FIOOOResearch

F1000Research 2018, 7:1603 Last updated: 02 SEP 2019

RESEARCH ARTICLE

'.) Check for updates

Predicting transcription factor binding using ensemble random

forest models [version 1; peer review: 2 approved with

reservations]

Fatemeh Behjati Ardakani “*'1-3", Florian Schmidt

1-3" Marcel H. Schulz1-24

THigh throughput Genomics and Systems Biology, Cluster of Excellence on Multimodel Computing and Interaction, Saarland University,

Saarbruecken,, Saarland, 66123, Germany

2Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbruecken, Saarland, 66123, Germany
SGraduate School of computer science, Saarland University, Saarbruecken, Saarland, 66123, Germany
4Institute for Cardiovascular Regeneration, Goethe University Frankfurt Am Main, Frankfurt Am Main, Hessen, 60590, Germany

“ Equal contributors

V1 First published: 04 Oct 2018, 7:1603 (
https://doi.org/10.12688/f1000research.16200.1)

Latest published: 02 Sep 2019, 7:1603 (
https://doi.org/10.12688/f1000research.16200.2)

Abstract

Background: Understanding the location and cell-type specific binding of
Transcription Factors (TFs) is important in the study of gene regulation.
Computational prediction of TF binding sites is challenging, because TFs
often bind only to short DNA motifs and cell-type specific co-factors may
work together with the same TF to determine binding. Here, we consider
the problem of learning a general model for the prediction of TF binding
using DNase1-seq data and TF motif description in form of position specific
energy matrices (PSEMs).

Methods: We use TF ChlIP-seq data as a gold-standard for model training
and evaluation. Our contribution is a novel ensemble learning approach
using random forest classifiers. In the context of the ENCODE-DREAM in
vivo TF binding site prediction challenge we consider different learning
setups.

Results: Our results indicate that the ensemble learning approach is able
to better generalize across tissues and cell-types compared to individual
tissue-specific classifiers or a classifier applied to the data aggregated
across tissues. Furthermore, we show that incorporating DNase1-seq
peaks is essential to reduce the false positive rate of TF binding predictions
compared to considering the raw DNase1 signal.

Conclusions: Analysis of important features reveals that the models
preferentially select motifs of other TFs that are close interaction partners in
existing protein protein-interaction networks. Code generated in the scope
of this project is available on GitHub:
https://github.com/SchulzLab/TFAnalysis (DOI: 10.5281/zenodo.1409697).
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Introduction

Transcription Factors (TFs) are key players of transcriptional
regulation. They are inadmissible to maintain and establish
cellular identity and are involved in several diseases'. TFs bind
to the DNA at distinct positions, mostly in accessible chromatin
regions’, and regulate transcription by recruiting additional
proteins. The TFs can alter chromatin organization or, for
example, recruit an RNA polymerase to initiate transcription'.
Hence, to understand the function of TFs it is vital to identify the
genomic location of TF binding sites (TFBS). As TFs regulate
distinct genes in distinct tissues, these binding sites are tissue-
specific’.

Nowadays, the most prevalent and widely used method to
experimentally determine TFBS is through ChIPseq experiments,
which can be used to generate genome-wide, tissue-specific
maps of in-vivo TF binding. However, ChIP-seq experiments are
expensive, experimentally challenging, and require an antibody
for the target TE. To overcome these limitations, a number of
computational methods have been developed to pinpoint TFBS.
Most of these methods are based on position weight matrices
(PWMs) describing the sequence preference of TFs’. PWMs
indicate, for each position of a TF binding motif independ-
ently, which nucleotide is most likely to occur. Unfortunately,
screening the entire genome using a PWM results in too many
false positive predictions. Therefore, numerous methods have
been proposed to reduce the prediction error by combining
PWMs with epigenetics data, such as DNasel-seq, ATAC-seq,
or Histone Modifications, reflecting chromatin accessibility.
Also, additional features such as nucleotide composition, DNA
shape, or sequence conservation can be incorporated into the
predictions. Including these additional data sets and informa-
tion improved the TF binding predictions considerably*''.
A non-exhaustive overview is provided in 12. While PWM based
models are still the most common means to assess the likeli-
hood of a TF binding to genomic sequences, more elaborate
approaches such as SLIM-models, which capture nucleotide
dependencies, have been successfully used as well””. Recently,
deep learning methods have been used to learn TF binding
specificities de novo from large scale data sets comprising not
only ChIP-seq but also Selex and protein binding microarray
(PBM) data'”.

The ENCODE-DREAM in vivo Transcription Factor binding
site prediction challenge'> aims to systematically compare
various approaches on TFBS prediction in a controlled setup,
with the additional complexity of applying the classifiers on
the tissues/cell types that were not used for model training. The
challenge organizers provide TF-ChIP seq data for 31 TFs,
accompanied with RNA-seq and DNasel-seq data in 12 different
tissues. Using labels deduced from the TF-ChIP-seq data,
predictive models for TF binding should be learned and then
applied to a set of hold-out chromosomes on an unseen tissue.
Predictions are computed in bins, covering the entire target
chromosomes. The main challenge paper will provide a detailed
explanation of the challenge setup and a comparison across all
competing methods. This article is a companion paper to the
main ENCODE-DREAM Challenge paper, in which we describe
our contribution to the challenge, delineate the motivation for
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our work and provide an independent evaluation of our ideas to
achieve generalizability across tissues.

We developed an ensemble learning approach using random
forest (RF) classifiers, extending the work of Liu er al.''. Tissue-
specific cofactor information was shown to be relevant to accu-
rately model TF binding'"'°. Thus, we designed our approach to
aggregate tissue-specific cofactor data, via an ensemble step, into a
generalizable model. Briefly, we compute TF affinities with
TRAP'" for 557 PWMs in DNase-hypersensitive sites (DHSs)
identified with JAMM'®. TF affinities computed by TRAP are
inferred from a biophysical model. In contrast to a simple
binary classification, e.g. FIMO'", these scores can capture low
affinity binding sites, which were shown to be biologically
relevant”*'. Here, we show that our ensemble models generalize
well between tissues and that they exhibit better classification
performance than tissue-specific RF classifiers. Furthermore,
we illustrate that only a small subset of TF features is suffi-
cient to predict tissue-specific TFBSs and also show that these
TFs are often known co-factors/interaction partners of the target
TF.

Methods

Data

Within the scope of the challenge participants were provided
with ChIP-seq data for 31 TFs, as well as DNasel-seq and gene
expression obtained from RNA-seq data for 13 tissues. From
the available 31 TFs, 12 were used to assess the model perform-
ance in the final round of the challenge. Hence, we also focus
on these 12 TFs in the scope of this article: CTCF, E2F1, EGRI,
FOXA1, FOXA2, GABPA, HNF4A, JUND, MAX, NANOG,
REST, and TAF1. The number of binding sites per TF and
tissue is shown in Table 1. Note that we exclude ambiguous
sites from consideration in this study. We refer to the challenge
website for a detailed overview on the provided data”. The
challenge required that the predictions are made in bins of size
200bp, shifted by 50bp each, spanning the whole genome.

Data preprocessing and feature generation

In order to obtain datasets per tissue and per TF that could be
handled in terms of memory consumption and processing
time, and also to cope with the large imbalance number of
bound and unbound sites, we randomly sampled as many
negative sites from the provided ChIP-seq tsv files as there were
true binding sites per TE. The ChIP-seq labels contained in the
balanced and down sampled #sv files are used as the response
for training RF models.

