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Abstract

This article considers the problem of designing Phase I-II clinical trials with delayed toxicity and 

efficacy outcomes. The proposed design is motivated by a Phase I-II study evaluating all-trans 

retinoic acid (ATRA) in combination with a fixed dose of daratumumab in the treatment of 

relapsed or refractory multiple myeloma. The primary objective of the study is to identify a dose 

that maximizes efficacy and has an acceptable level of toxicity. The toxicity endpoint is observed 

in one cycle of therapy (i.e., 4 weeks) while the efficacy endpoint is assessed after 8 weeks of 

treatment. The difference in endpoint observation windows causes logistical challenges in 

conducting the trial, since it is not practical to wait until both outcomes for each patient have been 

fully observed before sequentially assigning the dose of a newly eligible patient. In order to avoid 

delays in treatment for newly enrolled patients and to accelerate trial progress, we generalize the 

time-to-event continual reassessment method (TITE-CRM) to bivariate outcomes. Simulation 

studies are conducted to evaluate the proposed method, and we found that the proposed design is 

able to accurately select doses that maximize efficacy and have acceptable toxicity, while using all 

available information in allocating patients at the time of dose assignment. We compare the 

proposed methodology to two existing methods in the area.
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1 Introduction

Historically, the primary objective of Phase I clinical trials is to identify the maximum 

tolerated dose (MTD) of the agent or agents being investigated. In the subsequent Phase II 

trial, the agent is often evaluated for efficacy, at the recommended dose (MTD). In oncology 

trials of cytotoxic agents, identification of the MTD is usually determined by considering 

dose-limiting toxicity (DLT) information only, with the assumption that the MTD is the 

HHS Public Access
Author manuscript
J Biopharm Stat. Author manuscript; available in PMC 2020 July 02.

Published in final edited form as:
J Biopharm Stat. 2019 ; 29(4): 635–647. doi:10.1080/10543406.2019.1634087.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highest dose that satisfies some safety requirement, so that it provides the most promising 

outlook for efficacy. In general, the design of Phase I trials is driven by the assumption of 

monotone increasing dose-toxicity and dose-efficacy relationships. In the current landscape 

of oncology drug development, the classic assumptions imposed by cytotoxic agents may no 

longer be applicable, requiring new strategies for dose selection and trial design.

By contrast, many biological agents are assumed safe overall and higher doses do not 

necessarily produce greater efficacious response. However, we must still monitor for the 

unexpected and account for safety. Conditional on safety, other outcomes may serve as the 

primary endpoint in determining which dose to carry forward. Examples include an early 

measure of efficacy (i.e. clinical response), pharmacokinetic/pharmacodynamics, and 

biological targets (i.e. immune response). Dose-efficacy relationships for these agents may 

exhibit non-monotone increasing patterns, such as increasing at low doses and plateauing at 

higher levels, or peaking at an intermediate dose. For example, molecules with anti-

angiogenic activity often appear to exhibit hormesis, i.e., bell-shaped dose-response curves 

(Reynolds 2010). A review of 24 Phase I targeted therapy trials show that patients receiving 

lower doses do not necessarily fare worse (Jain et al. 2010). A lower dose than the MTD 

may exhibit as much activity as higher doses, and beyond this dose we are merely adding 

toxicity. If the dose-efficacy relationship is monotone increasing, the MTD is the most 

efficacious dose with an acceptable risk of toxicity. In this case, we would want a dose-

finding method to be able identify the MTD. However, if the dose-efficacy relationship 

plateaus or peaks at a dose lower than the MTD, we would want to recommend a lower dose 

and the goal of the trial shifts to identifying a dose with acceptable toxicity that maximizes 

efficacious response. In recent years, there have been several new methods proposed for 

locating such a dose in Phase I-II trials of biological agents, including Zhang et al. (2006), 

Braun (2002), Thall & Cook (2004), Wages & Tait (2015), among many others. A 

comprehensive overview of Bayesian designs for Phase I-II clinical trials is provided by 

Yuan et al. (2016).

Most existing Phase I-II methods, in their current form, are most appropriate when both 

binary toxicity and binary efficacy endpoints can be observed in a reasonably similar and 

short time-frame. Yuan & Yin (2009) and Yin et al. (2013) note that in some practical 

situations, this may not be possible due to the fact that efficacy may occur much later than 

toxicity. If this delay is expected, then most Phase I-II methods are not optimal because the 

trial would have to either pause before each patient is enrolled in order to fully observe the 

efficacy responses or to assign doses base on less efficacy data than toxicity data. If the 

delay is particularly long, then it will cause the duration of the trial to be much too long and 

wastes resources (Yuan & Yin 2009). The are several existing phase I-II methods that are 

able to handle delayed outcomes, including Yuan & Yin (2009), Jin et al. (2014), Liu & 

