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Abstract

Purpose To study the impact of advanced paternal age on embryo aneuploidy.

Methods This is a multicenter international retrospective case series of couples undergoing assisted reproduction via in vitro
fertilization using donor eggs to control for maternal factors and preimplantation genetic testing for aneuploidy via next-
generation sequencing at Igenomix reproductive testing centers. The main outcome measure was the prevalence of embryo
aneuploidy in egg donor cycles. Semen analysis data was retrieved for a small subset of the male patients.

Results Data from 1202 IVF/ICSI egg donor cycles using ejaculated sperm (total 6934 embryos) evaluated using PGT-A
between January 2016 and April 2018 in a global population across all Igenomix centers were included. No significant associ-
ation was identified between advancing paternal age and the prevalence of embryo aneuploidy overall and when analyzing for
each chromosome. There was also no significant association between advancing paternal age and specific aneuploid conditions
(monosomy, trisomy, partial deletion/duplication) for all chromosomes in the genome.

Conclusions This is the largest study of'its kind in an international patient population to evaluate the impact of advancing paternal
age on embryo aneuploidy. We conclude there is no specific effect of paternal age on the prevalence of embryo aneuploidy in the
context of embryo biopsies from egg donor cycles.
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Introduction potential, reproductive success, and the health of offspring.
This is of particular relevance as the age at which men and

In recent years, there has been growing interest in the study of ~ women choose to start families has become increasingly later
advanced paternal age (APA) and its impact on male fertility ~ than their parents due to a variety of sociocultural factors
including increasing life expectancy, changing roles for wom-
en, advanced age at time of marriage, and improving access to
g)‘;“r./‘;gic_ S“I’/ll’:)erll(‘)eo';t;‘% ;?g‘tgrli;‘IOITSIlZQOMine version Oflthis article assisted reproductive technologies (ART). Recent epidemio-
matz iial, :}?ircgh is.availai)le to authorized u;?rsc‘omams supplementary logic data in the USA published by Khandwala et al. demon-
strated that the mean paternal age increased from 27.4 to

5 Robert J. Carrasquillo 30.9 years on a review of more than 168 million live births
tjcarras @gmail.com between 1972 and 2016 [1]. While the impact of advanced
maternal age on reproductive success is well understood, only
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confirming that there is an additive negative effect of ad-
vanced age in both parents on pregnancy and live birth rate
[2]. With regard to male reproductive health specifically, ad-
vanced age has demonstrated negative consequences for tes-
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semen parameters [5—8], and the integrity of the sperm ge-
nome and epigenome [9—12]. Associations between APA
and morbidity in offspring have been documented since the
1980s, including increased risk of fetal demise [13]; congen-
ital anomalies [14]; single genetic disorders [15—19]; malig-
nancies of the breast, central nervous system, and hematopoi-
etic system [20-22]; and neurocognitive disorders such as
autism, bipolar affective disorder, and schizophrenia [23-28].

