled, at least partially, by the methylation state of the DNA.
DNA is globally demethylated in the female germline, but not
the male germline (Seisenberger et al. 2012). Additionally, in
males, the PRDM9-binding sites are frequently methylated at
male-biased hotspots with the region adjacent to the PRDM9
sites being methylated at the female-biased hotspots (Brick
et al. 2018). Moreover, decreasing the amount of DNA meth-
ylation in males causes an increase in recombination at nor-
mally female-biased hotspots and reduction in male-biased
hotspots (Brick et al. 2018). Thus, in males, DNAmethylation
suppresses crossing over at female-biased hotspots and pro-
motes crossing over at male-biased hotspots. Similarly, in
Arabidopsis, DNA methylation is also involved in crossover
regulation (see below); therefore, DNAmethylation–mediated
targeting of crossover positions may be a conserved feature of
recombination control. Future studies are needed to determine
how DNAmethylation is acting to regulate crossover position
and how DNA methylation may be influencing meiotic chro-
matin architecture.

In female mice, DNA methylation does not regulate cross-
over distribution; thus, chromosome architecture may play a
larger role in positioning crossovers. An interesting feature of
sex-biased hotspots is that they are arranged in clusters along
the chromosomes and the usage of these clustered hotspots is
not dependent on the DSB initiation machinery (Brick et al.
2018). Instead, it is likely that the sex-specific differences in
meiotic chromosome architecture are playing a role in cluster-
ing these sex-biased hotspots along the chromosomes. Thus,
female mice may rely on the underlying chromosome axis
architecture to regulate the position of crossovers. Also, spa-
tial clustering of sex-biased hotspots occurs in humans as well,
which raises the possibility that the mechanism regulating this
sex-specific clustering might be conserved (Gruhn et al. 2013;
Bherer et al. 2017).

In both mice and humans, females suppress crossing over
in the distal regions of the chromosomes despite the fact that

females tend to have more DSBs in this region than males
(Bherer et al. 2017; de Boer et al. 2015; Brick et al. 2018).
Distal crossovers are known to be problematic for meiotic
chromosome segregation, since homologs with these distal
crossovers have difficulty aligning properly along the meiotic
spindle (Ross et al. 1996). Considering that oocytes undergo a
long late prophase I arrest, distal crossovers might predispose
oocytes to segregation defects, thereby resulting in aneuploid
eggs. To circumvent this chromosome segregation issue, oo-
cytes suppress distal crossovers. In contrast, males do not
undergo a long late prophase I arrest; therefore, some distal
crossovers may be more tolerable. Furthermore, clustering of
these sex-biased hotspots in females may provide a mecha-
nism to regulate where crossovers are positioned. More stud-
ies are needed to determine if the chromosome axis structure
influences the position of crossovers in females.

C. elegans

In worms, it is unclear if sex-specific differences in recombi-
nation alter the number of crossovers (Hodgkin et al. 1979;
Henzel et al. 2011; Gabdank and Fire 2018). The studies
looking at sex-specific differences in crossing over are largely
conflicting, with some studies suggesting a decrease in map
length in males, while others indicate no change in map length
between the sexes (Zetka and Rose 1990; Meneely et al. 2002;
Lim et al. 2008). Further, the differences between these studies
vary not only in the genetic backgrounds being assayed, but
also in the method used to detect crossovers, with some stud-
ies using genetic markers and others using changes in single
nucleotide polymorphisms between two haplotypes (Zetka
and Rose 1990; Lim et al. 2008; Meneely et al. 2002).
Moreover, each study differed by the particular chromosomes
assayed for crossing over and by the total progeny scored,
which varied from approximately 100 worms to thousands
of worms (Zetka and Rose 1990, Lim et al. 2008, Meneely
et al. 2002). Taken together, these differences between these
studies may have led to the conflicting conclusions about the
possibility of sex-specific differences in crossing over, or (as
was found in the distal regions of mouse chromosomes) may
reflect differences in crossing over between specific chromo-
somes or chromosomal loci.

Whole-genome sequencing using two isogenic strains has
provided a highly detailed map of the position of the cross-
overs on all six chromosomes in hermaphrodites (Rockman
and Kruglyak 2009). This study showed that recombination is
largely suppressed in the central and distal chromosomal re-
gions and enriched in what is considered the chromosome
Barms^ in C. elegans (Rockman and Kruglyak 2009), al-
though the position of these crossovers varies widely on the
autosomes (Rockman and Kruglyak 2009). Moreover, multi-
ple studies have shown that during oogenesis, DSB formation
and crossing over requires histone acetylation andmethylation
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modifications (Wagner et al. 2010; McClendon et al. 2016;
Bessler et al. 2007, 2010; Reddy and Villeneuve 2004).
Currently, it is unclear whether post-translation modifications
of histones are required for DSB formation and crossing over
during spermatogenesis. Overall, many factors appear to be
involved in regulating crossing over and it is important to
assay whether recombination mutants cause defects to similar
degrees in both sexes.