Johnson (2016), and Riviere et al. (2018). While there are similarities between the 

methodology we propose and that described in Riviere et al. (2018), the main differences are 

that their methods rely upon a set of multi-parameter logistic models and that their methods 

only model efficacy as a time-to-event outcome. Our method models both toxicity and 

efficacy as time-to-event outcomes, governed by a class of single parameter continual 

reassessment method (CRM; O’Quigley et al. (1990)) models. In our simulation studies in 

Section 3, we provide a comparison to two methods described in Riviere et al. (2018).
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1.1 Motivating application

This work is motivated by a Phase I-II clinical trial studying the dosing of all-trans retinoic 

acid (ATRA) (Schenk et al. 2014) in combination with a fixed dose of daratumumab (Lonial 

et al. 2015) in the treatment of relapsed or refractory multiple myeloma. The trial was 

designed to find a dose that is safe and that maximizes efficacy, from among three dose 

levels of ATRA {15, 30, 45 mg/m2} and a fixed dose of daratumumab {16 mg/kg}. The 

decision endpoints are dose-limiting toxicities (DLTs), based on protocol-specific adverse 

event definitions, in one cycle (i.e., 28 days) of therapy, and early measures of efficacy, 

defined by best overall response (CR or PR) at 8 weeks of treatment. To address the problem 

of delayed efficacy presented by this example, we propose a time-to-event (TITE) extension 

to the method of Wages & Tait (2015), which assumed completely observed bivariate binary 

outcomes that were obtainable in a reasonably similar time frame.

1.2 Study objective

In general, consider a trial aimed at selecting a safe dose that maximizes efficacy, denoted ν, 

from a set of I pre-defined dose levels 𝒟 = d1,d2,…,dI . Using the terminology of Riviere et 

al. (2018), we term ν a correct dose. Denote the probability of DLT at each dose level by 

πT(di), and the efficacy probability at each dose level by πE(di). Based on a pre-specified 

maximum DLT rate ξ, we want to exclude overly toxic doses, defining a set of acceptable 

(safe) doses as 𝔸 = di: πT(di) < ξ . The primary objective of the study is to identify a dose ν 

such that:

ν = arg max
di ∈ 𝔸

(πE(di)). (1)

The primary objective at the conclusion of the study is to locate ν. The goal within the trial 

is to allocate as many patients as possible at and around ν, while some patients are still 

under observation for toxicity and efficacy responses.

2 Proposed methods

We lean upon the strategy of the TITE-CRM (Cheung & Chappell 2000) to propose a time-

to-event extension to the Wages & Tait (2015) method. At the time a dosing decision is to be 

made, we utilize data from patients who have only been observed for a portion of the 

observation window associated with either endpoint, in addition to those who have been 

completely followed for the entire toxicity and efficacy evaluation period.

2.1 Models and inference for toxicity

Toxicity is modeled using TITE-CRM, introduced by Cheung & Chappell (2000), as a way 

to utilize information from partially observed subjects throughout the trial. In the absence of 

DLT, each accrued patient is assigned a weight that is a function of the portion of the DLT 

evaluation window that he or she has been followed. A patient that has been observed for the 

entire DLT observation window or experienced a DLT within that window provides 

complete information and is fully weighted. Like the CRM, the TITE-CRM assumes a 

working dose-toxicity model ψ(di, θ) that is monotonic in both dose level, di, and the 
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parameter, θ. A common choice is the power model ψ(di,θ) = pi
exp(θ), where 0 < p1 < ⋯ < pI 

< 1 are pre-specified constants, often referred to as the skeleton of the model. At the time 

each dosing decision is to be made, given the observed DLT data accrued up to the first n 
patients, the weighted likelihood of the model parameter θ is given by

Ln(θ; w) = ∏
j = 1

n
(w j,n + 1ψ(x j,θ))

y j,n + 1(1 − w j,n + 1ψ(x j,θ))
1 − y j,n + 1, (2)

Where xj ∈ {d1,…,dI} is the dose administered to patient j, yj,n+1 is the DLT indicator for 

patient j prior to the enrollment of patient n+1, and wj,n+1 is the toxicity weight assigned to 

the observation just prior to the entry of patient n+1. As patient n+1 is accrued to the study, 

based on a prior distribution f(θ), the model parameter θ can be estimated via the posterior 

mean in a Bayesian framework by computing

θn
w =

∫ θLn(θ; w) f (θ)dθ

∫ Ln(θ; w) f (θ)dθ ,

whereby estimates of the DLT probabilities at each dose level can be computed as 

πT(di) = ψ(di,θn
w). These estimates will be used in estimating an acceptable set of safe doses 

by evaluating which doses have estimated probabilities less than a maximum acceptable 

DLT rate ξ so that 𝔸 = di: πT(di) < ξ .