Single-gene mutations appear to be the mode of disease
inheritance most strongly associated with APA with parent-
offspring trio studies demonstrating an average de novo mu-
tation rate of + 2 point mutations per year of advancing pater-
nal age and a doubling of paternally inherited mutations every
16.5 years [29]; however, paternally linked aneuploid condi-
tions have also been reported, but the evidence remains con-
troversial. Aneuploidy, a condition of abnormal chromosome
number, is a result of non-disjunction during meiosis with
trisomy being the most common class of aneuploidy. Studies
on human sperm, specifically, have shown that all chromo-
somes are susceptible to non-disjunction with chromosomes
21, 22, and the sex chromosomes having an increased fre-
quency of aneuploidy [30]. While most embryo aneuploidies
are a result of maternally inherited aberrations, with preva-
lence increasing from 30% in women in their early 30s to
nearly 90% for women > 44 years of age [31], there is some
data to suggest an age-related paternal contribution. For ex-
ample, there is a known paternal contribution to trisomy 21
(Down syndrome) in 10% of cases and work by Zaragoza
et al. reported an additive effect of APA on the increased
prevalence of trisomy 21 when maternal age is also advanced
> 35 years [32]. Conversely, others have found no association
between APA and the prevalence of trisomy 21 [33]. As most
autosomal aneuploidies are non-viable, sex chromosome an-
euploidies are more commonly seen in live births.
Approximately 55% of sex chromosome aneuploidies are of
paternal origin, including 80% of Turner syndrome 45,X0, 6%
of 47, XXX, 100% of 47,XYY, and 50% of Klinefelter syn-
drome 47,XXY [34]. Despite the obvious importance of pa-
ternal contribution to sex chromosome aneuploidy, there has
been no demonstrated effect of APA on the prevalence of
these conditions in offspring [33, 35, 36]. A study of 7549
blastocysts during 2826 cycles with preimplantation genetic
testing specifically examined the prevalence of 47,XXY kar-
yotypes and found a significant association with advancing
maternal age but not advancing paternal age. The authors con-
cluded that a meiotic missegregation specifically in oogenesis
was implicated [37].

To best approach the question of how paternal age affects
the prevalence of aneuploidy, it is essential to control for ma-
ternal factors. Oocyte donation for use in IVF represents an
ideal model for the study of the impact of paternal age as
maternal age, and health factors are optimized through the
use of donated eggs from young women. This practice is
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shown to result in high implantation rates, high pregnancy
rates, and good obstetric outcomes [38—40]. We hypothesized
advancing paternal age would be associated with increased
embryo aneuploidy, and the aim of this study was to investi-
gate the impact of advanced paternal age on the prevalence of
embryo aneuploidy in IVF cycles using egg donors as a con-
trol for maternal factors by means of preimplantation genetic
testing for aneuploidy (PGT-A) and next-generation sequenc-

ing (NGS).

Materials and methods

This is a retrospective non-randomized study on data obtained
from sperm injection (ICSI) cycles with donated oocytes in
conjunction with preimplantation genetic testing for aneuploi-
dy (PGT-A) using next-generation sequencing (NGS) across
Igenomix testing centers in Spain, USA (Florida, California,
and New York), Canada, Brazil, Mexico, India, and the United
Arab Emirates between January 2016 and April 2018. This
study received an Institutional Review Board waiver from the
University of Miami Health System as all patient data was de-
identified.

Semen analysis and semen collection, donor oocyte selection
and harvest, and intracytoplasmic sperm injection were per-
formed at each respective referring IVF center according to indi-
vidual protocol. All donated oocytes were from females aged
35 years or younger with proven fertility or otherwise normal
physical and gynecologic examinations. Trophectoderm biopsy
was performed at days 5/6 blastocyst and a standardized protocol
was employed for processing of biopsy specimens and transport
to Igenomix testing centers. At the time of biopsy, samples were
successively washed in washing buffer and ultimately placed into
sterile 200-pl PCR tubes aliquoted with 2.5 pl of buffer prior to
transport at room temperature.

The NGS platform used in the current study was lonChef™
and S5 sequencer from ThermoFisher Scientific. Ion
Reproseq™ PGS Kit was used to lyse the samples, amplify
DNA, and generate DNA fragment libraries. The template and
loading of the libraries was carried out automatically by the
IonChef™ equipment. We used Ion 520 and Ion 530 chips
with capacity for 24 and 96 embryo samples, respectively.
Once a run was sequenced, the quality parameters of the se-
quencing were examined, and if quality measures were met,
they were used for the following analyses. Those samples that
did not meet minimum quality values were discarded from the
study. Once sequencing analysis was performed, raw data was
transferred to Torrent Suite Software v5.4 and Ion Reporter
Software for translation of raw sequence data into the embryo
ploidy output.

