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Abstract

Background: An increasing number of biological and clinical evidences have indicated that the microorganisms
significantly get involved in the pathological mechanism of extensive varieties of complex human diseases. Inferring
potential related microbes for diseases can not only promote disease prevention, diagnosis and treatment, but also
provide valuable information for drug development. Considering that experimental methods are expensive and
time-consuming, developing computational methods is an alternative choice. However, most of existing methods are
biased towards well-characterized diseases and microbes. Furthermore, existing computational methods are limited
in predicting potential microbes for new diseases.

Results: Here, we developed a novel computational model to predict potential human microbe-disease associations
(MDAs) based on Weighted Meta-Graph (WMGHMDA). We first constructed a heterogeneous information network
(HIN) by combining the integrated microbe similarity network, the integrated disease similarity network and the
known microbe-disease bipartite network. And then, we implemented iteratively pre-designed Weighted Meta-Graph
search algorithm on the HIN to uncover possible microbe-disease pairs by cumulating the contribution values of
weighted meta-graphs to the pairs as their probability scores. Depending on contribution potential, we described the
contribution degree of different types of meta-graphs to a microbe-disease pair with bias rating. Meta-graph with
higher bias rating will be assigned greater weight value when calculating probability scores.

Conclusions: The experimental results showed that WMGHMDA outperformed some state-of-the-art methods with
average AUCs of 0.9288, 0.90684-0.0031 in global leave-one-out cross validation (LOOCV) and 5-fold cross validation
(5-fold CV), respectively. In the case studies, 9, 19, 37 and 10, 20, 45 out of top-10, 20, 50 candidate microbes were
manually verified by previous reports for asthma and inflammatory bowel disease (IBD), respectively. Furthermore,
three common human diseases (Crohn’s disease, Liver cirrhosis, Type 1 diabetes) were adopted to demonstrate that
WMGHMDA could be efficiently applied to make predictions for new diseases. In summary, WMGHMDA has a high
potential in predicting microbe-disease associations.
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Background

Accumulating clinic evidences have shown that the
microbes residing in human hosts play a crucial role in
the pathological mechanism of an extensive variety of
human diseases. The microorganisms reside in and on
human body with a wide range of organs like lung, skin,
oral cavity and gut, most of which reside in gastrointesti-
nal tract [1]. A plenty of experimental results have shown
that most of commensal microbial communities bene-
fit human health, and are even indispensable for human
physiology because they could not only offer protection
from pathogens and promote metablic capability, but also
assist modulation of gastrointestinal development [2]. It is
reported that there exist about 10'* microorganism cells
inhabiting an adult intestine, which is approximately 10
times more than human cells [3]. These cells could pro-
duce a large amount of gene product which is essential for
various metabolic and biochemical activities [4, 5]. There-
fore, human microbes are also often treated as a forgotten
organ of human due to its similar metabolic capacity to the
liver [6]. Previous studies discovered that the microbial
communities were significantly affected by the genetics
[7-9] as well as the dynamic habitat environments, such
as season [10], smoking [11], diets [12] and antibiotics
[13]. The dynamic changes of these factors can lead to the
imbalance of microbial communities and further affect
the biological progress (i.e., metabolism, proteomic) of
associated microbes, which possibly motivates a variety of
important human diseases, such as asthma [14], diabetes
[15], liver diseases [16], and even cancer [17].

Since the first microorganism which can cause human
disease was found in the 1800s, an increasing number of
microorganisms have been demonstrated to be the cau-
sation of different human diseases. For example, in order
to determine the relationship between the clinical features
of asthma and the composition of the airway bacterial
microbiota, Huang et al. [18] utilized culture-independent
tools to detect the relative abundance and presence of
most known bacteria. As a result, they demonstrated that
there existed closely relevant associations between the rel-
ative abundance of members of the Comamonadaceae,
Sphingomonadaceae, Oxalobacteraceae and the degree of
bronchial hyperresponsiveness. Larsen et al. [19] studied
the differences between the composition of the intestinal
microbiota in humans with type 2 diabetes and non-
diabetic persons as control and found the compositional
changes of intestinal microbiota like Firmicutes, Lacto-
baillus, Bacteroidetes, Bacilli and Proteobacteria. Moore
et al. [20] analyzed the fecal floras from five diverse polyp
patients including North American Causasians, Japanese-
Hawaiians, rural native Africans and rural native Japanese.
They eventually found the positive associations between
increased risk of colon cancer and Bacteroides species
and Bifidobacterium species while the closest associations
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of some Lactobacillus species and Eubacterium aerofa-
cients with low risk of colon cancer. Identifying candi-
date microbes for diseases could not only offer insight
into the pathological mechanism of human diseases, but
also promote disease prevention, diagnosis, treatment and
prognosis [21]. Even though the roles microbes play in
the mechanism of human diseases have been increasingly
revealed, a comprehensive understanding of microorgan-
ism remains largely challenge.