The weight function represents the amount of information available from a patient when a 

new patient is to be enrolled in the study. Denote the length of time that defines the protocol-

specific DLT evaluation window as λT. Cheung & Chappell (2000) evaluated the impact of 

various weight functions, and their simulation results point towards the adequacy of a linear 

weight function in many cases. That is, suppose a patient has been followed for time uT. A 

weight proportional to the length of follow-up λT is given by

w(uT; λT,x j) = min(uT /λT,1), (3)

with patients who have completed the full DLT evaluation period, as well as those who have 

experienced a DLT at any time, receiving a weight of 1.

2.2 Models and inference for efficacy

As for toxicity, the modeling framework for efficacy uses partially observed efficacy data 

from patients who have not yet completed a full efficacy observation period. In the absence 

of an efficacious response, each accrued patient is assigned a weight that is a function of the 

portion of the efficacy evaluation window that he or she has been followed. A patient that 

has been observed for the entire efficacy observation window or experienced an efficacious 

response within that window provides complete information and is fully weighted. As in the 

original Phase I-II design proposed by Wages & Tait (2015), efficacy is modeled by 

constructing multiple working models for efficacy and utilizing model selection techniques 

to allow for the uncertainty in the shape of the dose-response curve. Both unimodal and 
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plateau skeletons for a total of L = 2I − 1 working models are included in the set of possible 

models, where I is number of pre-defined doses levels. For example, if I = 6, then we can 

construct a set of 11 working models as specified below in equation (10). We model the 

probability of efficacy at dose di via a class of working models ϕ𝓁(di; β𝓁) = qi𝓁
exp(β𝓁)

, where 

β𝓁 is a scalar parameter and 0 < q1𝓁 < ⋯ < qI𝓁 < 1 are the skeleton values under working 

model 𝓁. Given the observed efficacy data accrued up to the first n patients into the study, 

the weighted likelihood under working model 𝓁 of the model parameter β𝓁 is given by

L𝓁,n(β𝓁; v) = ∏
j = 1

n
(v j,n + 1ϕ𝓁(x j,β𝓁))

z j,n + 1(1 − v j,n + 1ϕ𝓁(x j,β𝓁))
1 − z j,n + 1, (4)

where xj ∈ {d1,…,dI} is the dose administered to patient j, zj,n+1 is the efficacy indicator for 

patient j prior to the enrollment of patient n+1, and vj,n+1 is the efficacy weight assigned to 

the observation just prior to the entry of patient n+1. Like toxicity, a linear weight function 

can be utilized in specifying patient efficacy weights. Suppose a patient has been followed 

for time uE. The weight function proportional to the length of follow-up λE is given by 

v(uE;λE,xj)=min(uE/λE,1), with patients who have completed the full efficacy evaluation 

period, as well as those who have experienced a efficacy at any time, receiving a weight of 1.

We denote a set of prior model probabilities as h={h(1),…,h(L)} and, for each model, a prior 

distribution on β𝓁 as g𝓁(β𝓁). One option is to set h 𝓁 = 1/L for all 𝓁 so that every model is 

equally likely at the beginning of the trial, although this structure could place larger prior 

probabilities on some models and smaller probabilities on other models if reliable prior 

information is available. Based on these priors and the likelihood under each model, after the 

accrual of n patents, the posterior model probability for model 𝓁 is given by:

τn(𝓁) =
h(𝓁)∫ L𝓁,n(β𝓁; v)g𝓁(β𝓁)dβ𝓁

∑𝓁 = 1
L h(𝓁)∫ L𝓁,n(β𝓁; v)g𝓁(β𝓁)dβ𝓁

. (5)

Each time a new patient is accrued to the study, all candidate models will be evaluated by 

their likelihood of representing the true dose-efficacy relationship. We appeal to sequential 

Bayesian model choice by choosing a model m ∈ {1,…,L} with the largest posterior 

probability such that m = argmax𝓁(τn(𝓁)) and estimate the probabilities of efficacy at each 

dose by computing

πE(di) = ϕm(di,βm,n
v );   βm,n

v =
∫ βmLm,n(βm; v)gm(βm)dβm
∫ βmLm,n(βm; v)gm(βm)dβm

.

In the original Wages & Tait (2015) method, patients were assigned to the dose with highest 

estimated efficacy probability within the estimated set of acceptable doses 𝔸. Early in the 

trial, when sample size was very small, patients were randomized within the safe range 𝔸, 

with randomization probabilities weighted according to the estimated efficacy probabilities. 

Randomization of the first nAR patients was referred to as the adaptive randomization stage, 
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and nAR was a specification that was calibrated at the design stage in order to yield good 

operating characteristics.