Throughout the course of challenge, we have used two distinct
ways to generate features for the RF classifiers: (1) with and
(2) without considering DHSs. In none of the approaches have
we used the provided RNA-seq data nor did we compute DNA
shape features. Generally, we computed TF binding affinities
with TRAP' for 557 distinct TFs using the default parameter
settings. The position specific energy matrices (PSEMs) used in
our computation are converted from position weight matrices
(PWMs) obtained from JASPAR?, UniPROBE?, and Hocomoco™.
The code to perform the conversion and to run TRAP is available
on GitHub.

Page 3 of 26


http://jaspar.genereg.net/
http://the_brain.bwh.harvard.edu/uniprobe/
http://hocomoco11.autosome.ru/
https://github.com/SchulzLab/TFAnalysis

F1000Research 2018, 7:1603 Last updated: 02 SEP 2019

Table 1. Number of bins labeled as bound per transcription factor (TF) and tissue, deduced from TF ChiPseq data.

TF Number of bound sites per tissue

CTCF 305,547 (MCF-7)

E2F1 93,117 (GM12878), 55,391 (HelLa-S3)

179,672 (A549), 271,097 (H1-hESC), 206,336 (HeLa-S3), 208,868 (HepG2), 170,208 (IMR-90), 215,238 (K562),

EGR1 72,595 (GM12878), 52,733 (H1-hESC), 175,994 (HCT116), 58,793 (MCF-7)
FOXA1 256,632 (HepG2)
FOXA2 374,750 (HepG2)
GABPA 26,467 (GM12878), 51,666(H1-hESC), 31,202 (HelLa-S3), 60,552 (HepG2), 109,423 (MCF-7), 78,403 (SK-N-SH)
HNF4A 106,308 (HepG2)
JUND 203,665 (HCT116), 179,999 (HelLa-S3), 183,558 (HepG2), 193,814 (K562), 92,905 (MCF-7), 222,013 (SK-N-SH)
01615 (A549), 98,327 (GM12878), 224,379 (H1-ESO),
321,501 (HCT116), 211,590 (HelLa-S3), 317,579 (HepG2), 318,318 (K562), 250,775 (SK-N-SH)
NANOG 32.918 (H1-hESC)
REST

71,251 (H1-hESC), 47,654 (HeLa-S3), 67,453 (HepG2), 59,640 (MCF-7), 48,946 (Panc1), 94,082 (SK-N-SH)

TAF1 87,109 (GM12878), 185,027 (H1-hESC), 93,824 (HelLa-S3), 110,385 (K562), 83,276 (SK-N-SH)

We compared two approaches to generate features for the
classifier from DNasel-seq data. In the first approach, shown
in Figure la, we compute tissue-specific DHSs using the peak
caller JAMM' (version 1.0.7.2) and merge the peak calls using
the bedtools merge* command (bedtools version 2.25.0). Next,
TF affinities are calculated in the identified DHS sites using
TRAP, and the median DHS signal per peak is computed from the
provided bigwig files. The computed data is intersected, using a
left outer join with bedtools, with the binned genome structure
required for training (using the bins contained in the zsv files
mentioned above) and testing (using the provided bed-file
containing all test regions).

The second approach for computing the features is depicted in
Figure 1b. Here, we do not use the information on DHS sites,
instead we compute TF binding affinities and the DNasel-
seq signal per bin. To account for variability between both
biological and technical replicates, we calculate the median
DNasel coverage across the replicates using the bedtools
coverage command. Overall, the features for a single bin are com-
posed of the TF affinities in that bin, the DNasel signal in the bin
itself together with its left and right neighboring bins.

Ensemble random forest classifier

The Random Forest models, implemented using the
randomForest R-package” (version 4.6-12), are trained on either
of the feature setups explained in the previous section. Train-
ing the RF models can be seen as a two step approach that is
independent from the feature setup. Throughout model train-
ing, the balance between the bound and unbound classes
is maintained to avoid over-fitting of the RF classifiers
and also to ensure an unbiased evaluation of model per-
formance. For fitting the RF classifiers we used 4,500 trees,
and at most 30,000 positive and negative, i.e. bound and
unbound, samples. This restriction is enforced by the limi-
tations of the randomForest R-package. As illustrated in
Figure 2a, for a given target TF, we first learn tissue and TF

specific RF classifiers using all available features from the input
matrix, 7, € R™ ;i e {1, .. ,m}, where n is the number of bins
forming the training set, and m denotes the number of training
tissues for the target TF:

RF; = RandomForest(T,, Binding(T))),

here Binding(T) is a vector of length n, holding the binding
labels for the target TF in tissue i, and RandomfForest(., .)
generates the RF model trained on the features and labels pro-
vided by the first and second arguments respectively. An example
of the input matrix 7, and the response vector Binding(T) is
shown in Figure 2b. In the second step, to focus only on essential
regulators (c.f. Figure 3a), we shrink the feature space to the
union of the top 20 regulators taken over all tissue and TF spe-
cific RF classifiers, Tl-', by ranking the predictors according to their
Gini index (Figure 2c):

m
T, = Subset(T, Ul TopFeatures(RFj ),
j=

where TopFeatures(RFj) denotes the top 20 features of RF, and
Subset(., .) generates the reduced feature matrix based on the
union of the top TFs. In the following, we refer to a training data
set comprised of only one tissue as a single tissue case and to a
training data set composed of multiple tissues as a multi tissue
case. Considering the single tissue case, we train an RF model,
RF,, on the reduced feature space and use this as the final model
for the respective target TF:

RF; = RandomForest(T} , Binding(T))).

In the multi-tissue scenario, we retrain tissue-specific RF
models on the reduced feature space and apply them across all
available training tissues:

T, ={prediction(RF;, T/); i ={1, -, m} €[0,1]""},
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Figure 1. (a) Data preprocessing workflow using DNase1 Hypersensitive Sites (DHSs). Using JAMM, DHSs are called considering all
available replicates for a distinct tissue. Transcription factor (TF) affinities in the identified DHSs are computed using TRAP for 557 TFs,
the median signal of DHSs is assessed using bedtools. (b) An alternative data preprocessing workflow without DHSs: TF affinities and
median DNase1-seq signal are computed per bin.
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Figure 2. a) An overview of model training for a distinct transcription factor, TF, with multiple training tissues. Using the full feature matrices
T,, T, T, depicted in (b), TF and tissue-specific random forest (RF) classifiers are trained. From those RF classifiers (RF,, RF,, RF,), we
determine the union of the top 20 features from each RF. In this example, the union of top TFs is comprised of 24 TFs. Next, we design
reduced tissue-specific feature matrices 7;,7,,T;, as shown in (¢) based on the union of the top TF features. Subsequently, tissue-specific RF
classifiers (RF,,RF,,RF;) are trained on these reduced feature sets. The tissue-specific RF classifiers are applied to all training tissues and
their predictions are aggregated to form the feature matrix T}, visualized in (d), which is used to train an ensemble model (RF,). The ensemble
RF is used to make predictions on unseen data T, (e). Note that the column Tissue in d) is not included in the model but only shown here for
illustration purposes. The feature matrices shown represent feature setup (1) using DNase1 Hypersensitive (DHS) sites.

where Prediction (RFl_',Tl_') returns the predictions made by By design, the ensemble model incorporates the tissue-specific

RFE. when applied on the T Their predictions are combined RF classifiers in a non-linear way to better generalize across all
1 l . .. . . .

