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Diabetes mellitus is a rising epidemic in most part of the world and is often associated with multiple organ dis-
orders such as kidney, liver, and cardiovascular diseases. Liver is a major metabolic hub, and the metabolic dis-
orders associated with diabetes result in liver dysfunctions culminating in spectrum of liver diseases such as fatty
liver disorders, cirrhosis, and hepatocellular carcinoma. The intervention strategies to prevent diabetes-associ-
ated liver injury require an overall understanding of the key factors and molecular pathways which can be stra-
tegically targeted. The present review focuses on some of the key aspects of fatty acid metabolism, fetuin-A
regulation, inflammatory pathways, and genetic factors associated with insulin resistance, dyslipidemia, hyper-
glycemia, oxidative stress, and so on involved in the nexus between diabetes and liver injury. Further recent in-
terventions, pharmacological target, and newer therapeutic agents are discussed briefly for the better clinical
management of diabetes-associated hepatic disorders. ( J CLIN EXP HEPATOL 2019;9:607–618)
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Diabetesmellitus (DM) is a growing epidemic world-
wide. The World Health Organization (WHO) re-
ported the burden of adults with diabetes to be

422 million in 2016 as compared with 108 million in 1980
globally. The global prevalence (age-standardized) of dia-
betes has nearly doubled since 1980, rising from 4.7% to
8.5% in the adult population. Similar pattern was observed
all over Asia with an increase in frequency of diabetic adults
from 4.1% to 8.6% due to changes in life style in the span of
20 years. The WHO also reported that blood glucose age-
standardized mortality rates per 100000 in the Southeast
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Asian region were 115.3 times higher irrespective of gender
bias.1 Other associated disorders such as end-stage renal dis-
eases, retinopathy, cardiovascular, and liver disorders were
found to be 12%–55%, 2.6%, 40%, and 12.3%–57%, respec-
tively in diabetic patients. It is reported that the global prev-
alence of nonalcoholic fatty liver disease (NAFLD) ranges
from 50% to 75% in patients with type 2 diabetes mellitus
(T2DM),2,3 whereas in India, this range is in fact wider
ranging from 12.5% to 87.5%.4 Furthermore, more than
90% of obese patients with T2DM are strongly associated
with NAFLD.5

The metabolic defects associated with diabetes often
result in altered liver metabolism resulting in hepatotoxic-
ity and cell death. Although liver has a good regenerative
potential, long-standing diabetes can manifest in a spec-
trum of liver diseases which include altered liver functions,
nonalcoholic fatty liver, end-stage liver disease or cirrhosis,
liver failure, and even hepatocellular carcinoma (HCC).6,7

NAFLD has been recognized as a common complication
in patients with T2DM.5,8 However, the pathogenesis of
T2DM involves strong association with a liver injury
which is collectively termed as diabetic liver injury (DLI)
with reference to insulin resistance.9 Insulin resistance, he-
patocytes injury, and free fatty acid (FFA) are the major cul-
prits which are involved in the pathogeneses ofDLI.Most of
the ingested or synthesized fatty acids have two fates, either
they incorporate into triacylglycerols for the storage ofmeta-
bolic energy or get incorporated into the phospholipid
component of the membrane depending upon the organ-
ism's need.10 Once there is a constant elevation of FFA, it
leads to inhibition of glucose uptake, glycogen synthesis,
glucose oxidation, and increase in hepatic glucose output
vier B.V. All rights reserved.
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which produces the state of insulin resistance resulting in
reduction of insulin-stimulated insulin receptor substrate
1(IRS-1) phosphorylation and its associated PI3K activity.11

This, in turn, leads to suppression of hepatic gluconeogen-
esis by promoting Forkhead box proteinO1 (FOXO1) trans-
location to the nucleus. Thus, stimulation and
accumulation of FFA is the main leading cause to the pro-
gression of T2DM and associated liver injury (Figure 1).12
PATHOLOGICAL EVENTS ASSOCIATED WITH
DIABETIC LIVER INJURY

Dyslipidemia
The primary risk factors for T2DM and the metabolic syn-
drome include dyslipidemia, obesity, and hypertension.13