Currently, we do know whether the distribution of cross-
overs in worms is different between oogenesis and spermato-
genesis.When double crossovers occur, spermatocytes tend to
position these crossovers closer together than in oocytes (Lim
et al. 2008). This comparative result suggests that crossover
interference, which prevents the formation of crossovers near
each other, is not as strong in spermatocytes as it is in oocytes
(Muller 1916; Hodgkin et al. 1979; Henzel et al. 2011;
Gabdank and Fire 2018). Additionally, if spermatocytes and
oocytes do have the same number of crossovers, then this
suggests that crossover distribution may be regulated differ-
ently than crossover designation.

A. thaliana

In Arabidopsis, males have longer chromosome axes and
more crossovers than females (Drouaud et al. 2007; Vizir
and Korol 1900). Additionally, the distribution of crossovers
differs in both males and females. Similar to female mice,
Arabidopsis females suppress crossing over in the distal re-
gions of the chromosomes, while Arabidopsis males display
abundant crossing over in the telomeric regions (Giraut et al.
2011; Brick et al. 2018; de Boer et al. 2015). Thus, females
must have an underlying mechanism that is influencing the
DSB repair choice to strongly bias toward a noncrossover in
these distal chromosomal regions.

Unlike mice, males and females in Arabidopsis display a
sex-biased placement of crossovers. Surprisingly, only two
elevated recombination regions, defined as hot regions, are
used by both sexes (Giraut et al. 2011). In males, most of these
hot regions are located near the telomeric regions, but DSBs
are not strongly enriched in these regions (Choi et al. 2018;
Giraut et al. 2011). Thus, it is possible that in males, the num-
ber of DSBs and the presence of a crossover may not be
correlated. In females, most of the hot regions are in the
pericentromeric regions of the chromosomes and the relation-
ship between crossing over and number of DSBs remains
unknown in females (Giraut et al. 2011). Currently, it is un-
clear why males and females utilize different regions; howev-
er, differences in the chromosome axes may be affecting the
usage of each region in each sex.

Unlike male mice and male humans, neither male nor fe-
male crossover distributions in Arabidopsis correlate with the
GC content of the DNA (de Boer et al. 2015; Clement and
Arndt 2013; Arbeithuber et al. 2015). Instead, hot regions in

Arabidopsis males tend to correlate with AT-rich regions,
which are positioned at transcription start and termination sites
(Choi et al. 2013; Drouaud et al. 2013). Overall, at a DNA
sequence level, the positioning of recombination differs be-
tween organisms.

Although the epigenetic regulation of recombination may
be similar between males in Arabidopsis and mice, DNA
methylation in Arabidopsis inhibits crossing over in the
repeat-rich heterochromatic regions and at specific euchro-
matic hotspots (Yelina et al. 2012; Yelina et al. 2015; Choi
et al. 2013). Likewise in male mice, DNA methylation also
suppresses the formation of crossovers at certain hotspots,
specifically the female-biased hotspots (Brick et al. 2018). In
contrast to mice, DNA methylation in Arabidopsis does not
appear to promote hotspot activity. Thus, some other mecha-
nism is acting in Arabidopsis to promote crossing over at the
unmethylated hotspots.

One possible mechanism for crossover distribution in
Arabidopsis is that DNA methylation may be influencing
the organization of the chromosome axis. Surprisingly, a re-
duction in DNA methylation does not result in a large
increase in crossing over in the euchromatin, but instead
causes decreases in pericentromeric and centromeric cross-
overs (Yelina et al. 2012, 2015). Further, it has been re-
cently found that reducing DNA methylation results in the
inappropriate formation of DSBs in the centromeric hetero-
chromatin and may explain the increase in centromeric
recombination (Choi et al. 2018; Underwood et al. 2018).
Thus, DNA methylation alone is not responsible for regu-
lating euchromatic crossovers, but it strongly influences
crossing over near the centromeres possibly by limiting
the formation of DSBs in the centromeric heterochromatin.
However, regardless of the amount of DSBs, a loss in DNA
methylation downregulates the formation of crossovers
(Choi et al. 2018, Underwood et al. 2018). Thus, DNA
methylation may be involved in the designation of which
DSBs become competent to form a crossover. All of the
studies looking at the effects of DNA methylation on re-
combination have only been performed in males; therefore,
it is unclear in females whether a similar type of regulation
occurs. Future studies investigating DNA methylation in
females may reveal sexual dimorphism of DNA methyla-
tion in addition to providing insight toward female-specific
suppression of crossing over in the telomeric regions.