Yan et al. (2019) showed that an alternative randomization strategy tends to perform better 

regarding the accuracy of correct dose selection and patient allocation to correct doses. This 

alternative randomization strategy also eliminates the need of specifying nAR at the design 

stage. Therefore, for our proposed method, we choose to use the following randomization 

strategy. The estimated correct dose from each candidate model can be given as

𝒮 𝓁 = min arg max
di ∈ 𝔸

ϕ𝓁 di, β𝓁,n
v . (6)

Therefore we can adaptively randomize patients based on the likelihood of each model and 

its corresponding best dose 𝒮 𝓁 . The randomization probability is calculated as

Ri* =
Ri* *

∑i = 1
I Ri* *

,where Ri* * = ∑
𝓁 = 1

2I − 1
τn(𝓁)I(di = 𝒮 𝓁 and τn(𝓁) ≥ τ(L − L′ + 1)). (7)

where I(·) is an indicator function and τ(1) ≤…≤ τ(L) denote the ordered posterior model 

probability τn(𝓁). L is the total number of candidate models and L′ is the number of models 

being considered in the calculation of randomization probabilities. Equation (7) considers 

the recommended dose from L′ best-fit models and weights the recommendations of each 

model by τn(𝓁). Initially, there are L = 2I − 1 candidate models. Instead of considering all 

candidate models at each sequential dosing decision, we reduce the number of models being 

considered based on the observed sample size relative to the maximum total sample size N:

L′ = N − n
N

δ
L , (8)

where δ is a pre-specified constant and ⌈ ⌉ denotes the ceiling function, yielding the least 

integer that is greater than or equal to N − n
N

δ
L. Yan et al. (2019) recommends the use δ = 2 

or δ = 3 when total sample size is between 32 and 64. This allows the method to drop 

candidate models with fewer observations early in the trial, but more data are required to 

exclude a model towards the end.

2.3 Dose-finding algorithm

Starting the Trial: In order to get the trial underway, we will choose the efficacy skeleton 

with the largest prior probability, h(𝓁), among the orders being considered. If several, or all, 

of the models have the same maximum prior probability, then there are several options to 

assign the dose for the first patient. One may choose to start at the lowest dose level or the 

prior-estimated MTD. Another option is to determine the acceptable range 𝔸 from the 

toxicity skeleton and the first patient will be randomized with probability Ri* assuming 
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τ0(𝓁) = h(𝓁). For the purpose of this study, we choose to start from the lowest study dose 

level.

Conducting the Trial: After the first patient, we update the data and re-fit the model each 

time another subject is enrolled into the study. Throughout the trial, all patients will be 

randomized based on equation (7). Our method ensures that all patients are only randomized 

within the estimated safe range 𝔸. Early in the trial, patients are randomized to a wide range 

of dose levels. However, the range of randomization is expected to converge to correct doses 

as data accumulates.

Ending the Trial: The trial ends typically when a pre-defined maximum sample size N is 

reached. As in Wages & Tait (2015), we may also close the trial early for safety concerns or 

futility based on exact binomial confidence intervals, although we do not study such rules in 

this current work.

3 Numerical studies

3.1 Application to motivating example

The motivating example studies escalating doses of ATRA in combination with a fixed dose 

of daratumumab in the treatment of relapsed or refractory multiple myeloma. The trial aims 

at selecting a correct dose from three candidate dose levels of ATRA, {15,30,45 mg/m2}, 

denoted by d1,d2,d3. To design a study using the proposed method, we assume dose-toxicity 

is monotonic and choose toxicity prior skeleton p = (0.15,0.25,0.35). For this study, we only 

included skeletons that reflect dose-efficacy curves that plateau because we do not expect 

efficacy to decrease at higher doses. A class of L = 3 efficacy skeletons Q can be constructed 

as

Q =
0.2 0.3 0.4
0.3 0.4 0.4
0.4 0.4 0.4

.

For all model parameters, for both toxicity and efficacy, we used N(0,1.34) prior 

distributions. The DLT observation window is λT = 4 weeks and the efficacy observation 

window is λE = 8 weeks. If we waited until each patient is fully observed for efficacy before 

we enrolled the next patient, a trial of 35 patients would be impractically long. However, if 

we can enroll a patient every two weeks, our proposed method can shorten the trial duration 

to approximately 19 months by using partial information obtained from the patients who are 

still under observation.

We simulated DLT and efficacy outcomes under probability Scenario 2 in Table 1. The 

entire simulated trial of 35 patients is provided in Figure 1. Suppose the trial starts with the 

first patient receiving d1, and no DLT or efficacy responses are observed by the time the 

second patient is enrolled 2 weeks later. The weight of the toxicity outcome from the first 

patient is given by w(uT;λT,xj) = min(2/4,1) = 0.5 and the weight of efficacy outcome is 

v(uE;λE,xj) = min(2/8,1) = 0.25. Applying the TITE CRM, we can estimate the probability 

of DLT from the lowest dose to the highest dose, that is (0.11,0.20,0.29). With the likelihood 
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function (4), we can calculate the posterior model probabilities for each 𝓁 according to 

equation (5). For 𝓁 = 1,…,3, τ1(𝓁) = 0.327,0.333, and 0.339, respectively. The posterior model 

probabilities are very close to each other because we only have one observation. According 

to equation (6), the implied best dose for each model 𝓁 = 1,2,3 is dose level d3,d2,d1, 

respectively.