in a new feature matrix that is used as input to train an ensem- PrOV}ded traming. tissues. An example. matrix .that. is used to

ble RF, RF,. Note that the input matrix contains predictions of obtain predictions from an ensemble RF is shown in Figure 2e.

all tissue-specific RF models on all available training tissues

o . Performance assessment
(Figure 2d):
We used two different ways to assess model performance:
RF,; = RandomForest(Ty, Binding(Ty)). (1) While fitting the RF classifiers, we measure the out-of-bag
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Figure 3. a) Classification error for the Bound and Unbound classes for different sets of features: considering all features, the top 10, and
the top 20 features. One can see that the difference in model performance between the top 20 and all feature cases is only marginal. b)
Comparison of the out of bag (OOB) error between ensemble models and tissue-specific random forest (RF) classifiers. Especially in the
Unbound case, the ensemble models show superior performance compared to the tissue-specific RF classifiers. ¢) Misclassification rate
computed on unseen test data for ensemble and tissue-specific RF classifiers. As in b) we see that the ensemble models generally outperform
the tissue-specific ones. Note that the scale of the y-axis is different for the Bound and Unbound classes in (a) and (b).
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error (OOB), which is defined as the mean prediction error
for each training sample i using trees that were not trained on
sample i. The OOB error is computed separately for the Bound
and Unbound classes:

FpP

FN
Bound =———, Unbound = R
TN + FP

TP+ FN

where TP denotes the sites correctly predicted as bound, TN
denotes the sites correctly predicted as unbound, FP and FN
represent sites incorrectly predicted as bound and unbound,
respectively. Note that, because we use balanced data for
training the RF classifiers, the OOB is computed on a balanced
data set.

Additionally, we compute (2) the misclassification rate for the
Bound and Unbound cases on a subset of the test data that was
used by the challenge organizers. The test data is composed of
three hold-out chromosomes which have not been used for
training: chrl, chr8 and chr21. Additionally, TF binding is
predicted on an unseen tissue, i.e. a tissue that was not used for
training. An overview of the test data is provided in Table 2.
Note that, in contrast to the training data, the test data is not
balanced, i.e. the Unbound class is larger than the Bound class.
Therefore, to avoid misinterpretation of model performance, it
is essential to compute the error for both classes separately.

Protein-protein-interaction score

We obtained a customized protein-protein-interaction (PPI)
probability matrix R as described previously”®, which is derived
from a random walk analysis on a protein-protein-association
network based on STRING” (version 9.05). An entry R‘.J
represents the probability that protein i interacts with protein j.
Note that the probability R, is not symmetric by construction,
ie. R, # R, . To generate a score describing how likely it is that a
subset of proteins P contained in R interact with a distinct TF ¢,
guided by the feature importances the RF models provide, we
define the PPI score S, , as

D (R, + R )X GI(p)
2|P|

S,.p =—log( (1)

Table 2. Test data used
in this article, shown per
transcription factor (TF) and

tissue.
TF Tissues
CTCF  PC-3, Induced
pluripotent stem cell

E2F1 K562

EGR1  liver

GABPA liver

JUND  liver

MAX liver

REST  liver

TAFA1 liver

F1000Research 2018, 7:1603 Last updated: 02 SEP 2019

where GI (p) denotes the Gini index values of p obtained from
the RF model corresponding to ¢. Thus, the smaller the value of
S, , the more likely it is that the regulators in P interact with TF 7.

Results

In this section, we first show that shrinking the feature space to
those TFs essential for training does not affect model accuracy.
Next, we demonstrate the benefits of the ensemble learning and
how its accuracy is depending on the number of training tissues.
We further investigate the top selected TFs by the RF models
and find known interaction partners that possess high PPI scores.
Finally, we compare the two feature design schemes, described
in the Methods section, and explore their influences on model
performance. If not stated otherwise, all figures presented in the
following are based on annotation setup (1), including DHSs.

Reducing the feature space to a small subset does not affect
classification performance

Because having a sparse feature space simplifies model
interpretation, we reduce the feature space to contain only a few
essential features. As explained above, we determined sets of top
features using the Gini index, resulting in TF and tissue-specific
sets containing either the top 10 or top 20 features. As shown in
Figure 3a the difference in OOB error between the feature set
comprised of the top 20 features and the full feature space is only
marginal, whereas the difference is increasing when only the
top 10 features are considered. Therefore, we decided to use a
reduced feature space that consists of the top 20 features per
model. The results indicate that the most important feature
across all TFs is the DNasel-seq signal within the DHSs for
feature setup (1). Similarly, in feature setup (2), the DNasel-seq
signal within the bins is found to be more important than the TF
features.

Ensemble learning improves model accuracy

According to the OOB error shown in Figure 3b, the ensem-
ble RF classifiers outperform the tissue-specific models in all
cases for both Bound and Unbound classes, thus emphasizing
on the improved capability of the ensemble model to generalize
across tissues. Additionally, we computed the misclassification
rate on all test tissues which are linked to multiple train-
ing tissues (Figure 3c). Again, we notice that the ensemble RF
classifiers outperform the tissue-specific classifiers by several
orders of magnitude in all Unbound instances and in most
Bound cases. Overall, these results suggest that ensemble
learning is a promising approach to deal with the tissue-specificity
of TF binding.

Increasing the number of training tissues improves
prediction accuracy

Although the results in Figure 3b and 3c suggest that the ensem-
ble methods perform well, it remains unclear what influence the
number of training tissues would have on the performance of an
RF. To elucidate this, we performed permutation experiments
learning multiple RF models wusing all possible combina-
tions of training tissues that are available for a distinct TE. As
this is a computationally demanding task, we performed it for
only three, arbitrarily selected, TFs: MAX, TEAD4, and E2F6.
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Figure 4a illustrates that the OOB error declines when the
number of training tissues increases. Hence, we conclude that the
ability of an ensemble RF to generalize across tissues improves
with larger number of training tissues.

However, it remains to be shown whether the improved accuracy
obtained from the ensemble RF classifiers was in fact because
of the ensemble learning. To test this, we designed another
learning setup in which all tissue-specific data sets were aggre-
gated into one. In other words, we pooled the training data for
one TF across all available tissues into one data set. We then
used this pooled data set to train a new RF model. As depicted in
Figure 4b the true ensemble models perform considerably better
than the models learned on the pooled training data. This shows
that the ensemble technique is better suited to capture tissue-
specific information than simple data aggregation.

Predictors selected by the RF classifiers are associated to
the target TF

As stated before, we hypothesized that the top predictors
selected by the RF classifiers represent regulators that exist
either in protein complexes with the target TF via direct or
indirect binding, or bind directly to DNA in close proximity
to the target TF. To investigate this hypothesis, we computed
a PPI score s,, (see Methods) for the selected predictors P per
TF ¢ and compared it against scores computed for randomly
sampled sets of TFs (based on 100 randomly drawn TF subsets).
The PPI score s, for TF 7 is small, if 7 is likely to interact with the
factors included in the selected predictor set P. In contrast, the
score is high if ¢ is not likely to be interacting with the fac-
tors in P. As shown in Figure 5a, except for three TFs (MAX,
TAF1, ZNF143), the PPI score of the TFs selected by the RF is

(a)
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better (i.e. smaller) than the scores for the randomly selected set.
This indicates that the RF classifiers select features representing
regulators that are more likely to be interacting with the target
TF, either directly or with indirect contacts.