Considering that traditional experimental methods
which researchers used to heavily depending on are
time-consuming, expensive and laborious, researchers
paid more attention to the development of computa-
tional methods for exploring microbe-disease associations
(MDAs). A number of existing methods are implemented
based on HIN consisting of multiple biological networks,
such as KATAHMDA [22], RWRHMDA [23], NTSHMDA
[24], PBHMDA [25]. For example, Chen et al. [22] pro-
posed the first computational model of KATZHMDA to
infer latent MDAs on HIN. In this model, all microbe-
disease relationship pairs are prioritized according to
their probability scores obtained by calculating the num-
bers of walks with different lengths between microbe
nodes and disease nodes. However, it is possible for this
model to cause bias towards well-investigated diseases
and microbes. Shen et al.[23] implemented random walk
with restart (RWR) on the HIN to prioritize candidate
microbe for diseases. Unfortunately, since ignoring the
bias rating of tendency to be associated with different
neighbor microbe nodes for disease nodes, this method
fails to achieve desired prediction performance. To over-
come this challenge, following it, Luo et al.[24] proposed
another model NTSHMDA, which utilizes extended RWR
optimized by introducing network topological similarity
to rank candidate microbes for diseases. Nevertheless,
the aforementioned methods only consider Gaussian ker-
nel interaction profile similarity to calculate similarity for
both disease and microbe, yet ignore rich prior infor-
mation on diseases and microbes. To take advantage of
such information, researchers have recently paid more
attention on prioritizing disease-associated microbes by
incorporating prior biological knowledge [26, 27]. As an
instance, Huang et al. [26] released a microbe priori-
tization method, which combines two single prediction
models, namely neighbor-based collaborative filtering and
graph-based scoring method. This method introduces
symptom-based disease similarity to improve the com-
pleteness of disease similarity. Zhang et al. [27] presented
a label propagation-based method of BDSILP for ranking
candidate microbes for diseases, which incorporates mul-
tiple similarities for diseases and microbes, such as dis-
ease semantic similarity and microbe functional similarity.
However, for the aforementioned methods, although inte-
grating external biological information about diseases and
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microbes into prediction model, they still fail to make pre-
dictions for new disease without any known associations.

Recently, machine learning has been applied in
the bioinformatics and computational biology, such
as miRNA-target association prediction [28], IncRNA-
disease association prediction [29, 30], drug combination
prediction [31], miRNA-disease association prediction
[32-34] and miRNA regulatory module identification
[35]. A large number of machine learning-based algo-
rithms have been also proposed for inferring MDAs
[36-38]. For example, Wang et al. [36] developed a semi-
supervised computational model of LRLSHMDA, which
uses Laplacian regularized least squares classifier to prior-
itize disease-related microbes.

In this work, we proposed a novel computational model
of WMGHMDA for inferring candidate microbes for
diseases on HIN based on Weighted Meta-Graph. This
model incorporates multiple sources of prior biological
knowledge and could be applied to make predictions
for new diseases without any known associations. Our
approach involves three steps. First, a HIN is constructed
by connecting the integrated microbe and disease similar-
ity networks via observed microbe-disease bipartite net-
work. Next, a pre-designed Weighted Meta-Graph search
algorithm is iteratively implemented on the HIN to enu-
merate weighted meta-graphs related to each microbe-
disease pair. Finally, we calculate the probability score
for each microbe-disease pair by summing up the con-
tribution values of relevant weighted meta-graphs and
prioritize candidate microbes for diseases according to
their probability scores. We carried out comprehensive
experiments to evaluate the prediction performance of
our method and demonstrated the improvement of pre-
diction accuracy compared to state-of-the-art methods.
In particular, WMGHMDA is capable of recovering aver-
age 75.4% of known true positive samples in the top-100
prediction for three complex human diseases.

Mainly, our contributions are as follows:

(1) We propose a novel computational model of
WMGHMDA for predicting MDAs, which is the new
application of meta-graph. To our knowledge,
WMGHMDA is the first tool to use weighted
meta-graph for microbe-disease association
prediction.

(2) To improve the completeness of similarity, multiple
prior biological knowledge is introduced in this
paper, including disease semantic similarity and
microbe functional similarity, which effectively
boosts the improvement of prediction accuracy.

(3) In the network, subtle semantics between diseases
and microbes are prolifically hidden. To capture this
feature, we generalize common unweighted
meta-graph to weighted meta-graph based on which
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we design a novel Weighted Meta-Graph search
algorithm and leverage it to prioritize candidate
microbes for diseases.