The second patient will be randomized, and the dose assigning probability calculated using 

equation (7). The randomization probability of each dose is 0.327,0.333, and 0.339. The 

second patient will have approximately the same probability of receiving each of the 

candidate doses. This is intuitively appropriate as we currently do not have enough 

information to favor one dose over another and rely mostly on the model skeletons. All three 

dose levels have positive probabilities to be assigned because the toxicity skeletons and 

observed data suggest that the estimated risk of DLT at the highest dose is smaller than the 

pre-specified threshold ξ = 0.33. For the second patient, all 3 models are included in the 

calculation of dose assigning probabilities since the sample is currently very small. As the 

sample size increases, we gradually reduce the number of models included in the 

calculation. The number of models used in probability calculation can be obtained from 

equation (8). This process continues until the maximum sample size is reached. Overall 

three DLTs are observed, two at d3 and one at d2. At d3, only 1/9=11% of patients had an 

efficacious response. At d2, 8/24=33% had an efficacious response. The correct dose is 

ultimately identified as dose level 2 with a true DLT probability of 0.10 and a true efficacy 

probability of 0.35.

For the motivating example, we ran simulations in R to demonstrate the operating 

characteristics under various true dose-outcome scenarios with a sample size of 35 patients 

accrued in cohorts of size 1. We detail the simulation scenarios and results in Table 1. 

Patient accrual is assumed to follow a Poisson distribution with rate = 0.5 per week. The 

time to event distribution for toxicity or efficacy response is assumed to follow either a 

conditional uniform distribution or a Weibull distribution. For a conditional uniform 

distribution, the time-to-event would be randomly generated on the interval (0,4) for toxicity 

and (0,8) for efficacy. For the Weibull model the shape parameter was fixed at a value of 4 

and the scale parameters were chosen so that the cumulative distribution function at times 

λT and λE would be the probability of toxicity and efficacy, respectively, at each dose level. 

Both of these time-to-event models were used in Cheung & Chappell (2000). Therefore, for 

each scenario, we investigated four different specifications:

1. Tox-U, Eff-U: the patients time-to-event for both toxicity and efficacy were 

generated under a conditionally uniform model.

2. Tox-U, Eff-W: the patients time-to-toxicity were generated under a conditionally 

uniform model; the patients time-to-efficacy were generated under a Weibull 

model.

3. Tox-W, Eff-W: the patients time-to-event for both toxicity and efficacy were 

generated under a Weibull model.
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4. Tox-W, Eff-U: the patients time-to-toxicity were generated under a Weibull 

model; the patients time-to-efficacy were generated under a conditionally 

uniform model.

For each scenario considered in Table 1, 1000 simulated trials were run. The results report 

the true toxicity probability at each dose, the true efficacy probability at each dose, the 

percentage of trials in which each dose was selected as the dose to carry forward at the end 

of the trial, and the average trial duration. Trial duration is calculated as the time from the 

treatment of the first patient to the time the last patient completed follow-up. It is clear from 

examining the results in Table 1 that the proposed methodology is performing well in terms 

of recommending correct doses in a high percentage of trials. In Scenario 1, there is a single 

dose d3 that is safe and maximizes efficacy, and our method selects this dose in more than 

60% of trials of 35 patients. In Scenarios 2 and 3, there are multiple doses that are safe and 

maximize efficacy and the method tends to select these doses in a very high percentage of 

trials. In Scenario 4, there is one unsafe dose and our method selects this dose in a low 

percentage of simulated trials. In supplemental material accompanying this article, we have 

provided additional simulation results over a broad range of scenarios with different 

assessment windows for the endpoints, patient accrual rates, and time-to-event distributions. 

In the following section, we provide a comparison to an alternative method in the area.

3.2 Operating characteristics

We performed extensive computer simulations in order to examine the operating 

characteristics of the proposed methodology and compare it to an alternative method in the 

area. We compared our method, termed TITE-B, to the results provided in Riviere et al. 

(2018) for two different methods described in their paper, termed MTA-RA and MTA-PM, 

in terms of the ability of each method to locate correct doses and the optimal dose, as well as 

to allocate patients to these doses. Using the definitions of Riviere et al. (2018), a correct 

dose is defined as a dose that maximizes efficacy and has an acceptable risk of toxicity and 

the optimal dose is defined as the lowest safe dose that achieves the highest efficacy. Note 

that in the case of plateau dose-efficacy probability scenarios, the definition of a correct dose 

may be met by more than one dose level, while the optimal dose is a single dose level. In the 

case of unimodal dose-efficacy probability scenarios, the optimal dose and the correct dose 

will coincide with one another as a single dose.