Figure 5b provides an example of a PPI network focused on
the TF MAFK. The network was obtained from the STRING
database”’, using the settings highest confidence and no more
than 10 interactors. The top features selected by the RF
classifiers contain all known regulatory proteins in this network,
except for NFE2L2, shown in red. Among these TFs are MAFK
itself, MAFF, MAFG and NFE2 (highlighted in green). The
strong interactions among the small MAF proteins™ as well as
the dimerization of those with NFE2” have been reported in the
literature before.

Interaction partners shown in gray can not be identified by our
approach as either these are proteins without regulatory functions
or we do not have a PWM available for them.

Feature design influences the FP and FN predictions

In the conference round of the challenge, we were using
feature setup (1), which is based on DNasel Hypersensitive
Sites (DHSs), while in the final round, we switched to design
(2), which is purely based on bins. This transition had a strong
effect on our performance assessed by the challenge organizers.
While we improved the recall of our predictions by switching
from (1) to (2), the precision decreased. In Figure 6, we show
the misclassification rates for the Bound and Unbound classes
depending on the feature designs. The performance is assessed
and shown on test data. The bin based models (2) outperform the
peak based models in the Bound case, whereas the peak based

(
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Transcription Factor

Figure 4. a) Relation of the OOB error for three TFs (E2F6, MAX, and TEADA4) to the number of tissues used for training. The OOB reduces
if more tissues are included in the ensemble learning. Red dots represent the mean classification error across all tissue-specific classifiers.
Individual models are represented by the black points. b) Comparison between true ensemble models for E2F6, MAX, and TEAD4 and RF
classifiers trained on pooled data sets comprised of training data for all available tissues. The ensemble models perform better than the

models based on aggregated data.
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models show superior performance in the Unbound case. At the
same time, bin based models perform poorly in the Unbound case,
which is probably driven by the strong dependence of the RF
classifiers on the DNasel-seq signal. In contrast to that, models
based on DHSs perform well in the Unbound case, because the
search space for TFBSs is limited to only DHSs. This increases
the precision of the predictions, but at the same time lowers the
recall, which is reflected by the high misclassification rate in the
Bound case.

Discussion and conclusion

Here, we introduced an RF based ensemble learning approach
to predict TFBS in vivo. In this article, we did not compare our
approach to competitors in the challenge, as this is done in the
main challenge paper. Here, we show the benefits of ensemble
learning in a multi-tissue setting and that modeling cofactors is
beneficial for the classification.

We show on both test and training data that the ensemble
strategy is able to generalize better across tissues, than models
trained on only a single tissue (Figure 3). Also the accuracy of
the ensemble classifiers increases with an increasing number of
available training tissues (Figure 4a). We also illustrate that
just using all available training data to learn one RF does not
provide as accurate results as an ensemble model (Figure 4b). In
this study, we decided to use RF classifiers, because they lead to
accurate classification results using non-linear predictions in a
reasonable time. Alternative classification approaches, such as
logistic regression, or support-vector-machines could have been
used too.

RF classifiers have also been proposed recently, independ-
ent from the challenge'', as an adequate method to predict TF
binding. Although the authors of'' perform cross cell-type
predictions, i.e. they predict TF binding in a tissue where the
RF was not trained on, they do not use ensemble models as
proposed here. However, they did show that it is beneficial for
the predictions of a distinct target TF to consider further TFs as
predictors, in addition to the target TF itself. This is in agree-
ment with our findings. As shown in Figure 3a, a small subset of
features is sufficient to reach similar classification performance
as the full feature space. We found that most of these selected
TFs are known interaction partners of the target TF, see
Figure 5. This is also supported by a recent study illustrating
that most TFs bind in dense clusters around genes suggesting a
widespread interaction among them™.

Only for three TFs, we could not find that the predicted TFs lead
to a better PPI score than a randomly chosen set. We note that
for two of those three, TAFI and MAX, the performance of the
ensemble RF classifiers improved only marginally, or not at all,
compared to the tissue-specific classifiers. This suggests that
our model does not account for the true interaction partners of
those TFs. Indeed, an inspection of the STRING database for
TAFI revealed that only 7AF] itself and TBP are among the top
20 regulators, which are included in our PWM collection. For

F1000Research 2018, 7:1603 Last updated: 02 SEP 2019

the remaining interaction partners, mostly TFs of the TAF fam-
ily, no binding motif is available in the public repositories, thus
they are not included in our PWM collection and can therefore
not be used by the RF classifiers. Similarly, for MAX, only 5 out
of 20 high confidence interaction partners are included in our
PWM collection. Specifically, no PWM is available for 6 TFs
interacting with MAX, while the remaining interacting proteins
are not categorized as TFs. Overall, our approach benefits from
data availability (Figure 4a). If there are only a few TFs available
in our PWM collection, it will be harder to model the co-factor
binding behavior of a TF across tissues adequately. Also, the
more diverse the co-factor landscape of a TF is between the tis-
sues, the harder it will be to learn a general model. Another crucial
aspect with respect to that is the quality of the PWM. During
the challenge, we realized that the selection of PWMs is crucial
for model performance and it is required to compare PWMs
obtained from different sources to make sure that one uses the one
with highest information content. Nevertheless, instead of using
a more recent method to model TF-motifs, we stick to the use of
PWMs because they are (1) the most common way to describe
the sequence specificity of TFs (2) they are available for a large
number of TFs, and (3) they can be interpreted easily.

Switching the feature design for the RF classifiers from (1) DHS-
based to (2) bin-based showed that DHS sites are inadmissible
to reduce the false positive rate (Figure 6) of TFBS predictions.
Using only bins, without DHS information, we could improve
the recall of TFBS predictions, but only at the cost of poor preci-
sion at the same time. The explanation for this behavior is a dif-
ference in size of the genomic search space between both feature
setups. The bin based models have a low misclassification rate
in the Bound case, because they do consider the whole genome
without neglecting any sites beforehand, thus improving recall.
However, our observations suggest that considering only the
raw signal does not sufficiently correct for false positive sites, as
opposed to use DHSs, which yield an improved misclassification
rate in the Unbound case compared to the raw signal.

In general, both training and evaluating TFBS prediction
methods is challenging due to the class imbalance, i.e. there are
many more Unbound (negative) than Bound(positive) binding
sites in the genome. This requires both (a) training approaches
that avoid over-fitting for one of the two classes and (b) evaluation
strategies accounting for this issue. Here, we show misclassi-
fication rates separately for both positive and negative classes to
avoid a bias caused by the dominant Unbound case.

We note that our current investigation is not meant to construct
a genome-wide classifier in which the unbound case is the most
abundant. To achieve that, the highly unbalanced training data
situation would need to be taken into account, for instance in the
loss function of the classifier. Aside from the technical aspects,
we show that modeling cofactors is helpful to predict TFBS and
that ensemble learning is a promising technique to generalize
information across tissues.
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Data availability
The raw data used in this study is available online at Synapse:
https://www.synapse.org/#!Synapse:syn6112317.

Software availability
Code generated as part of this analysis is available on GitHub:
https://github.com/SchulzLab/TFAnalysis

Archived code as time of publication: http://doi.org/10.5281/zen-
0do.1409697*!

License: MIT
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This paper reports the results of this group's entry into the ENCODE-DREAM challenge. The task of the
challenge was to learn a model for binding of a target TF based on ChlIP-seq data and DHS data from
different cell types, and to predict binding on held-out data. They focused on a subset of 12 TFs. There
were two types of held-out data, three chromosomes from the same cell types as the training data, and
also data from different cell types not used in training. Results are reported as classification errors
independently for bound and unbound sites.