Dyslipidemia is directly or indirectly involved in the path-
ogenesis of DLI by inducing insulin resistance and hepatic
steatosis. Insulin resistance is also associated with an in-
crease of FFA flux that contributes to increased triglycer-
Figure 1 Molecular mechanisms involved in the pathogenesis of diabetic-ass
mia. Fatty-acyl coenzymes-A (AcCoAs) (shown here as phosphatidic acid, PA)
then added to the glycerol backbone by phosphatidic acid phosphatase (PAP
(DGAT) to generate triacylglycerol (TAG). Increased DAG causes protein kina
signaling. Reduced phosphorylation of insulin receptor substrate-2 (IRS-2) and
dent protein kinase-1 (PDK-1) activity, suppressing glycogen synthase kinase-
synthesis through reduced glycogen synthase (GS) activity. Fatty acids (FAs) d
fatty-acid transport proteins (FATPs), mainly FATP2 and FATP5 in the liver.
AcCoA and the conversion of glycerol 3-phosphate (G3P) by either mitoc
GPAT (msGPAT). In case of hepatocytes injury, Th17 cells and DAMPs
cause inflammation. FOXO1, Forkhead box protein O1; PC, pyruvate carbox
6-phosphatase; PIP3, phosphatidyl inositol (3, 4, 5)-triphosphate; Th17, T he

608 © 2018 Indian National Associa
ides production that, in turn, stimulates assembly and
secretion of very low–density lipoprotein (VLDL) in hepa-
tocytes.14 Preclinical animal model study revealed that
apigenin treatment reversed the effect of high fat diet–
induced metabolic disturbances such as dyslipidemia, he-
patic steatosis, and insulin resistance in C57BL/6J dia-
betic mice.15 Similarly, Harriman et al16 in 2016 also
demonstrated that ND-630 inhibits the acetyl-CoA
carboxylase and reduces hepatic steatosis, improves insu-
lin sensitivity, and modulates dyslipidemia in diabetic
rats. It is also demonstrated that fatty liver and dyslipide-
mia with insulin resistance is relatively common in over-
weight and obese volunteers with T2DM.17 In fact,
dyslipidemia is linked with high plasma levels of triglycer-
ides, FFAs, cholesterol, and low plasma high density lipo-
proteins /low density lipoproteins (HDL/LDL) ratio in
obesity-associated hepatic steatosis patients. Similar asso-
ciations of dyslipidemia were also observed in obese
Zucker fa/fa rats.18
ociated fatty liver disorders via hepatic insulin resistance and hyperglycae-
formed by 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2) are
) to generate diacylglycerol (DAG) and by diacylglycerol acyltransferases
se Cε (PKCε) translocation to the cell membrane, which inhibits insulin
PI(3)K impairs AKT2 activity by reductions in 3-phosphoinositide-depen-
3 (GSK-3) phosphorylation and reducing insulin-stimulated liver glycogen
erived from lipolysis and from chylomicron remnants are taken up through
Fatty acids can also be reesterified to lysophosphatidic acid (LPA) by

hondrial glycerol-3-phosphate acyltransferase (mtGPAT) or microsomal
production lead to the secretion of cytokines and chemokines which
ylase; PEPCK, phosphoenolpyruvate carboxykinase; G6Pase, glucose-
lper 17 cells; DMPs, damage-associated molecular patterns.

tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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Oxidative Stress
Diabetes induces oxidative stress in the liver, which is char-
acterized by an increased concentration of reactive oxygen
species in tissue leading to significant reduction in antiox-
idants and increment in lipid peroxidation and protein
oxidation. In the background of diabetes, this oxidative
distortion in the liver determines the severity of pathogen-
esis from NAFLD to steatohepatitis leading to cirrhosis.19

Animal studies have evidenced that treatment with biotin-
(15 mg/kg) attenuated hepatotoxicity and oxidative stress
in streptozotocin (STZ)-induced type 1 diabetes in Swiss
albino mice.20 Another study has reported that Hypoxis
hemerocallidea significantly reduced hyperglycemia and
hyperglycemic-induced oxidative stress in the liver and kid-
ney tissues of streptozotocin-induced diabetic wistar
rats.21 Preclinical study from our group reported that there
was significant reduction in hypoxia-inducible factor-1
alpha (HIF-1alpha), catalase enzyme levels and increase
in renal tissue malonaldehyde levels in the diabetic group
in comparison with the carbohydrate restriction adminis-
tered group. This study directly revealed that oxidative
stress andHIF-1alpha play amajor role in the pathogenesis
of diabetic-associated renal injury.22 There are numerous
supportive reports available which evidently proved that
there is the possible role of oxidative stress in the develop-
ment of the diabetes-associated metabolic syndrome.

Insulin Resistance
In many liver diseases, insulin resistance has been recog-
nized as an independent predictor and risk factor for the
development of alcoholic and nonalcoholic steatohepati-
tis, chronic viral hepatitis, and HCC.23–27 Insulin
resistance causes activation of hormone-sensitive lipase
which results in increased fat mobilization. This leads to
increased levels of circulating FFA in the serum and liver,
with the formation of a large amount triglyceride
deposition in the liver which contributes to hepatocytes
degeneration and fatty liver disease.28 Insulin resistance
is often associated with fibrosis in NAFLD patients.29 Sid-
diqui et al30 demonstrated that decrease of b-cell func-
tioning results in insulin resistance in patients suffering
from nonalcoholic steatohepatitis (NASH).