We generated operating characteristics over eight scenarios of I = 6 dose levels and four 

scenarios of I = 4 dose levels that appear in Riviere et al. (2018), with 2000 trials simulated 

under each scenario. In each scenario in Table 2, correct doses are indicated in bold type, 

and the optimal dose is underlined. The maximum sample size for each simulated trial was 

N = 60 patients and the toxicity upper bound used to define safe doses was ξ = 0.35. 

Because we are using results provided in Riviere et al. (2018) as a comparator, the MTA-RA 

and MTA-PM methods use a cohort size of 3 patients, whereas we recommend a cohort size 

of 1 for our method and use it throughout the conduct of TITE-B. We assumed that the 

patient accrual followed a Poisson process with a rate of 0.28 patients per week; i.e., 

approximately one patient every 3.5 weeks. The Riviere et al. (2018) methods assume that 

toxicity is quickly observable and thus treat the DLT endpoint as a binary endpoint that is 

fully observed at the time of each dosing decision. TITE111-B treats toxicity as a time-to-
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event outcome with the DLT evaluation window of λT = 4 weeks. Both methods model 

efficacy as a time-to-event endpoint using an efficacy evaluation period of λE = 7 weeks. In 

order to provide a justifiable comparison to Riviere et al. (2018), we assumed that at each 

dose level, the time-to-efficacy followed an exponential distribution exp(ζ), with the 

parameter ζ chosen such that at the end of follow-up, the efficacy rate at each dose matched 

those displayed in Table 2. That is,

ζi =
−log(1 − πE(di))

λE
;  i = 1,…,I (9)

so that ζ varies across the dose levels. For TITE-B, time-to-toxicity is also generated using 

an exponential distribution similar to equation (9), based on λT and πT(di).

All design specifications used for MTA-RA and MTA-PM are provided in Riviere et al. 

(2018). In Scenarios 1–8, for TITE-B, we used a toxicity skeleton of (p1,…,p6) = 

(0.02,0.06,0.12,0.20,0.30,0.40) and L = 11 possible efficacy skeletons of:

Q =

q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11

=

0 . 59,0.50,0.40,0.30,0.20,0.12
0.50,0 . 59,0.50,0.40,0.30,0.20
0.40,0.50,0 . 59,0.50,0.40,0.30
0.30,0.40,0.50,0 . 59,0.50,0.40
0.20,0.30,0.40,0.50,0 . 59,0.50
0.12,0.20,0.30,0.40,0.50,0 . 59
0.20,0.30,0.40,0.50,0 . 59,0 . 59
0.30,0.40,0.50,0 . 59,0 . 59,0 . 59
0.40,0.50,0 . 59,0 . 59,0 . 59,0 . 59
0.50,0 . 59,0 . 59,0 . 59,0 . 59,0 . 59
0 . 59,0 . 59,0 . 59,0 . 59,0 . 59,0 . 59

. (10)

q1 through q6 represent scenarios where the dose-efficacy peaked at dose d1 through d6, 

respectively; q7 through q11 are scenarios when dose-efficacy plateaus after the optimal 

dose. In Scenarios 9–12, we used a toxicity skeleton of p = (0.02,0.06,0.12,0.20) and L = 7 

possible efficacy skeletons of:

Q =

q1
q2
q3
q4
q5
q6
q7

=

0 . 59,0.50,0.40,0.30
0.50,0 . 59,0.50,0.40
0.40,0.50,0 . 59,0.50
0.30,0.40,0.50,0 . 59
0.40,0.50,0 . 59,0 . 59
0.50,0 . 59,0 . 59,0 . 59
0 . 59,0 . 59,0 . 59,0 . 59

. (11)
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In all scenarios, we assume no existing knowledge about the candidate models and set 

h(𝓁) = 1/L for 𝓁 = 1,2,…,L. For all model parameters, we used N(0,1.34) prior distributions.

3.3 Results

Figures 2 and 3 examine the operating characteristics of the proposed method regarding its 

ability to correctly select correct and optimal doses, as well as the number of patients treated 

at these doses. In Scenarios 1–8, most scenarios have multiple correct doses along the flat 

part of the dose-efficacy curves. In Scenarios 9–12, in the case of unimodal dose-efficacy 

curves, there is only one correct dose, which of course is also the optimal dose. In Scenario 7 

and 8, efficacy does not exactly plateau, but rather increases slightly beginning at dose levels 

2 and 3, respectively. In these scenarios, we take the optimal and correct doses to be the 

same as those reported in Riviere et al. (2018), even though it could be argued that the 

optimal doses are levels 6 and 4, rather levels 2 and 3, in Scenarios 7 and 8, respectively. 

Figures 1 and 2 report the percentage of trials that each method selected and treated patients 

at optimal and correct doses according to the definition of those doses in Riviere et al. 