This group did not try to learn a model (such as PWM) for the target TF, rather they used existing PWM
models, available in databases, for the target TF as well as for 556 other TFs (so 557 in total; when more
than one PWM was available for a TF they used the one with the highest information content). They
employed a random forest (RF) approach for learning the model, and they compared variations on how
the training was performed.

There isn't yet a summary publication of the results of the challenge, so at this time we do not know how
this approach compares to others. But there are some results reported that are interesting to know
regardless of the ranking of this approach.

One variation they tested was training using all of the features (a DHS score and all of the PWM scores)
versus only subsets, and ranking the features to see which are most important. They found that using only
the top 20 features was essentially as good as all of them, whereas the top 10 was not. Not surprisingly,
the DHS score is the most important feature. They don't state it, but | assume that the PWM for the target
TF is the next most important. Is that right? It is also reassuring that the set of other TFs that rank highest
in importance are enriched for TFs previously shown to interact with the target TF, indicating that their
models are learning something about the coordinated regulation by multiple TFs.

They also compared prediction accuracy on models trained on individual tissue type data, versus a model
trained on all of the tissue data merged together, versus an ensemble model obtained from all of the
tissue types, with each treated independently. The ensemble models performed significantly better than
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the others (although | would like to see a separation of results on the different types of test data - see
comments below). And the models improve with additional tissue types, although for most TFs the
improvement is marginal beyond three.

Comments and suggestions:

1. Their reporting of results is less informative than it could be. For example, instead of just reporting a
classification error for each class (bound and unbound) they could show ROC or PRC curves that indicate
those errors for a range of thresholds. Is the reason they don't do that because their program simply
returns a binary result, bound/unbound, rather than a probability (or some quantitative score) of being
bound? The results as reported highlight the intrinsic tradeoff between false positive and false negative
predictions because they vary rather dramatically between different test sets, but don't provide any
guidance of how one might balance the two to obtain "optimal" predictions (where optimal may depend on
the usage).

2. In Figure 3c they show results on the two types of held-out data, from left out chromosomes from the
same tissues as the training data and from data from different tissues. | would like to see those two types
of test data reported separately. | can easily imagine that testing on left out chromosomes from the same
tissue would provide better predictions, because the same set of additional TFs are utilized within the
same tissue, but that on different tissues that might not be the case and that the ensemble approach
might be especially useful.

3. I'm a little confused about the differences in the two training methods shown in Figure 1, and | think
some clarification is needed. 1a is clear enough, they are just using genomic regions under DHS peaks (in
a given tissue), and the training involves those that are bound by the TF (in that same tissue) and those
that are not. But in 1D, is the whole genome binned (and what are bin sizes, | didn't see that stated)? And
then is the training on that whole genome, so that the unbound training data enormously larger than the
bound data (in fact the vast majority of the genome is not under DHS peaks so its relevance isn't clear).
And then when testing the models obtained from the binned training, do they make predictions on the
whole genome, or only on the DHS regions? They report that training on binned data was better, but it
isn't clear to me is the assessments were the same (such as testing on the whole genome versus under
the DHS peaks) which may make a difference.

4. The word "inadmissible" occurs twice, once in the Introduction and once in the Discussion. It doesn't
seem to be the right word in either case, in fact based on the context | think it is opposite of what they
mean. For example, the first occurrence is "(TFs) are inadmissible to maintain and establish cellular
identity....". | think "essential" or "required" are more appropriate.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable
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Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: My expertise is in computational and experimental studies of protein-DNA
interactions and the regulation of gene expression, which are relevant to this work.

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Fatemeh Behjati Ardakani, Max Planck Institute for Informatics, Germany

1.Their reporting of results is less informative than it could be. For example, instead of just
reporting a classification error for each class (bound and unbound) they could show ROC or PRC
curves that indicate those errors for a range of thresholds. Is the reason they don't do that because
their program simply returns a binary result, bound/unbound, rather than a probability (or some
quantitative score) of being bound?

We agree with the reviewer that ROC and PR curves are meaningful error measures. We did not
choose those initially as we believed that the misclassification rate is a more intuitive measure. Our
models do allow us to compute ROC and PR curves. In the revised version of the article, we report
the area under the precision recall curve (AU-PR) as well as the area under the receiver operator
characteristic curve (AUC-ROC). We have moved the misclassification to the Supplement.

The results as reported highlight the intrinsic tradeoff between false positive and false negative
predictions because they vary rather dramatically between different test sets, but don't provide any
guidance of how one might balance the two to obtain "optimal" predictions (where optimal may
depend on the usage).

We thank the reviewer for pointing out to us that the two proposed setups could be combined. It is
a thought that did not occur to us. One option would be to combine the predictions obtained using
both feature setups in yet another ensemble RF model. The balancing could be controlled by a
customized penalization of the model, such that either Precision, Recall, or both are optimized. We
addressed this point in the discussion of our article.

2. In Figure 3c they show results on the two types of held-out data, from left out chromosomes from
the same tissues as the training data and from data from different tissues. | would like to see those
two types of test data reported separately. | can easily imagine that testing on left out
chromosomes from the same tissue would provide better predictions, because the same set of
additional TFs are utilized within the same tissue, but that on different tissues that might not be the
case and that the ensemble approach might be especially useful.
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We thank the reviewer for this suggestion. Indeed we see that the ensemble model predicting
tissue X as well as the classifier trained only on chromosomes of tissue X, perform equally well. In
contrast when evaluating the classifiers on other cell types, the ensemble method performs

better than any other classifier trained on only one tissue. The results are shown in Supplementary
Figure 2.

3. I'm a little confused about the differences in the two training methods shown in Figure 1, and |
think some clarification is needed. 1a is clear enough, they are just using genomic regions under
DHS peaks (in a given tissue), and the training involves those that are bound by the TF (in that
same tissue) and those that are not. But in 1b, is the whole genome binned (and what are bin
sizes, | didn't see that stated)? And then is the training on that whole genome, so that the unbound
training data enormously larger than the bound data (in fact the vast majority of the genome is not
under DHS peaks so its relevance isn't clear). And then when testing the models obtained from the
binned training, do they make predictions on the whole genome, or only on the DHS regions? They
report that training on binned data was better, but it isn't clear to me is the assessments were the
same (such as testing on the whole genome versus under the DHS peaks) which may make a
difference.

We agree with the reviewer that this is a bit unclear without more detailed information on the
challenge setup itself. We have added a description on the training, test, and benchmarking data
provided by the challenge organizers to the main text. As stated there,

the challenge’s objective was to predict TF binding in bins of size 200bp, shifted by 50bp each.
Predictions are computed for all bins in chromosomes 1, 8, and 21, the remaining chromosomes
are used for training. To train the models, all bound bins in training chromosomes as well as an
equal number of randomly sampled unbound bins have been used. The DNase1-seq signal in
these bins is what is used in the setup described in Figure 1b. We believed that using the RFs to
learn an association between DNase1-seq signal and TF binding might outperform a peak-calling
based method, therefore we have pursued this approach as well.

The models are assessed on the bin level for both setups. In Setup 1 (Fig1a), any bin not
overlapping a DHS is predicted as unbound per default, bins overlapping a DHS are subjected to
classification. In Setup 2 (Fig1b) each bin is classified. Thus, the setups can be compared.

We have improved the description of Setup 2 (Fig1b) in the main text.