Hyperglycemia
Hyperglycemia and insulin resistance has an important
correlation with respect to the diabetes and liver disorders.
It is reported that individuals with high HbA1c had higher
risk of hepatic steatosis. Another scientific evidence re-
ported that hyperglycemia directly or indirectly concerns
with DLI in rodent model of high-fat/ethanol diet–
induced liver injury.31 Qingpu et al in 2016 demonstrated
that 1-deoxynojirimycin can increase hepatic insulin sensi-
tivity in db/db mice via modulating glucose metabolic en-
zymes and insulin-stimulated protein kinase B/glycogen
Journal of Clinical and Experimental Hepatology | September–October 2019
synthase kinase (PKB/GSK)-3b signal pathway. Moreover,
1-Deoxynojirimycin also improved lipid homeostasis and
attenuated hepatic steatosis in db/db mice.32 In another
study, it was reported that canine fibroblast growth factor
21 also ameliorated hyperglycemia by inhibiting hepatic
gluconeogenesis via regulating signal transducer and acti-
vator of transcription 3 signaling pathway. This indirectly
improved pancreatic beta-cell survival in diabetic mice and
dogs.33

Dysbalance in Intestinal Microbiota
Intestinal microbiota plays a major role in maintaining the
physiological,metabolic, and enzymatic homeostasis. Probi-
otics are well-known nutraceuticals which provide useful
health effects by acting on intestinal microbial ecology
and immunity. Probiotics also have a direct or an indirect
role in the treatment of obesity, insulin resistance syndrome
(IRS), type 2 diabetes, and NAFLD.34 One of the study
demonstrated that there is a higher levels of Lactobacillus
spp. in T2DMpatients in comparisonwith healthy controls.
Similarly, Chinese and European studies showed an
enhanced concentration of Lactobacillus gasseri, Streptococcus
mutans, and certain Clostridiales, and lower levels of Rosebu-
ria intestinalis and Faecalibacterium prausnittzii, in the diabetic
cohort.35 In fact, few drugs also change the flora of intestine,
as metformin administration resulted in increased levels of
Akkermansia muciniphila which leads to improvement of
glucose tolerance and reduced systemic inflammation.36

Along with lifestyle modifications, administration of Bifido-
bacterium longum with fructooligosaccharides were able to
significantly reduce the serumaspartate transaminase levels,
tumor necrosis factor (TNF-a), C-reactive protein, homeo-
stasis assessment model-insulin resistance, serum endo-
toxin, steatosis, and the NASH activity index compared
with lifestyle modification alone.37 Another study docu-
mentedbeneficial effect of probiotics VSL#3, administration
of VSL#3 that improved insulin resistance and reduced the
aortic plaque extension, mesenteric adipose tissue inflam-
mation, and steatohepatitis in ApoE�/� mice.38,39

Therefore, it seems that intestinal microbiota may play a
key role in the management of diabetes and liver disorders.
MOLECULAR MECHANISM OF DIABETIC
LIVER INJURY

Free Fatty Acid
An increased production of nonesterified fatty acids
(NEFA) from adipose tissue might be responsible for insu-
lin resistance which is the main risk factor for the develop-
ment of noninsulin dependent diabetes mellitus
(NIDDM).40 Elevated level of plasma FFA produces periph-
eral and hepatic insulin resistance, which in normal pa-
tients is compensated by FFA-induced potentiation of
glucose-stimulated insulin secretions. It is reported that
| Vol. 9 | No. 5 | 607–618 609
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in the development of NIDDM, FFAs fail to stimulate in-
sulin secretion, which leaves hepatic and peripheral insulin
resistance unchecked resulting in hepatic overproduction
and underutilization of peripheral glucose.41 The postu-
lated mechanism has been reported that increased FFA
oxidation causes elevation of the intramitochondrial
acetyl-CoA/CoA and NADH/NAD 1 ratios with subse-
quent inactivation of pyruvate dehydrogenase. This, in
turn, causes increased citrate concentrations which lead
to inhibition of phosphofructokinase and subsequent
accumulation of glucose-6-phosphate. Finally, increased
concentrations of glucose-6-phosphate cause inhibition
of hexokinase II resulting in decreased glucose uptake.2,3,42

