Skip to main content
. 2019 Nov 1;15:123. doi: 10.1186/s13007-019-0508-7

Table 4.

Performance of grain yield prediction on testing data, using variable sets determined from LASSO and random forest, as well as all available variables

Variables LASSO selected variables Random forest selected variables All 172 variables
Sample size r* RMSE* (g/plot) r RMSE (g/plot) r RMSE (g/plot)
(1) Predictions of SVM model with Gaussian radial basis kernel
 All lines 0.32 320.19 0.39 306.15 0.29 314.77
 NE lines 0.58 326.97 0.77 254.66 0.72 284.08
 TX lines 0.21 271.44 0.36 255.51 0.57 215.92
 WB lines 0.28 271.88 0.41 236.82 0.25 264.53
 OK and SY lines 0.39 201.45 0.45 191.06 0.36 193.31
(2) Predictions of ridge regression model
 All lines 0.49 283.86 0.39 301.89 0.25 314.83
 NE lines 0.73 272.72 0.81 225.45 0.73 295.92
 TX lines 0.55 235.37 0.50 255.68 0.47 242.99
 WB lines 0.40 247.57 0.42 246.21 0.22 266.25
 OK and SY lines 0.59 163.69 0.54 164.90 0.58 169.29

* Values of r and RMSE were averaged from 20 random sets of testing data