4. The word "inadmissible" occurs twice, once in the Introduction and once in the Discussion. It
doesn't seem to be the right word in either case, in fact based on the context | think it is opposite of
what they mean. For example, the first occurrence is "(TFs) are inadmissible to maintain and
establish cellular identity....". | think "essential" or "required" are more appropriate.

We thank the reviewer for spotting this mistake. We meant to say indispensable.

Competing Interests: No competing interests were disclosed.

Reviewer Report 26 October 2018

https://doi.org/10.5256/f1000research.17691.r39062

Page 15 of 26


https://doi.org/10.5256/f1000research.17691.r39062

FIOOOResearch F1000Research 2018, 7:1603 Last updated: 02 SEP 2019

© 2018 Grau J. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

?

Jan Grau
Institute of Computer Science, Martin Luther University of Halle-Wittenberg (MLU), Halle, Germany

Transcriptional regulation by transcription factors (TFs) is one of the fundamental steps of gene
regulation. Hence, knowing the genome-wide binding regions of a TF is of great interest. Experimentally,
those could be determined by ChlP-seq, which, however, is time-consuming and labor-intensive. Hence,
computational prediction of cell type-specific, in-vivo transcription factor binding is highly demanded.

In their manuscript "Predicting transcription factor binding using ensemble random forest models",
Ardakani, Schmidt and Schulz present a novel method for this purpose, which is based on PWMs
describing TF sequence preference, and DNase-seq data capturing chromatin accessibility. This method
combines i) learning random forest (RF) classifiers on feature matrices for individual cell types, ii)
shrinking feature sets, and iii) learning ensemble classifiers across cell types. The authors illustrate that
within their method, peak-based DNase features seem to be favorable compared with bin-based
aggregation of DNase-seq coverage. Furthermore, they demonstrate that the ensemble classifier indeed
yields an overall improved performance compared with cell type-specific RFs.

As this is a companion paper to the main publication describing the results of the ENCODE-DREAM
challenge, | consider a direct comparison to other approaches dispensable in this case.

In general, most of the methods are well described and conclusions are supported by the data.
However, | have a few major and several minor comments regarding choices made by the authors
(especially with regard to performance assessment) and the presentation of specific details of methods
and results, as detailed in the following.

Major comments:

1. In sub-section "Data" of the Methods section, the authors state that they "focus on these 12 TFs in the
scope of this article". However, this is contradicted by the list provided in Table 2 listing only 8 TFs.
Results for the same 8 TFs are also shown in Fig. 6, whereas several of the remaining figures (Fig 3a/b,
Fig 5) present results for a larger set of TFs, i.e., for TFs not listed in sub-section "Data".

2. The third paragraph of sub-section "Data preprocessing and feature generation" of the Methods section
is lacking details. How exactly are "tissue-specific DHSs" called using JAMM? What have been the inputs
and input formats? Which peaks are merged and why?

3. Results with regard to feature shrinkage (Fig. 3a) are only shown for OOB Misclassification. As | could
imagine over-fitting effects to specifics of the training cell types, | considered an evaluation on the test
data highly informative. For instance, | would imagine that we see a decrease in OOB performance when
shrinking features to the top 20, whereas on the test data this model achieves a better generalization and,
hence, misclassification rate.

4. The authors chose to use misclassification separated by classes, which could also be described as
false negative rate and false positive rate, as performance measure for the whole manuscript.
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For several reasons, | would consider curve-based measures, especially the (area under the)
precision-recall curve the more appropriate measure for this application but also in the context of the
ENCODE-DREAM challenge.

First, we face a highly imbalanced classification problem, and the precision-recall curve has been shown
to be highly informative in this case .

Second, the areas under the ROC curve and precision-recall curve have also been used for performance
assessment in the ENCODE-DREAM challenge and choosing the same performance measure in this
paper would foster comparison of results to those of the challenge (especially since both use the same
test data).

Third, in the discussion of Fig. 6, the authors mention that one choice of DNase data works better for
bound regions, while the other works better for unbound regions. Here, we face the typical trade-off
between sensitivity and specificity (or false negative rate and false positive rate), where we are unable to
decide for one option based on specific, contradictory combinations of the two measures. In the ROC
curve, basically (1 - FN/(TP+FN)) would be plotted against FP/(TN+FP), so we would get a broader
impression of classifier performance, including the specific points on the curve chosen by the authors.
For these reasons, the area under the ROC curve and the area under the precision-recall curve should be
included as performance measures into this study. As the authors illustrate in Fig. 2d, RF classifiers
already output continuous scores that could be used for computing these curves. Technically, curves and
AUC values could be computed, e.g., using the R packages PRROC or precrec.

5. In sub-section "Ensemble learning improves model accuracy" of the Results section, | agree with the
authors that the ensemble classifier performs better than the individual RFs. However, currently it remains
unclear if this can really be attributed to "ensemble learning" or just to averaging effects. Hence, | would
suggest to include a simple averaging over the predictions of individual RFs (those, for which the
predictions are also input of RF_E) as a simple baseline model (in addition to the single RF learned on the
pooled data).

In addition, for MAX, the authors might also include results for the test data in addition to what is shown in
Figure 4.

Minor comments:

6. In the Introduction, second paragraph, the authors state that "Most of these methods are based on
position weight matrices (PWMs) describing the sequence preference of TFs," giving a reference to the
publication of the 2016 update of the Jaspar database. While Jaspar indeed provides PWM models, | do
not consider this an appropriate reference for the definition of PWMs in general. Specifically, | would
suggest to cite the seminal works of Berg & von Hippel 2 and of Stormo® instead.

7. In the Introduction, second paragraph, the authors state "PWMs indicate [...] which nucleotide is most
likely to occur". From my perspective, this description is not fully accurate. The most likely nucleotide is
also represented by consensus sequences. PWMs give a specific weight (or log-probability,...) for each of
the nucleotides and not only for the most likely one.

8. | appreciate that the authors reference our work regarding dependency models (Slim models) in the
second paragraph of the introduction. However, there are several other approaches for modeling
dependencies in TF binding sites. | would encourage the authors to broaden the scope of their references
by including, e.g.*".
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9. In the third paragraph of the introduction, the authors refer to "the main ENCODE-DREAM Challenge
paper". | am aware that this paper has not yet been published, but encourage the authors to update their
publication including a reference to that paper when available.

10. In the second paragraph of sub-section "Data preprocessing and feature generation" of the Methods
section, it is mentioned that TF binding affinities are computed for 557 distinct TFs. After reading the
complete paper, | understood (hopefully correctly) that all 557 TFs are used for all RFs (before shrinking
the feature space) regardless of the training TF. If my understanding is correct, the authors might consider
to include an explicit statement about this fact already at this stage of the manuscript.

11. In the first paragraph of sub-section "Ensemble random forest classifier" of the Methods section, the
authors state that "the balance between the bound and unbound classes is maintained to avoid
over-fitting". For me, it remains unclear how exactly this helps to avoid over-fitting. For my understanding,
over-fitting typically refers to an over-adaption to specifics of the training data, which do not generalize
well to other data sets, leading to a poor performance on unseen (test) data. However, the class
imbalance is inherent to the problem and should be (roughly) the same for training and test cell types.
Please clarify.

12. In the first paragraph of sub-section "Ensemble random forest classifier" of the Methods section, right
before the second formula, the shrunken feature space is described to be the union of top 20 regulators.
However, later in the Results section, the authors also consider a case where features per RF are
restricted to the top 10 ones (Fig 3a). Hence, | would suggest a generic description, here.