(2018) in order to provide a justifiable comparison. Overall, the TITE-B selects correct 

doses in a higher percentage of simulated trials in nine scenarios of the twelve scenarios 

considered. On average across all scenarios, the TITE-B selects correct doses in 86.6% of 

simulated trials, the MTA-RA does so in 81.2% of trials, and MTA-PM does so in 69.4% of 

trials. In terms of patient allocation, the TITE-B treats 37.1 of 60 patients on average at 

correct doses, the MTA-RA treats an average of 31.7 patients at correct doses, and the MTA-

PM treats 31.0 patients on average at correct doses.

With regards to selecting and treating patients at the optimal dose, the MTA-RA and MTA-

PM methods tended to do a better job of locating the lowest dose with maximum efficacy 

when the dose-efficacy curve plateaus and there are multiple safe doses along the plateau 

(Scenarios 1–5). Dose-efficacy models in Riviere et al. (2018) are governed by a plateau 

parameter that is intended to accurately locate the dose at which the dose-efficacy curve 

begins to level off. However, if the beginning of the plateau occurs at a dose close to the 

boundary of acceptable (safe) doses (Scenario 6), or the dose-efficacy curve peaks at an 

intermediate dose and then begins to decline (Scenarios 9–12), then the TITE-B method 

tended to do better. Throughout Scenarios 1–8, the MTA-RA and MTA-PM methods 

performed better than the TITE-B method in terms of selecting the optimal dose, with the 

exception of Scenario 6 (66.6% for TITE-B; 55.2% for MTA-RA; 39.5% for MTA-PM). In 

terms of allocating patients to the optimal dose in Scenarios 1–8, the MTA-PM method 

performed the best of the three methods, allocating 24.8 patients on average to the optimal 

dose. The MTA-RA and TITE-B methods performed similarly on this metric, allocating 

16.96 and 17.5 patients, respectively, to the optimal dose in these scenarios.

It is difficult to know what impact the differences in these methods have on their various 

performances. For instance, the MTA-RA and MTA-PM methods do not model toxicity as a 

time-to-event endpoint, while the TITE-B method does. Also, the cohort size is larger for the 

MTA-RA and MTA-PM methods which could also contribute to differences in operating 

characteristics. These results provide a general comparison between the three methods, with 

the main take home message being that the TITE-B is better at identifying correct doses in a 
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broad range of scenarios and that the modeling framework in Riviere et al. (2018) enables it 

to better locate the lowest safe dose with maximum efficacy in the case of dose-efficacy 

curves that plateau beyond an intermediate dose. The limitations of this comparison include 

that we did not compare stopping rules for the various methods and that Riviere et al. (2018) 

does not report overall trial duration so it is difficult to know how much time is saved by 

modeling both endpoints as time-to-event outcomes when compared to their method.

4 Discussion

In this article, we answered the question posed in the Wages & Tait (2015) article about 

extending their method to situations efficacy outcomes may be delayed. We outlined a phase 

I-II method that accounts for varying degrees of delayed outcomes for both toxicity and 

efficacy endpoints in locating a correct dose, defined as a safe dose that maximizes efficacy. 

Through extensive simulations, we demonstrated the method’s ability to accurately select 

correct doses while ensuring all available information is used in assigning doses to 

participating patients. We also showed the robustness of the proposed method against 

various toxicity and efficacy probability scenarios, time-to-event distributions, and patient 

accrual rates.

Although faster patient enrollment may not diminish the accuracy of correct dose selection 

selection, it may decrease the number of patients receiving the correct dose (supplemental 

material). Therefore, when enrollment is very fast, the proposed method, as well as other 

methods, may face logistical implementation challenges. A solution is to temporarily pause 

enrollment to accumulate data from the existing patients. It requires further research to find 

and test appropriate enrollment restrictions. Another potential direction for future study is 

early termination rules. In our study, the trial continued until the maximum sample size was 

reached. Early termination rules, either for futility or safety, may further reduce expected 

trial duration and save resources.

The methodology proposed in this article differs from suggested methods in this area in 

several ways. The methods of Yuan & Yin (2009) and Jin et al. (2014) are based on different 

dose selection criteria than that described in Section 1.2. The method of Yuan & Yin (2009) 

is based upon locating the dose that maximizes the ratio of the areas under the survival 

curves (AUSC) of toxicity and efficacy as a trade-off, with a higher value of AUSC 

indicating a more desirable dose. The method of Jin et al. (2014) is driven by the definition 

of efficacy-toxicity (eff-tox) probability trade-off contours Thall2004. Both of these methods 

utilize a more complex modeling framework, whereas the method we proposed builds upon 

the under-parameterized TITE-CRM (Cheung & Chappell 2000). Comparison between our 

method and these methods would have been difficult since the primary objectives of the 

study may differ in that each method may be attempting to identify different doses within the 

same scenario. The method of Liu & Johnson (2016) assumes that efficacy probabilities are 

monotone increasing and does not account for plateau or unimodal relationships, so our 

method has more flexibility in being able to accommodate a more broad range of dose-

response curves. Finally, this paper only studied situations in which dosing decisions were 

guided by DLT’s that occurred in cycle 1 of treatment, which is generally 28 days. However, 

acute toxicity may not provide a complete representation of tolerability for targeted and 
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immune therapies. These new agents are being administered over extended periods of time, 

which can result in relevant DLTs occurring outside of a short-term evaluation window. 