Wu et al43 in 2011 demonstrated that db/dbmice fed on
high-fructose diet had significant increase in liver triglycer-
ide, glucose levels, insulin sensitivity, dysregulation of he-
patic de novo lipogenesis, fatty acid oxidation, and
glucose oxidation compared with the control group of
mice. This provided a proof of concept for the involvement
of FFA in the pathogenesis of diabetes and metabolic dis-
orders in rodent models. NAFLD not only increases the
risk of T2DM but also worsens glycemic control levels
and contribute to the pathogenesis of chronic complica-
tions of diabetes.43

Circulating FFA derived from adipocytes are elevated in
many insulin-resistant states and have been suggested to
play a key role in the pathogenesis of insulin resistance occur-
ring in diabetes and obesity by inhibiting glucose uptake,
glycogen synthesis, glucose oxidation, and by increasing he-
patic glucose output shown in Figure 1.44–46 So it may be
clearly stated that insulin resistance leads to increase in the
FFA flux, hyperglycemia, and hyperinsulinemia followed by
more fat accumulation which further enhances the
oxidative and inflammatory burden to the liver, finally
produces NASH in diabetic patients.

Similarly, elevated circulating FFA levels has been found
to be partly associated with diminished suppression of adi-
pose tissue lipolysis by insulin, resulting in increaseddelivery
of FFAs to the liver which is further exacerbated by impaired
hepatic fatty acid oxidation secondary to insulin resistance.
Once glucose levels are elevated in the perspective of predia-
betes or overt diabetes, this provides an auxiliary substrate
for triglyceride synthesis. Moreover, impaired VLDL secre-
tion, due to insulin resistance, further contributes to hepatic
fat accumulation and aggravates the pathological condi-
tions associated with diabetic and non-DLI.47,48
Fetuin-A (a2HS-glycoprotein)
It is a liver secretory glycoprotein, and also known as trans-
forming growth factor-b1 signaling inhibitor. Alteration in
serum fetuin-A (FetA) concentration is associated with
NAFLD and cardiovascular diseases. One of the clinical tri-
als suggested that FetA levels were elevated in NAFLD pa-
tients and hepatic expression of FetA level correlated with
610 © 2018 Indian National Associa
key enzymes in glucose and lipid metabolism.49 Therefore,
circulating FetA could be a useful serum biomarker for pre-
dicting liver and vascular fibrosis progression in NAFLD
patients.50 FetA has been implicated in the impairment
of insulin receptor signaling, toll-like receptor 4 activation,
macrophage migration and polarization, adipocytes
dysfunction, hepatocytes triacylglycerols accumulation,
and liver inflammation and fibrosis (Figure 2). Trepanow-
ski et al51 in 2015 has documented that weight loss, aerobic
exercise, and usage of metformin and pioglitazone are
effective in reducing FetA level.

Proinflammatory Cytokines
Inflammation is one of the pivotal mechanisms of liver
injury in diabetes.52 The rise in proinflammatory cytokines
favors diabetes-related glucose toxicity, leading to mito-
chondrial dysfunction, oxidative stress, and hepatocellular
death. The epidemiological, genetic, and experimental evi-
dence demonstrated a significant role of interleukin-6 (IL-
6) in the pathogenesis of inflammation, insulin resistance,
diabetes and associated complications.53,54 The mixed
inflammatory cells (mononuclear cells and a few
neutrophils) infiltration into the lobule and portal area
produces evident inflammation in the diabetic liver.55

Hyperlipidemia and hyperglycemia in diabetes induce
transcription of proinflammatory cytokines, TNF-a,
monocyte chemotactic protein-1 (MCP-1), adipokines,
and fatty acid-binding protein 4 which lead to hepatic
injury and insulin resistance.56,57 Recently, vitamin D3
was used to regulate IL-6 and osteopontin expression in
C56Bl/J6 diabetic mice liver.58

Chemokines
Chemokines are signaling proteins secreted by cells and
have an ability to induce directed chemotaxis in nearby
responsive cells in response to bacterial infection, viruses,
and agents that cause physical damage to the body organs.
However, their release is often stimulated by pro-
inflammatory cytokines.59 Numerous chemokines
(CXCL8, 11 and CCL2, 3, 4, 5, and 11) play a crucial role
in the pathophysiology of various devastating disorders
including hepatotoxicity, diabetes, and cardiovascular dis-
orders. Fractalkine (CX3CL1) is involved in the develop-
ment of numerous inflammatory conditions including
metabolic diseases. In the recent study, it is demonstrated
that plasma CX3CL1 levels were significantly higher
(P = 0.005) in T2D patients than in nondiabetics.60 Wehr
et al61 in 2014 suggested that monocyte chemoattractant
protein-1 (MCP-1, CCL2), the primary ligand for chemo-
kines receptor CeC chemokines receptor 2, is increased
in the livers of patients with NASH and murine models
of steatohepatitis and fibrosis. From the above scientific ev-
idences, it is concluded that various chemokines play vital
role in the pathogenesis of diabetes and liver disorders, but
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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still there is a requirement for exploring the role of chemo-
kines in the dual disease condition of DLI.