Sex-specific differences in recombination have also been
recently identified in humans. Whole-genome sequencing
studies in humans have found that females display more cross-
ing over than males and, similar to other eukaryotes, recom-
bination in females is suppressed in distal chromosomal re-
gions (Halldorsson et al. 2019; Kong et al. 2008; Bherer et al.
2017). Surprisingly, the number of crossovers increase as ma-
ternal oocytes age, thereby suggesting a link between the ma-
ternal age effect and crossover number (Halldorsson et al.
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2019). Further, epigenetic modifications also influence the
placement of crossovers in humans (Halldorsson et al.
2019). Since many of the human datasets are from only one
sex, it remains unclear if these epigenetic modifications dis-
play sex-specific patterns that alter recombination. Taken to-
gether, while sex-specific recombination patterns are con-
served feature of meiosis, the function and mechanism behind
patterning this sex-specific recombination landscapes are
unknown.

Diplotene and diakinesis: disassembly
of the synaptonemal complex
and condensation of the chromosomes

Initiation of SC disassembly prompts the start of diplotene
(Fig. 4). The disassembly of the SC is regulated in many
organisms by post-translational modifications of the central
region proteins, which prompts a reorganization of the lateral
element proteins (reviewed in Cahoon and Hawley 2016).
Furthermore, it is extremely important that this disassembly
process is linked with recombination, such that the disassem-
bly of the SC is only triggered upon the completion of recom-
bination. Although the mechanism of crosstalk between com-
pletion of recombination and SC disassembly is unknown, it is
known that the major cell cycle kinases, such as POLO,MAP,
and Aurora B kinases, are likely involved in linking these two

processes (Cahoon and Hawley 2016). Additionally, it is cur-
rently unknown if there are any sex-specific differences in the
regulation of SC disassembly.

Following diplotene is diakinesis, the stage in which the chro-
mosomes begin to condense (Fig. 5). In females, these condensed
chromosomes form into cruciform or bivalent structures.
However, in males, these bivalent structures are usually not vis-
ible due to both a higher degree of DNA compaction and a
smaller nuclear volume in comparison to oocytes, although this
compaction in Arabidopsis is reversed in the sexes, with female
oocytes displaying a higher degree of DNA compaction and
smaller nuclear volume than the pollen in males. This DNA
compaction is accomplished in many organisms by the replace-
ment of theDNAhistoneswith histone alternatives. Inmammals,
DNA histones are gradually replaced with protamines through-
out spermmaturation (reviewed in Sun andHandel 2008, Rathke
et al. 2014), whereas in worms, the protamine-like proteins are
exchanged in late meiotic prophase to compact the DNA (Chu
et al. 2006; Shakes et al. 2009). Additionally, in Arabidopsis, a
male-specific histone H3 variant, MGH3, is suspected to provide
similar function to mammalian protamines (Okada et al. 2005).
Notably, the mechanism of compacting of the homologs is un-
clear and likely involves cohesins, condensins, and DNA
topoisomerases functioning together to compact the meiotic
DNA (Hillers et al. 2017; Uhlmann 2016). Moreover, this
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Fig. 4 Diplotene. Diplotene begins after the repair of the DSBs with the
disassembly of the SC. The cohesins (maroon rings) and axial elements
(green) are not disassembled and likely help in organizing the chromo-
somes in diakinesis. The homologous chromosomes are shown in light
and dark blue with the lines representing double-strand DNA (dsDNA)
wrapped around histones
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Fig. 5 Diakinesis. The homologous chromosomes (dark and light blue)
are rearranged during diakinesis to form a cruciform bivalent structure.
This bivalent structure is then condensed by a group of proteins likely
including cohesins, condensins, andDNA topoisomerases. At the meiosis
I division, cohesin (maroon rings) is locally lost distal to the crossover site
at the midbivalent allowing the homologs to separate. The residual
cohesin is maintained between the sister chromatids until the second
meiotic division when it is removed to allow the sisters to segregate
(not depicted)
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compaction processmay be similar to the compaction that occurs
in mitotic cells, but the current models for mitotic chromatin
compaction are controversial and sparse of mechanistic details
(reviewed in Antonin andNeumann 2016). Taken together, aside
from the higher degree of chromosome compaction caused by
protamine replacement of histones in males, it is unknown if any
of diakinesis-based chromosome compaction mechanisms are
different between males and females.