Although not studied in this work, our method has the flexibility to accommodate various 

DLT assessment window lengths. An R package for the simulation and implementation of 

this work is currently under construction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Simulated trial using the proposed TITE-B design under Scenario 2 in Table 1.
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Figure 2: 
Simulated results under Scenarios 1–8.

Yan et al. Page 16

J Biopharm Stat. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Simulated results under Scenarios 9–12.
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Table 1:

Toxicity and efficacy probability scenarios and simulation results for the motivating example. The table reports 

the true toxicity probability at each dose, the true efficacy probability at each dose, the percentage of trials in 

which each dose was selected as the dose to carry forward at the end of the trial, and the average trial duration. 

The maximum sample size is N = 35 patients.

True (toxicity, efficacy) probability Duration

Scenario 1 (0.05, 0.15) (0.10, 0.30) (0.20,0.45) (months)

Tox-U, Eff-U 9.7 25.9 64.4 19.01

Tox-U, Eff-W 9.7 29.7 60.9 19.01

Tox-W, Eff-W 9.2 25.2 65.6 19.06

Tox-W, Eff-U 8.2 24.6 67.2 19.00

Scenario 2 (0.05, 0.15) (0.10, 0.35) (0.20, 0.35)

Tox-U, Eff-U 10.2 48.0 41.8 18.92

Tox-U, Eff-W 10.6 49.1 40.3 18.88

Tox-W, Eff-W 9.9 48.6 41.5 18.94

Tox-W, Eff-U 10.2 47.0 42.8 19.02

Scenario 3 (0.05, 0.30) (0.10, 0.30) (0.20, 0.30)

Tox-U, Eff-U 44.5 30.9 24.3 19.01

Tox-U, Eff-W 46.3 29.3 24.4 19.00

Tox-W, Eff-W 45.0 29.9 25.1 19.00

Tox-W, Eff-U 43.5 30.6 25.9 18.88

Scenario 4 (0.15, 0.15) (0.30, 0.30) (0.40, 0.30)

Tox-U, Eff-U 35.5 51.8 12.7 19.14

Tox-U, Eff-W 36.2 51.8 12 18.91

Tox-W, Eff-W 36.5 51.8 11.7 19.01

Tox-W, Eff-U 39 48.9 12.1 18.93
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Table 2:

True probability scenarios (S1–S12) taken from Riviere et al. (2018). In each scenario, correct doses, defined 

as doses that maximizes efficacy and have an acceptable risk of toxicity, are indicated in bold type. The 

optimal dose, defined as the lowest safe dose that achieves the highest efficacy, is underlined.

Dose level

Scenario 1 2 3 4 5 6

S1 Toxicity 0.005 0.01 0.02 0.05 0.10 0.15

Efficacy 0.01 0.10 0.30 0.50 0.80 0.80

S2 Toxicity 0.01 0.05 0.10 0.25 0.50 0.70

Efficacy 0.40 0.40 0.40 0.40 0.40 0.40

S3 Toxicity 0.01 0.02 0.05 0.10 0.20 0.30

Efficacy 0.25 0.45 0.65 0.65 0.65 0.65

S4 Toxicity 0.01 0.02 0.05 0.10 0.25 0.50

Efficacy 0.05 0.45 0.70 0.70 0.70 0.70

S5 Toxicity 0.01 0.05 0.15 0.20 0.45 0.60

Efficacy 0.10 0.35 0.60 0.60 0.60 0.60

S6 Toxicity 0.01 0.05 0.10 0.20 0.30 0.50

Efficacy 0.05 0.10 0.20 0.35 0.55 0.55

S7 Toxicity 0.02 0.07 0.13 0.17 0.25 0.30

Efficacy 0.30 0.50 0.70 0.73 0.76 0.77

S8 Toxicity 0.03 0.06 0.10 0.20 0.40 0.50

Efficacy 0.30 0.50 0.52 0.54 0.55 0.55

S9 Toxicity 0.01 0.05 0.15 0.25

Efficacy 0.10 0.35 0.60 0.30

S10 Toxicity 0.10 0.20 0.03 0.50

Efficacy 0.50 0.70 0.60 0.40

S11 Toxicity 0.05 0.10 0.16 0.22

Efficacy 0.02 0.28 0.50 0.80

S12 Toxicity 0.05 0.10 0.16 0.22

Efficacy 0.80 0.50 0.28 0.02
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