Adipokines
The adipocytokines are cytokines (cell-signaling proteins)
secreted by the adipose tissue which includes leptin, adipo-
nectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflam-
matory cytokines, such as TNF-a, IL-1b, and so on. These
adipocytokines play a vital role in the pathogenesis of dia-
betes and other metabolic disorders.62 Inflammatory adi-
pokines such as TNF-a, IL-6, LPS, and saturated FFA
activate inhibitory molecules such as protein tyrosine
phosphatase 1B (PTP1B), suppressor of cytokine signalling
(SOCS), and Jun N-terminal kinases to suppress insulin
signaling resulting in insulin resistance as shown in
Figure 3. Adipokines are associated with deteriorating liver
function in a complex manner in patients with alcoholic
Figure 2 Molecular mechanism of Fetuin-A involved in the pathogenesis of d
resulting in insulin resistance. FetA, a glycoprotein produced by the liver, co
binds to FetA, which then binds TLR4. TLR4 signaling leads to the activation
can then upregulate the transcription of inflammatory genes, resulting i
resistance. NF-kB, nuclear factor-kB; MyD88, myeloid differentiation factor 8
tein 1; IKK, IkB kinase; TIR-domain-containing adapter-inducing interferon-b
terminal kinases.
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liver cirrhosis. The alcohol-induced liver injury is related
to a variety of molecular factors including cytokines, adi-
pokines, chemokines, and neurotransmitters.63 It is sug-
gested that there is an alteration in the levels of different
adipokines in cirrhosis patients,64 although most studies
did not exclude patients with baseline diabetes which in it-
self is associated with altered adipokines.65

Hyperinsulinemia may down regulate adiponectin,
leading to hepatic lipogenesis and further decreasing
FFA oxidation. Thus, hyperinsulinemia may act as a major
contributor to the progression of liver damage through
stimulation of adipokines pathways. It is postulated that
inflamed and necrotic hepatocytes releases several types
of chemical mediators and adipocytokines which activates
the stellate cells to produce connective tissue growth factor
and collagen and cause an accumulation in the extracel-
lular matrix, thereby favoring fibrosis.3 It is well described
iabetic associated fatty liver disorders via suppression of insulin signaling
uld provide the elusive link between FFAs and the TLR4 pathway. FFAs
of the transcription factors, nuclear factor-kB (NF-kB) and AP-1, which

n the production of inflammatory cytokines that can lead to insulin
8; LPS, lipopolysaccharide; TLR4, toll-like receptor; AP-1, activator pro-
; MD2, myeloid differentiation protein-2; IkB, inhibitor of Kb; JNK, Jun N-
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Figure 3 Molecular mechanism of inflammatory adipokines involved in the pathogenesis of diabetic associated fatty liver disorders via suppression of
insulin signaling resulting in insulin resistance. PI3K-AKT signaling pathway regulates metabolic processes such as glucose uptake (muscle and ad-
ipocytes), glycogen synthesis (muscle and liver), protein synthesis (muscle and liver), and gluconeogenesis (liver). Inflammatory adipokines, TNF-a, IL-
6, LPS, and saturated free fatty acid, activate inhibitory molecules such as SOCS and JNK to suppress insulin signaling resulting in insulin resistance.
PI3K dependent PDK1 activation is negatively regulated by phosphor lipid phosphatase such as phosphatase and tensin homolog (PTEN) that
degrade PIP3. IRS2, insulin receptor substrate-2; FOXO1, Forkhead box protein O1; PC, pyruvate carboxylase; PEPCK, phosphoenolpyruvate car-
boxykinase; G6Pase, glucose-6-phosphatase; PIP3, phosphatidyl inositol (3, 4, 5)-triphosphate; Th17, T helper 17 cells; DMPs, damage-associated
molecular patterns; MAPK, Ras-mitogen-activated protein kinase; PI3K-AKT, phosphatidyl inositol 3-kinase; PKB, protein kinase B.
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that adiponectin and its receptors play an important role
in hepatic insulin resistance,66 and it is exhibited that
high molecular weight (HMW) oligomers help in attenua-
tion of hepatic insulin resistance. Within the same context,
the synthesis of the HMW oligomers is necessary to
mediate the insulin-sensitizing effects of adiponectin on
the suppression of hepatic gluconeogenesis in primary
rat hepatocytes.67

Linglin et al68 in 2006 reported that adiponectin
knockout mice were more insulin resistant than controls.
Similarly, one of the clinical trials suggested that increased
adiponectin level could help restore the hepatic insulin
resistance in severely obese women.69,70 From the above
evidence, it may be concluded that adiponectin might
prove as a promising target for hepatic insulin resistance.