13. The third formula of sub-section "Ensemble random forest classifier" of the Methods section refers to
an index i, where (for my understanding), according to the previous definition, i should be in {1}, in this
case. If that is indeed the case, | would suggest to replace "i" by "1" in the formula and explicitly state that
this is the only index i can be.

14. The fourth formula of sub-section "Ensemble random forest classifier" of the Methods section is partly
broken. Specifically, the element sign refers to the set of indexes, which does not seem reasonable to me.
| rather think this should refer to the matrix resulting from prediction(RF_i', T_i') Please fix.

15. In Figure 2 (b), (c) and (e), the labels in the table cells are hardly legible in printout. Either increase the
thickness of letters or chose a different color.

16. For Figure 2e, it remains unclear from the caption what is shown. It seems to be the input matrix
derived from test data, in analogy to the training matrices shown in Figure 2b? Is this the input of each
RF? Of RF' (as features might have been shrunken)? Or of RF_E?

17. The fifth formula of sub-section "Ensemble random forest classifier" of the Methods might profit from a
bit of additional explanation. Specifically, it took me a while to understand (if I'm right) that for T_E', the
outputs of all individual RFs are concatenated row-wise, while "Binding(T_E')" denotes the concatenation
of training labels.

18. In the first paragraph of sub-section "Performance assessment" of the Methods section, | wondered
what the index "i" refers to. Is this the same index i as before (i.e., an index for the training cell types)? If

not, what exactly is "sample i"?

19. In sub-section "Protein-protein-interaction score" of the Methods section, | would have appreciated a
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bit more motivation before describing the method itself.

20. In sub-section "Reducing the feature space to a small subset [...]" of the Results section, | would not
fully agree with the authors that the difference in error between the full model and the model based on top
20 features is "marginal”. | would even assume that a statistical test of the difference between the data
behind the two boxplots in Fig. 3a would be significant.

21. In sub-section "Reducing the feature space to a small subset [...]" of the Results section, | did not find
the last two sentences (regarding importance of DNase-based features) to be supported by the data
shown in the manuscript.

22. In section "Data availability", the authors provide a link to the synapse page of the ENCODE-DREAM
challenge. However, the data are accessible only after registration and signing a data usage policy.

23. Typos & Grammar:

- first paragraph of "Data preprocessing and feature generation": "down sampled" should be
"down-sampled"

- second paragraph of "Data preprocessing and feature generation": "the course of challenge" should be
“the course of the challenge"

- third paragraph of "Data preprocessing and feature generation": "data is intersected" should be "data are
intersected"

- 7th paragraph of "Discussion and conclusions": "Bound(positive)" should be "Bound (positive)"

- Reference 15: "transcritpion" should be "transcription”
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Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: We have participated in the same challenge (ENCODE-DREAM) as the authors
and the data presented here are closely related to that challenge.

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Fatemeh Behjati Ardakani, Max Planck Institute for Informatics, Germany

1. In sub-section "Data" of the Methods section, the authors state that they "focus on these 12 TFs
in the scope of this article". However, this is contradicted by the list provided in Table 2 listing only
8 TFs. Results for the same 8 TFs are also shown in Fig. 6, whereas several of the remaining
figures (Fig 3a/b, Fig 5) present results for a larger set of TFs, i.e., for TFs not listed in sub-section
“Data".

We thank the reviewer for spotting this. There was indeed an error in Table 1 and some TFs were
missing. We have corrected Table 1 to list all TFs considered in Figures 3 and 5. In Fig.6, as well
as in Fig.3c, we show results on test data from the challenge, therefore there are fewer TFs than in
the remaining Figures. As we only look at the multi-tissue cases, for which there are more than one
training tissue per TF available, we use only a subset of the available challenge data.

2. The third paragraph of sub-section "Data preprocessing and feature generation" of the Methods
section is lacking details. How exactly are "tissue-specific DHSs" called using JAMM? What have
been the inputs and input formats? Which peaks are merged and why?

We have clarified these points in the main text. We converted the provided DNase1-seq bam files
to bed files using the bedtools bamtobed command. For each bed file, peaks are computed
separately using JAMM’s standard parameters and the —f 1 option. The individual DHS files
obtained for one TF are aggregated using the bedtools merge command. We decided to take a
less conservative approach and merge all peaks identified in individual replicates per TF to ensure
that we do not miss an accessible site, all be it this may introduce false positives.

3. Results with regard to feature shrinkage (Fig. 3a) are only shown for OOB Misclassification. As |
could imagine over-fitting effects to specifics of the training cell types, | considered an evaluation
on the test data highly informative. For instance, | would imagine that we see a decrease in OOB
performance when shrinking features to the top 20, whereas on the test data this model achieves a
better generalization and, hence, misclassification rate.
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We appreciate the suggestions and performed the same experiment as shown in Figure

3a using the challenge’s test data (Supplementary Figure 1). As expected, we find a slight
decrease in terms of OOB performance for the top10 and top20 models compared to all features,
whereas on test data we see that both the top10 and top20 models perform slightly better than
models considering all features. However, we note that the differences are not significant.

4. The authors chose to use misclassification separated by classes, which could also be described
as false negative rate and false positive rate, as performance measure for the whole manuscript.

We have mentioned these more established names in the main manuscript. However, we decided
to stick to the already used nomenclature, as we believe that it is more comprehensible in the
context of the TF binding predictions.

For several reasons, | would consider curve-based measures, especially the (area under the)
precision-recall curve the more appropriate measure for this application but also in the context of
the ENCODE-DREAM challenge.

First, we face a highly imbalanced classification problem, and the precision-recall curve has been
shown to be highly informative in this case.

Second, the areas under the ROC curve and precision-recall curve have also been used for
performance assessment in the ENCODE-DREAM challenge and choosing the same performance
measure in this paper would foster comparison of results to those of the challenge (especially
since both use the same test data).

Third, in the discussion of Fig. 6, the authors mention that one choice of DNase data works better
for bound regions, while the other works better for unbound regions. Here, we face the typical
trade-off between sensitivity and specificity (or false negative rate and false positive rate), where
we are unable to decide for one option based on specific, contradictory combinations of the two
measures. In the ROC curve, basically (1 - FN/(TP+FN)) would be plotted against FP/(TN+FP), so
we would get a broader impression of classifier performance, including the specific points on the
curve chosen by the authors.

For these reasons, the area under the ROC curve and the area under the precision-recall curve
should be included as performance measures into this study. As the authors illustrate in Fig. 2d, RF
classifiers already output continuous scores that could be used for computing these curves.
Technically, curves and AUC values could be computed, e.g., using the R packages PRROC

or precrec.

We agree with the reviewer that curve based scores like PR and ROC are better to assess the
performance of our models. As suggested, we used the PRROC package to compute AUC values
for PR and ROC curves and use these measures throughout the article. It is worth noting that the
PR values deliver a more realistic impression on model performance than ROC or the
misclassification rate on the highly unbalanced test data sets, which are enriched with negative
cases, i.e. unbound sites. We moved the previous figures using the misclassification rate to the
Supplement.
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5. In sub-section "Ensemble learning improves model accuracy" of the Results section, | agree with
the authors that the ensemble classifier performs better than the individual RFs. However, currently
it remains unclear if this can really be attributed to "ensemble learning" or just to averaging effects.
Hence, | would suggest to include a simple averaging over the predictions of individual RFs (those,
for which the predictions are also input of RF_E) as a simple baseline model (in addition to the
single RF learned on the pooled data).