Only cycles using ejaculated sperm and egg donors were
included in the study, and only centers using PGT-A for all
cycles were included. The majority of cycles utilized fresh
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ejaculated sperm compared to frozen/thawed specimens.
Paternal age was stratified into six subgroups [18—60, and
60+ years] based on clinically appropriate categorical thresh-
olds [41, 42]. The Mantel-Maenszel chi-square test for trends
was used to assess for significance in trends when comparing
increasing paternal age and percent aneuploid embryos.
Analysis of variance (ANOVA) was used to assess differences
in mean sperm concentration, data for which was available
only for a subset of patients. R version 3.4.1 (The R
Foundation, Vienna, Austria) was used for statistical analyses.
P <0.05 was considered statistically significant.

Results

Results for percent aneuploidy are tabulated in Fig. 1 for 6934
embryos obtained from 1202 ICSI cycles using donated oo-
cytes in conjunction with PGT-A. These represent data from
over 150 referring IVF clinics. There was no significant trend
in the prevalence of aneuploidy across the various paternal age
subgroups (p =0.67). This was the case regardless of paternal
age subgroup stratification. We also analyzed the prevalence
of overall aneuploidy and specific aneuploidy conditions
(monosomy, trisomy, and partial deletion or duplication) by
each chromosome across the individual paternal age sub-
groups (Fig. 2a—d, Supplemental Table 1). Again, we found
no significant relationship between advancing paternal age
and increased prevalence of aneuploid conditions for specific
chromosomes. Notably, the prevalence of aneuploidy for
chromosome 21 did appear to be enriched in the paternal
age subgroup for men aged 60+ years; however, when consid-
ering the specific embryo aneuploidy types, this did not ap-
pear to be represented by trisomy 21 (Down syndrome).
Additionally, sperm concentration was only available for a
subset of male patients (n=137) representing individuals
from each age subgroup. While there was no significant trend
in sperm concentration with increasing age (p =0.81), these
data are underpowered to draw a clinically meaningful con-
clusion regarding age and sperm concentration, and the

60%
Trend:p = 0.67

50%

40%
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20%

18-34 35-37 38-40 41-44 45-60 60+
(n=739) (n=898) (n=1013) (n =1640) (n =2527) (n=117)
Paternal Age, Years
n = number of embryos biopsied

% Embryo Aneuploidy

Fig. 1 Overall percent embryo aneuploidy stratified by paternal age

relationship between sperm concentration and aneuploidy
rates in egg donor cycles. Other semen analysis parameters
were not available for analysis. While aneuploidy rates could
not be tabulated for each of the > 150 referring IVF clinics,
there was consistency in aneuploidy rates across the nine glob-
al participating Igenomix testing centers (data not shown).

Discussion

In this study, we investigated the impact of APA on the prev-
alence of embryo aneuploidy in IVF cycles using donor eggs
as a means of controlling for maternal factors. Our cohort is
the largest and most diverse multi-national patient population
studied in this manner to date. The data we obtained demon-
strates no effect of advancing paternal age on the prevalence
of embryo aneuploidy when controlling for maternal factors
across the entire genome, which stands in contrast to early
data indicating increased risk for certain aneuploid conditions
such as trisomy 21. Our dataset is also the first to utilize the
high-fidelity next-generation sequencing in the study of the
paternal-age effect on aneuploidy across each individual hu-
man chromosome.