Matrix Metalloproteinase
Matrix metalloproteinase (MMP) plays an important role
in atherosclerosis, but very little is explored related to the
612 © 2018 Indian National Associa
effects of hyperglycemia on MMP regulation in vascular
cells. In a recent scientific evidence, gelatin zymography
and western blot analysis revealed that the activity and
expression of 92-kDa (MMP-9) gelatinase, but not of
72 kDa (MMP-2) gelatinase, were significantly increased
in vascular tissue and plasma of two distinct rodent
models of DM.71 A recent study also documented that ma-
trix metalloproteinase (MMP-2 & 9) levels of the hepatic
tissue were significantly increased in the rodent model of
acute liver injury.72 Similarly, another study reported
that racemic gossypol with a dose of 15 mg/kg/day for 4
weeks followed by 15 mg/kg/week for additional 8 weeks
ameliorate messenger mRNA levels of glucocorticoid re-
ceptor (Nr3c1), phosphoenolpyruvate carboxykinase,
glucose-6-phosphatase, collagen I, collagen III, fibronectin,
tissue inhibitor of metalloproteinase 1, and 2 liver fibrosis
in diabetic rats induced by high-fat diet and streptozocin.73

Hou et al74 in 2014 suggested that insulin resistance–
induced alteration of MMP-9 to TIMP-1 ratio may play a
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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role in the elevation of collagen-IV, which may participate
in the development of hepatic fibrosis in the later course of
insulin resistance. However, there are number of studies
which suggested the role of MMP in diabetes and liver dis-
orders individually but very less contribution is there
which predict the role of MMP in dual DLI condition.

Genetic Factors
There are numerous genes which regulate various physio-
logical processes and play a pivotal role in the normal func-
tioning of liver and other major organs. The physiological
functioning such as insulin secretion, fatty acid synthesis
and oxidation, glucose uptake, and fatty acid metabolism
involve various genes such as sterol regulatory element-
binding protein (SREBP), fatty acid synthase (FAS), and
acetyl-CoA carboxylase (ACC1), and so on. Insulin resis-
tance is the key factor in NAFLD pathophysiology and is
deeply entangled with the progression of liver disease
through upregulation of various pathological pathways,75

but the causal relationship between insulin resistance and
fibrogenesis remains unclear. Functional common single
nucleotide polymorphisms (SNPs) of genes included in
the insulin-signaling pathway influence insulin resistance
and the susceptibility to type 2 diabetes. In 2010, it was
demonstrated that the combination of ENPP1, 121Gln,
and IRS-1 (insulin receptor substrate-1) 972Arg alleles
were associated with decreased activation of the insulin-
signaling pathway in the liver and influenced fibrosis
severity in a large multicentre series of NAFLD patients.76

On the basis of scientific literature, it is reported that dys-
lipidemia and fatty acid are the major culprits of liver-
associated disorders which directly enhance the fatty acids
accumulation in hepatocytes, and up-regulate de novo syn-
thesis and uptake in association with increased expression
of ACC1, FAS, SREBP, and adipophilin (ADRP) genes.
Table 1 List of Related Gene Mutations Involved in the Diabetes-

S. No. Gene Mutation

1 ENPP1 ENPP1: 121Gln

2 IRS-1 IRS-1: 972Arg

3 PNPLA3 PNPLA3:148M

4 FOXO1 FOXO1: 253S

5 IRS-1 IRS-1:G972R

6 SREBP-1c SREBP-1c: Ser372

7 CAPN10 Missense mutation
Thr504Ala

8 HADHa, ACOX,
BOX, CYP2E1,
and CYP4A11

Overexpressed

ENPP1, ectoenzyme nucleotide pyrophosphate phosphodiesterase 1; FOXO1
insulin receptor substrate; DM, diabetes mellitus; SREBP, sterol regulatory e
taining protein-3; CAPN10, calpain10.