We agree with the reviewer's comment, and as suggested, we added another model averaging
over the predictions of the tissue specific RFs as a baseline for our ensemble models. As shown in
Figure 4b, the averaging leads to a worse performance than simply pooling the information across
all samples into one model, indicating that the ensemble step does indeed combine tissue specific
information in a more sophisticated way than a simple average.

In addition, for MAX, the authors might also include results for the test data in addition to what is
shown in Figure 4.

In the interest of clarity and homogeneity of the analysis, we refrained from performing the analysis
for MAX additionally on test data.

Minor comments:

6. In the Introduction, second paragraph, the authors state that "Most of these methods are based
on position weight matrices (PWMs) describing the sequence preference of TFs," giving a
reference to the publication of the 2016 update of the Jaspar database. While Jaspar indeed
provides PWM models, | do not consider this an appropriate reference for the definition of PWMs in
general. Specifically, | would suggest to cite the seminal works of Berg & von Hippel 2 and of
Stormo 3 instead.

We agree with the reviewer and have changed the citation.

7. In the Introduction, second paragraph, the authors state "PWMs indicate [...] which nucleotide is
most likely to occur". From my perspective, this description is not fully accurate. The most likely
nucleotide is also represented by consensus sequences. PWMs give a specific weight (or
log-probability,...) for each of the nucleotides and not only for the most likely one.

This is true. We adapted the wording in the main text to avoid the confusion.

8. | appreciate that the authors reference our work regarding dependency models (Slim models) in
the second paragraph of the introduction. However, there are several other approaches for
modeling dependencies in TF binding sites. | would encourage the authors to broaden the scope of
their references by including, e.g.4-5.

We appreciate the hint and have included the suggested literature.
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9. In the third paragraph of the introduction, the authors refer to "the main ENCODE-DREAM
Challenge paper". | am aware that this paper has not yet been published, but encourage
the authors to update their publication including a reference to that paper when available.

Yes, we will cite this paper once it is available. Up to the submission of this revised version of our
article, the challenge paper has not yet been published.

10. In the second paragraph of sub-section "Data preprocessing and feature generation” of the
Methods section, it is mentioned that TF binding affinities are computed for 557 distinct TFs. After
reading the complete paper, | understood (hopefully correctly) that all 557 TFs are used for all RFs
(before shrinking the feature space) regardless of the training TF. If my understanding is correct,
the authors might consider to include an explicit statement about this fact already at this stage of
the manuscript.

Yes, the modelling is performed exactly in that way. We have improved the wording to make this
more pronounced at the specified position in the main text.

11. In the first paragraph of sub-section "Ensemble random forest classifier" of the Methods
section, the authors state that "the balance between the bound and unbound classes is maintained
to avoid over-fitting". For me, it remains unclear how exactly this helps to avoid over-fitting. For my
understanding, over-fitting typically refers to an over-adaption to specifics of the training data,
which do not generalize well to other data sets, leading to a poor performance on unseen (test)
data. However, the class imbalance is inherent to the problem and should be (roughly) the same
for training and test cell types. Please clarify.

Yes, the term “overfitting” might have been inaccurate when class imbalance was considered. We
mean the class imbalance effects on training would've been attenuated by keeping the balance
between bound an unbound in our training data. The class distribution of the test data, however,
would not be a problem given that the models are fairly and reliably trained.

12. In the first paragraph of sub-section "Ensemble random forest classifier" of the Methods
section, right before the second formula, the shrunken feature space is described to be the union
of top 20 regulators. However, later in the Results section, the authors also consider a case where
features per RF are restricted to the top 10 ones (Fig 3a). Hence, | would suggest a generic
description, here.

We thank the reviewer to point out this inconsistency. We have replaced the numeric value by a
generic description.

13. The third formula of sub-section "Ensemble random forest classifier" of the Methods section
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refers to an index i, where (for my understanding), according to the previous definition, i should be
in {1}, in this case. If that is indeed the case, | would suggest to replace "i" by "1" in the formula and
explicitly state that this is the only index i can be.

The observation is correct. We adapted the text accordingly.

14. The fourth formula of sub-section "Ensemble random forest classifier" of the Methods section is
partly broken. Specifically, the element sign refers to the set of indexes, which does not

seem reasonable to me. | rather think this should refer to the matrix resulting

from prediction(RF_i',T_i') Please fix.

We thank the reviewer for spotting this mistake. We have corrected it.

15. In Figure 2 (b), (c) and (e), the labels in the table cells are hardly legible in printout. Either
increase the thickness of letters or chose a different color.

We have increased the font size.

16. For Figure 2e, it remains unclear from the caption what is shown. It seems to be the input
matrix derived from test data, in analogy to the training matrices shown in Figure 2b? Is this the
input of each RF? Of RF' (as features might have been shrunken)? Or of RF_E?

Indeed, in Figure 2e the input matrix for the test instances is shown. The matrix is used as input for
the individual classifiers T'1, T'2, T'3, which is the classifiers learned on the reduced feature
space. We have improved the figure legend to better address this point.

17. The fifth formula of sub-section "Ensemble random forest classifier" of the Methods might profit
from a bit of additional explanation. Specifically, it took me a while to understand (if I'm right) that
for T_E', the outputs of all individual RFs are concatenated row-wise, while "Binding(T_E")"
denotes the concatenation of training labels.

We reformulated the text for better clarity.

18. In the first paragraph of sub-section "Performance assessment" of the Methods section, |
wondered what the index "i" refers to. Is this the same index i as before (i.e., an index for the
training cell types)? If not, what exactly is "sample i"?

We have removed the index. It was not required at this point.
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19. In sub-section "Protein-protein-interaction score" of the Methods section, | would have
appreciated a bit more motivation before describing the method itself.

We have added a sentence for motivation.

20. In sub-section "Reducing the feature space to a small subset [...]" of the Results section, |
would not fully agree with the authors that the difference in error between the full model and the
model based on top 20 features is "marginal”. | would even assume that a statistical test of the
difference between the data behind the two boxplots in Fig. 3a would be significant.

We performed a statistical test on the difference of PR-AUC and ROC-AUC for both the OOB error
as well as the test data (Figure 3a and Sup. Fig1, respectively). The differences are not significant
for any of those instances.

21. In sub-section "Reducing the feature space to a small subset [...]" of the Results section, | did
not find the last two sentences (regarding importance of DNase-based features) to be supported
by the data shown in the manuscript.

We appreciate that the reviewer pointed us to the lack of evidence required for this statement. We
have added another Figure (Figure 7) to the main paper illustrating the feature importance of the
RFs, which supports the statement made in the section mentioned above.

22. In section "Data availability", the authors provide a link to the synapse page of the
ENCODE-DREAM challenge. However, the data are accessible only after registration and signing
a data usage policy.

We thank the reviewer for pointing this out to us. We have added it to the main manuscript.

23. Typos & Grammar:

- first paragraph of "Data preprocessing and feature generation": "down sampled" should be
"down-sampled"

- second paragraph of "Data preprocessing and feature generation": "the course of challenge”
should be "the course of the challenge”

- third paragraph of "Data preprocessing and feature generation": "data is intersected" should be
"data are intersected"

- 7th paragraph of "Discussion and conclusions": "Bound(positive)" should be "Bound (positive)"
- Reference 15: "transcritpion” should be "transcription”

We thank the reviewer for spotting the typos, we have corrected them.
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