The paternal contribution to aneuploid conditions in human
offspring has long been established as an observable phenome-
non through cytogenetic studies [43, 44], but the specific effect of
paternal age remains a subject of controversy. As early as the
1960s, studies have demonstrated at best a modest paternal-age
effect [45—47]. Major weaknesses in these studies is the inability
to control for maternal age through careful patient selection,
small cohort size, observational study design in the era prior to
cytogenetic testing, and reliance on limited or subjective methods
such as fluorescence in situ hybridization (FISH) [36, 48]. One
recent attempt to control for maternal-age effect through an orig-
inal case-control dataset using maternal age matching to within
6 months found no statistically significant association between
Down syndrome and paternal age [49], similar to other findings
when proper controls are used [50, 51]. In the last 2 years, inves-
tigators have shifted to using egg donor ICSI cycles with preim-
plantation genetic testing (PGT) and new approaches such as
next-generation sequencing (NGS) to mitigate these challenges.
In proceedings from the 2017 Scientific Congress of the
American Society of Reproductive Medicine, Tapia et al. pre-
sented a cohort of 243 egg donor ICSI cycles (2171 embryos)
coupled with PGT-A and NGS. This was the first study to em-
ploy such methodology to study the effect of paternal age, and
they found no paternal-age effect on embryo aneuploidy [41]. A
recent study by Capelouto et al. in 2018 similarly examined the
impact of various paternal factors including age on IVF out-
comes in egg donor cycles. They found no relationship between
advancing paternal age (> 35 years) and implantation rate, clini-
cal pregnancy rate, live birth rate, infant birth weight, and preterm
deliveries [42]. In contrast, two studies were published recently
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<« Fig. 2 Prevalence of specific aneuploid condition for each chromosome
by paternal age subgroup. a Percent total aneuploidy. b Percent
monosomy. ¢ Percent trisomy. d Percent partial deletion or duplication.
*Statistically significant trend. For individual p values, see Supplemental
Data.

by one group of investigators using FISH for preimplantation
genetic diagnosis in egg donor cycles. Their 2015 study involved
a very small cohort and claimed that paternal age > 50 years was
associated with a statistically significant increase in overall aneu-
ploidy [52]. A 2018 study by the same group, utilizing the same
methods and cohort from a single center, reported a significant
increase in the prevalence of trisomy 13, trisomy 18, and trisomy
21 when the paternal age is > 50 years [53]. The conclusion that
APA is associated with an increased prevalence of aneuploidy in
these two studies is limited by the small nature of these cohorts
and the method of genetic diagnosis.

‘While advancing paternal age has been correlated with declin-
ing semen parameters as well as sperm DNA fragmentation in-
dex (DFI), neither of these paternal characteristics have been
clearly linked to increased aneuploidy in offspring [54, 55]. A
recent large-scale observational cohort study involving 1219 con-
secutive ICSI cycles and a multiplex DNA amplification process
for PGT-A examined the aneuploidy rate in relation to various
male semen factors including normozoospermia, moderate
oligospermia (sperm concentration between 5 x 10 and 15 x
10%mL), severe oligospermia (sperm concentration <5 x 10%
mL), obstructive azoospermia, and non-obstructive azoospermia.
Cycles with severe female factor or female genetic conditions
were excluded from analysis. There was no significant difference
in the percent aneuploidy across the five study groups, and the
investigators hypothesized that either these abnormal semen pa-
rameters do not contribute to abnormal embryo ploidy or that
there are corrective factors in the egg leading to early demise of
affected aneuploid embryos prior to the blastocyst stage [54].
Another recent retrospective study investigated the relationship
between elevated sperm DNA fragmentation and embryo aneu-
ploidy in 177 IVF-ICSI cycles. While not a controlled study,
there were no significant differences in the prevalence of female
factor across three study groups: DFI>30%, DFI 15-30%, and
DFI< 15%. The authors identified a significant association be-
tween advancing age, and increasing DFI and patients with
higher DFI also had significantly worse sperm concentration
and motility, and tended to obese. On performance of PGT-A
with a high-throughput array-comparative genomic hybridization
method for all chromosomes, however, they found no significant
difference in embryo aneuploidy rate across the three DFI sub-
groups [55].

The potential importance of sperm aneuploidy itself and its
contribution to embryo aneuploidy as it relates to paternal age
is less well studied. It is generally accepted that sex chromo-
some aneuploidy is more common than autosome aneuploidy,
and that sperm disomy for the implicated chromosome is

increased in fathers of children with Down syndrome and
Klinefelter syndrome when the condition is known to be
inherited paternally [56]. A small (n=10) 2016 study of
sperm aneuploidy rates in men <40 years and men aged >
60 years found no evidence that sperm aneuploidy rates in-
crease with advancing age using a whole-genome dual-probe
FISH analysis to increase the accuracy of detection [57].
Conversely, another group found sperm aneuploidy to be ele-
vated above the age of 40 years in a group of 83 men using
only five chromosome FISH hybridization probes. They did
not assess embryo aneuploidy specifically following ICSI
[48]. Certainly, larger studies utilizing higher fidelity methods
and with an attention to reproductive outcomes are needed.