Journal of Clinical and Experimental Hepatology | September–October 2019
Fatty acid oxidation–related genes, long-chain acyl-CoA
dehydrogenase (LCAD), long-chain L-3-
hydroxyacylcoenzyme A dehydrogenase alpha (HADHa),
uncoupling protein 2 (UCP2), straight-chain acyl-CoA ox-
idase (ACOX), branched-chain acyl-CoA oxidase (BOX), cy-
tochrome P450 2E1 (CYP2E1), CYP4A11, and carnitine
palmitoyltransferase 1a (CPT1a) were also over expressed,
indicating that oxidation was enhanced in NAFLD and
worsen the pathological conditions.77 One of the studies
suggested that transcriptional induction of fatty acid syn-
thase (FASN) gene expression in hepatic steatosis is
impaired in NASH, whereas hepatic inflammation in the
absence of steatosis does not affect FASN expression, sug-
gesting that FASNmay serve as a new diagnostic marker or
therapeutic target for the progression of NAFLD.78 The
related gene mutations involved in the diabetes-associated
liver injury are summarized in Table 1.

Current Therapies for the Management of
Diabetes-Associated Liver Disorders
Diabetes is classified into two types: T1DM and T2DM;
however, it is suggested that T2DM is mostly linked with
the metabolic disorder which is associated with liver
dysfunction. Most of the clinical hepatologists prescribed
oral antihyperglycemic for the management of diabetic-
associated liver disorder. The dietary interventions are
the first choice of treatment for the management of dia-
betes-associated liver disorder; however, recent study by
Krishan et al22 in 2018 suggested that carbohydrate restric-
tion ameliorates diabetes associated complications by
reducing oxidative stress and upregulating HIF-1alpha
levels in type-1diabetic rats. However, the oral antihyper-
glycemic such as thiazolidinediones, biguanide, sulfonyl-
ureas, alpha-glucosidase inhibitors, dipeptidyl peptidase
4 (DPP-4) inhibitors, glitazones, and meglitinides proved
Associated Liver Injury.

Pathology associated Reference

Insulin resistance associated with NAFLD 76

Insulin resistance associated with NAFLD 76

Hepatic inflammation and NAFLD 79

Insulin resistance with increased hepatic
glucose production

80

Insulin resistance 81

Insulin resistance, dyslipidemia, 82

Insulin resistance, T2DM 83

Fatty acid metabolism dysregulation, NAFLD 77

, Forkhead box protein O1; NAFLD, nonalcoholic fatty liver disease; IRS,
lement-binding protein; PNPLA3, patatin like phospholipase domain-con-
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to be pleiotropic and targeted various pharmacological tar-
gets and helped to control the progression of DLI.84

Recently, in 2013, Armstrong et al85 documented that lira-
glutide was safe, well tolerated, and improved liver enzymes
in patients with type 2 diabetes. It is also reported that
administration of liraglutide improved T2DM but also
leading to improvement of liver inflammation, alteration
of liver fibrosis, and reduction of body weight.86 Similarly,
glucagon-like peptide 1 agonists and DPP-4 inhibitors
show promising preliminary results in patients of NAFLD
with diabetes.87 In 2016, study demonstrated that Ipragli-
flozin (SGLT2 inhibitors) improves NAFLD in T2DM pa-
tients.88 Still there is a need to explore more about the
clinical interventions and new pharmacological interven-
tions for the management of diabetes associated liver dis-
order.
Table 2 Recent Advances and Novel Interventions in the Treatme

S. No. New approaches and outcomes Intervention a

1 Hepatoprotective effects of the dual
peroxisome proliferator-activated receptor
alpha/delta agonist, Elafibranor (GFT505),
in rodent models of nonalcoholic fatty liver
disease/nonalcoholic steatohepatitis

Proliferator-activat
alpha/delta agonis
GFT505)

2 The probiotics mixture showed promise as
a treatment for NAFLD pathogenesis, and
may improve HFSD-induced steatosis
through its effects on leptin, resistin,
inflammatory biomarkers, and hepatic
function markers in rodents.

Probiotics mixture

3 One of scientific data suggested that
Rosuvastatin has potential for use as a
preventive drug for the development of
HCC associated with NAFLD in mice

Competitive inhibit
HMG-CoA reductas

4 Novel Thiazolidinedione (Lobeglitazone)
improves Non-Alcoholic Fatty Liver
Disease in Type 2 Diabetes.

Thiazolidinedione c
and act as an agon
PPARa and PPARg

5 Rimonabant reduces obesity-associated
hepatic steatosis and features of
metabolic syndrome in obese Zucker fa/fa
rats

Inverse agonist for
receptor CB1 (rimo

6 Farnesoid X nuclear receptor ligand
obeticholic acid for noncirrhotic,
nonalcoholic steatohepatitis (FLINT): a
multicentre, randomized, placebo-
controlled trial.