(4) Comparisons with state-of-the-art methods on
HMDAD demonstrate the superiority of our
approach. In addition, the approach is particular
effective for a new disease with few known related
microbes or without any known related microbes.

Related work

Recently, a large number of tools have been developed for
identifying MDAs. Most of existing methods are based on
the assumption proposed by Ma et al. [21] that the func-
tionally similar microbes tend to present interaction or
non-interaction with phenotypically similar diseases and
vice versa.

Predicting MDAs based on network analysis has
become popular [22, 25, 27, 39, 40]. These methods
attempt to infer the possibility of existing associations
between diseases and microbes through HIN consisting
of different biological networks. For example, Chen et al.
[22] proposed a computational model of KATZHMDA
based on HIN. This model infers potential association
pairs using KATZ measurement on the network. Huang et
al. [25] leveraged a special depth-first search framework
on HIN for predicting candidate microbes for diseases.
However, such methods calculate the similarities for both
diseases and microbes strongly depending on Gaussian
kernel similarity, which, as a result, tends to “recom-
mend” well-studies microbes with more known associated
diseases. In contrast, our proposed method combines
multiple prior knowledge and alleviates this problem.

Random walk has been applied for prioritizing can-
didate microbes for diseases [23, 24, 41, 42]. Most of
these methods are developed based on RWR, the vari-
ant of random walk. They make full use of the advantage
of RWR in capturing local and global network topolog-
ical characteristics. As an instance, Shen et al. [23] uti-
lized extended random walk to uncover disease-related
microbes but failed to consider the bias rating for differ-
ent association pairs. To tackle such problem, Luo et al.
[24] further improved this model by introducing network
topological similarity. Unfortunately, these methods are
limited in inferring possible microbes for diseases with
few known associated microbes or without any known
associated microbes. In this paper, our method is able to
make predictions for new diseases by applying weighted
meta-graph that could identify hidden subtle semantic
relations between a disease and considered microbes only
if the similarity feature can be obtained for the disease.

More and more attention has been recently paid to
the application of machine learning in the prediction of
MDAs [36-38]. Most of these methods achieves the pre-
diction based on matrix factorization. For example, Shen
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et al. [38] introduced collaborative matrix factorization to
update the correlation matrix of diseases and microbes
for ranking candidate microbes for diseases. He et al. [37]
released a novel computational methods of GRNMFH-
MDA based on graph regularized non-negative matrix
factorization, but the selection of optimal parameters for
this method remains a challenge. In addition, Wang et
al. [36] proposed a semi-supervised computational model
of LRLSHMDA, which uses Laplacian regularized least
squares classifier to prioritize disease-related microbes.

Results

Performance evaluation

In order to measure the prediction accuracy of the
proposed WMGHMDA model, we implement global
LOOCYV and 5-fold CV on HMDAD, respectively. In the
framework of LOOCYV, each observed microbe-disease
pair is selected as test sample in turn while the rest
observed microbe-disease association pairs are consid-
ered as training samples. In each round, the test sample
is ranked according to its prediction score against all
candidate samples. Here, candidate samples refer to the
unverified microbe-disease association pairs. If the rank
of the test sample is higher than the given threshold, the
proposed method is regarded as successful in inferring
the tested microbe-disease pair. Similar to LOOCYV, all
observed microbe-disease association pairs are randomly
divided into five groups in 5-fold CV. Each group is left
out in turn to test model while the remaining groups are
adopted as training samples. To weak the impact of the
bias resulting from the progress of random division to

Page 4 of 18

experimental results, this progress is executed 100 times.
It is worth noting that both the similarities of microbes
and diseases need to be recalculated for each round in
both LOOCYV and 5-fold CV. For the sake of convenient
observation, we draw the receiver-operating characteris-
tics (ROC) curves by plotting true positive rate (TPR,
sensitivity) against false positive rate (FPR, 1-specificity)
based on different thresholds. Sensitivity represents the
percentage of the true positive samples which are ranked
higher than the given threshold in the whole positive
samples. Specificity means the percentage of the negative
samples with ranks lower than the given threshold in the
whole negative samples. Area under ROC curve (AUC) is
further calculated as a metric to measure the prediction
capability of WMGHMDA. If the value of AUC is equal
to 1, it means the model obtains perfect performance. If
the value of AUC is equal to 0.5, it represents the perfor-
mance of the model is random. As a result, WMGHMDA
achieved an effective and reliable performance with aver-
age AUCs of 0.9288, 0.9068+0.0031 in the frameworks of
LOOCYV and 5-fold CV, respectively, as shown in Fig. 1.