With regard to methodology, FISH represents the earliest
means by which aneuploidy could be assessed as part of pre-
implantation genetic diagnosis beginning in the early 1990s
[58]. The first applications of FISH involved assessment of
chromosome copy number for chromosomes 13, 16, 18, 21,
22, X, and Y, which are most commonly associated with live
birth defects and spontaneous abortion, but overall, the num-
ber of chromosomes that could be assessed was limited by
spectral resolution of filter sets and the number of available
fluorochromes (red, yellow, aqua, blue, and green).
Disadvantages to FISH include the inability to screen the en-
tire genomic complement of chromosomes (thus an inability
to capture 60—80% of all aneuploid embryos) [59], as well as
the subjectivity inherent in the method that may lead to in-
creased false-positive and false-negative results. It is thought
that these limitations of FISH technology may be the principal
reason that randomized controlled trials failed to show a ben-
efit of preimplantation genetic testing for improving live birth
rates [60, 61]. Next-generation sequencing (NGS) is a recently
introduced alternative to older methods like FISH as a means
of'testing for embryo aneuploidy and mosaicism. After whole-
genomic amplification, embryo-specific sequences are identi-
fied in a barcoding step and broken down into smaller frag-
ments which are then massively sequenced in parallel [62].
Aneuploidy is assessed by the number of reads per chromo-
some which is proportional to the copy number of each chro-
mosome. The method is low-cost and high throughput and
allows for simultaneous evaluation of aneuploidy, single-
gene mutations, mosaicism, and translocations. NGS has an
accuracy for identifying aneuploidy of 98%, but its inherently
increased sensitivity may theoretically decrease its specificity,
and recent studies indicate potential for high false-positive
results approaching 33% [63]. Taking this into consideration,
our results demonstrated no effect of advancing paternal age
despite the tendency for NGS to potentially overcall the prev-
alence of aneuploidy.

Limitations of the current study include the inability to cap-
ture and standardize individual center methods of semen anal-
ysis, donor oocyte selection, and ICSI. Embryology data such
as egg number from each donation cycle, number of fertilized
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eggs per cycle, and number of fertilized eggs reaching blasto-
cyst stage were not transmitted by the > 150 referring IVF
clinics; thus, we cannot rule out a potential natural culture se-
lection process acting on aneuploid embryos prior to the blas-
tocyst stage. Regardless, data of that sort is beyond the scope of
this study to ascertain as routine biopsies are not performed on
embryos that fail to reach blastocyst stage. We also were limited
by our inability to obtain data regarding original indications for
PTG-A in these couples, assisted reproduction outcomes, or
genetic diagnosis for point mutations, sperm aneuploidy, and
epigenetic changes that may be associated with advancing pa-
ternal age. Additionally, we lack semen analysis data on the
majority of patients and thus variation in semen parameters
between age groups may be a confounding factor. The strengths
of this study involve an unprecedented large and diverse cohort
involving multiple international fertility centers and the use of a
centralized laboratory with standardized, high-fidelity genome-
wide sequencing method to provide accurate diagnosis across
each chromosome for a variety of aneuploid states.

Conclusions

In summary, we present the largest reported cohort of egg
donor ICSI cycles with preimplantation genetic testing to in-
vestigate the effect of APA on embryo aneuploidy in biopsied
blastocysts. Although the body of evidence suggests APA is
associated with a host of other genetic and epigenetic disease
states in offspring, the paternal contribution to abnormal chro-
mosome number does not appear to be a matter of age.
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