Summary and conclusions

Despite the fact in that both oogenesis and spermatogenesis
produce haploid gametes, the mechanisms of how each mei-
otic stage enables the inheritance of genetic material are not
the same. Moreover, these dissimilarities in meiosis span be-
tween organisms (Table 3). Mice and humans assemble longer
chromosome axes in females, but in Arabidopsis it is the
males that assemble the longer chromosome axes than fe-
males. These axis differences correlate with alterations in the
recombination landscapes between males and females.
Further, it is becoming apparent that the differences in the
meiotic chromosome axis between the sexes may be driving
the changes seen in recombination. In particular, the potential
for crosstalk between epigenetic marks and the meiotic chro-
mosome axis structure is an intriguing concept. Future studies
looking at this intersection of DNA chemical and structural
modifications might provide insights in how the chromosome
axis may be direct or influence crossing over.

The reoccurring theme of meiotic axis mutants displaying
sex-specific differences in mice, worms, and Arabidopsis sup-
ports a hypothesis that the axes between males and females are
different. Future studies directly looking at the arrangement and
composition of the axis proteins might provide mechanistic in-
sights into the genetic differences observed with the meiotic axis
mutants. Furthermore, it is unknown how these axis proteins are
assembled and how dynamic these proteins are during meiosis.
Understanding the mechanisms behind these genetic differences
between the sexes may provide insights into how the chromo-
some axis is created and maintained throughout meiosis.

Stresses to the meiotic system, such as temperature in-
creases, also reveal differences between oogenesis and sper-
matogenesis. For decades, meiosis has been known to be a
temperature-sensitive process, in which temperature changes
drastically affect both the position and number of crossovers as
well as meiotic chromosome structures (reviewed in Morgan
et al. 2017). Elevated temperatures are known to cause fertility
defects in mammalian spermatogenesis (Paul et al. 2008;
Durairajanayagam et al. 2015). Specifically, human males are
particularly sensitive to narrow changes in temperature, with
spermatogenesis requiring an isotherm 2–4 °C below basal
body temperature (Kim et al. 2013). Although these
temperature-induced effects on spermatogenesis are well

known, the mechanisms behind these spermatogenesis-
specific changes and sensitivities are not well understood.

In contrast to other model systems, temperature-induced
changes during plant meiosis have been well studied. Since
seasonal changes expose plants to a variety of environmental
temperatures, it is extremely important to the agriculture in-
dustry to understand how temperature may be altering the seed
or fruit production of a specific crop. In barley, increased
temperature causes an increase in chromosome axis length
and crossing over only in males (Phillips et al. 2015). Thus,
males in barley, similar to mammalian males, are more sensi-
tive to temperature changes. In Arabidopsis, males exposed to
higher temperature display both a decrease in chromosome
axis length, and (similar to barley) an increase in crossing over
(Modliszewski et al. 2018; Lloyd et al. 2018). Future studies
in Arabidopsis females are needed to determine if these re-
sponses to temperature are male-specific.

Increases in temperature also elevate recombination
rates in Drosophila females (Grell 1973). Additionally, this
increase in recombination correlates with decreases in fit-
ness such that the number of progeny decreases as temper-
ature increases (Grell 1973; Jackson et al. 2015). Also,
studies in wheat observed that the grain number decreases
upon temperature increases. Notably, it is not clear in
wheat whether recombination is also affected upon chang-
es in temperature (Draeger and Moore 2017). Taken to-
gether, temperature-induced changes in meiosis alter re-
combination rates and have detrimental outcomes on both
organism fitness and fertility. The potential consequences
of these temperature-induced increases in recombination
and a potential link between the SC and thermotolerance
are further reviewed in Morgan et al. 2017.

Meiosis contains many sexually dimorphic features from the
differences in gamete sizes, to the timing of gamete production,
to the mechanistic sex-specific changes in establishing the mei-
otic chromatin and crossing over during prophase I. These sex-
specific differences highlight that there is no Bone fits all^ status
for meiosis, and that meiotic phenotypes need to be assayed in
both males and females. Future studies analyzing mutants in
each sex may reveal important mechanisms in the regulation of
key events during meiosis, such as DSB formation, DSB fate,
and crossover designation (and licensing).
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