Farnesoid X nuclea
and semisynthetic
(Obeticholic acid)

7 Vitamin E therapy changes serum alanine
aminotransferase levels in patients with
non-alcoholic steatohepatitis.

Act as a fat-soluble
(vitamin E)

8 Saroglitazar improves diabetic
dyslipidemia, in patients with diabetic
dyslipidemia and liver dysfunction- an
observational study

Saroglitazar (perox
proliferator–activat
(PPAR) agonist at t
and g)

NAFLD, nonalcoholic fatty liver disease; T2DM, type 2 diabetes mellitus; HC
proliferator–activated receptor; HMG, 3-hydroxy-3-methyl-glutaryl.

614 © 2018 Indian National Associa
RECENT ADVANCES AND NOVEL
INTERVENTIONS IN THE TREATMENT OF
DIABETES-ASSOCIATED LIVER DISORDERS

There are numerous scientific reports which demonstrated
the novel therapeutic targets for the treatment of various
metabolic disorders that are directly or indirectly con-
cerned with NAFLD. Recently, Azam et al89 in 2017 sug-
gested that Naltrexone has a considerable role in
attenuation of ER stress-induced liver injury. Another
report demonstrated that carboxylesterase 2 prevents liver
steatosis by modulating lipolysis, endoplasmic reticulum
stress, and lipogenesis via regulation of
hepatocyte nuclear factor 4 a in mice.90 Newberry et al in
2017 reported that perturbing exogenous hepatic fatty
acid use modulates both hepatic steatosis and fibrosis in
nt of Diabetes-Associated Liver Disorders.

nd drug used Diabetes and associated liver
disorder

Reference

ed receptor
t (Elafibranor

NAFLD and IR 95

NAFLD and inflammation 96

or of the enzyme
e (rosuvastatin)

NAFLD and HCC 97

lass of drugs
ist for both
(lobeglitazone)

NAFLD and T2DM 98

the cannabinoid
nabant)

NAFLD and obesity 16

r receptor ligand
bile acid analog

Obeticholic acid improved the
histological features of
nonalcoholic steatohepatitis

99

antioxidant Nonalcoholic steatohepatitis 100

isome
ed receptor
he subtypes a

NAFLD and T2DM 101

C, hepatocellular carcinoma; IR, insulin resistance; PPAR, peroxisome

tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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the setting of hepatic microsomal triglyceride transfer
protein deletion, adding new insight into the pathophysi-
ological mechanisms and consequences of very low–den-
sity lipoprotein.91 One of the scientific reports suggested
that administration of fibroblast growth factor 21
(FGF21) in mice inhibits mammalian target of rapamycin
complex 1 (mTORC1) in the liver, whereas FGF21-
deficient mice display pronounced insulin-stimulated
mTORC1 activation and exacerbated hepatic insulin resis-
tance. FGF21 inhibits insulin- or nutrient-stimulated acti-
vation of mTORC1 to enhance phosphorylation of protein
kinase B in HepG2 cells at both normal and insulin resis-
tance condition.92 Moreover, Mazzotti et al in 2016 docu-
mented that drugs acting on the incretin axis and on Na-
glucose co-transport at renal tubular level offer new hopes
for a treatment to reduce the burden of hepatic triglyceride
accumulation and progression of liver disease.93 One of the
recent randomized controlled trial proved that empagliflo-
zin reduces liver fat and improves ALT levels in patients
with type 2 diabetes and NAFLD.94 However, the major
recent advances with new goals are summarized in Table 2.
N
A
FL

D

LAY SUMMARY

From the above scientific discussion, it is clear that insulin
resistance and FFA are the central culprits of DLI and
correlated with each other. As insulin resistance occurs,
there is a high influx of FFA, hyperglycemia, and hyperin-
sulinemia which produce fatty liver- and diabetes-like com-
plications. However, the vicious cycle of DLI is still under
revilement and needs more exploration through biological
approaches. There are certain genes such as SREBP-1c,
FAS, ACC1, and phosphoenolpyruvate carboxykinase
genes which when altered causes activation of various
pathological pathways. Other side of the coin includes
pathological connection such as dyslipidemia, hyperglyce-
mia, hyperinsulinemia, and oxidative stress which leads to
the progression of dual disorder of DLI. So, by validating
these molecular and pathological pathways, there is a
chance to find the therapeutic targets for the treatment
of DLI. Thus, novel intervention and approaches will
generate new insights for the development of the new phar-
macological basis.
CONCLUSION

It is concluded that insulin resistance, hepatocytes injury,
and FFA are the major culprits for the initiation of oxidative
stress, inflammation, dyslipidemia, hyperglycemia, and so on
which are involved in the pathogenesis of devastating DLI.
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