For assessing the robustness of our method, we ran-
domly select some known associations as unknown
associations. The percentage varies from 10 to 30%.
Global LOOCYV is then implemented on the new known
microbe-disease associations to evaluate the perfor-
mance of our method. The results have been shown in
Table 1, from which we can find that the AUCs are
stable with the percentage increasing. It indicates that
our method is slightly limited to the effect of sparse
evidences.
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Table 1 The robustness of WMGHMDA
Percentage 10% 20% 30%

AUC 0.9222 09161 0.9050

Comparison with other methods

Do novo cross-validation

In order to further validate the sound prediction per-
formance of the model, we compare WMGHMDA with
some state-of-the-art computation methods, such as
KATZHMDA [22], NTSHMDA [24], NGRHMDA [26],
BiRWHMDA [41], LRLSHMDA [36], BDSILP [27] and
PRWHMDA [42]. KATZHMDA is the first computation
model to infer latent MDAs. It prioritizes candidate
microbe-disease pairs according to their prediction
scores obtained by calculating the numbers of walks with
different lengths between microbe nodes and disease
nodes. NTSHMDA is a global computational model that
infers potential MDAs using optimized random walk
with restart by introducing network topological similar-
ity. NGRHMDA integrates two single recommendation
algorithms, namely neighbor-based prediction model and
graph-based prediction model, to calculate relationship
probabilities of microbe-disease pairs and further priori-
tizes potential candidate microbes for diseases according
to their probabilities. BIRWHMDA achieves possible
microbe-disease association inference by exploring the
CBGs through iteratively implementing random walk on
the disease similarity networks and the microbe similarity
network. LRLSHMDA is a semi-supervised computation
model that uncovers potential MDAs by introducing
Laplacian regularized least squares classifier. BDSILP
is a network-based microbe prioritization model using
label propagation. PRWHMDA finishes the inference
of microbe-disease associations with extended RWR
optimized by Particle Swarm Optimization. All of these
methods perform great prediction performance. In the
sake of fair comparison, these contrast approaches are
implemented on the same database HMDAD, including
483 entries between 39 diseases and 292 microbes, as
WMGHMDA. Both global LOOCV and 5-fold CV are
adopted to measure the inference capabilities of exper-
imental methods. As shown in Fig. 1, WMGHMDA
outperforms baseline methods with an AUC of 0.9288 in
LOOCYV while the AUCs of KATZHMDA, NTSHMDA,
NGRHMDA, BiRWHMDA, LRLSHMDA, BDSILP and
PRWHMDA are 0.8382, 0.9070, 0.9111, 0.8964, 0.8909,
0.9131 and 0.9150, respectively. Similarly, in 5-fold CV,
the performance of WMGHMDA is also superior to base-
line methods (KATAHMDA 0.8301+0.0033; NTSHMDA
0.8896+0.0038; NGRHMDA 0.9023+0.0031; BiRWH-
MDA 0.8808+0.0029; LRLSHMDA 0.8794+0.0033,
BDSILP 0.903040.0039; PRWHDMA 0.8870+£0.0046)
with average AUC of 0.9068+0.0031.
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Furthermore, according to the result of global LOOCYV,
we obtain precision, recall and F1-score (See Additional
file 1: Table S1) with different threshold k. We give the
results of different methods with threshold k varying
from 0 to 50 with a step value of 5. It can be clearly
observed in Additional file 1: Table S1 that from the
top-1 to -10 predictions, our model outperforms base-
line methods in terms of these three evaluation metrics.
For the predictions from top-10 to -50, our approach is
comparable or even superior to baseline methods. It indi-
cates that our method is effective in identifying candidate
microbe for diseases. In addition, we can notice that the
performances of some baseline methods (i.e., BIRWH-
MDA, NGRHMDA, KATZHMDA) are close to that of
our approach. It could be explained that the difference of
the prediction ability is possibly weakened by the highly
skewed dataset where the number of unknown associa-
tions greatly exceeds the number of known associations in
our database [43]. We believe that with the validation of
more known evidences, the difference will become more
evident.

Evaluate the performance of WMGHMDA in recovering
known associations

In order to compare the ability of different methods in
recovering a true association, we give the cumulative dis-
tribution of known associations recovered with top 10, 50,
100, 150 and 200 predictions, as shown in Fig. 2. Also, this
result is obtained based on the result of global LOOCV.
We can see in Fig. 2 that the number of known associa-
tions truly recovered by our method is more than those
of baseline methods for all thresholds while our method
is slightly inferior to NTSHMDA in top-100 prediction.
Therefore, we can conclude that the developed model
of WMGHMDA is effective and reliable, and, moreover,
has comprehensively higher accuracy in inferring poten-
tial candidate microbes for diseases than state-of-the-art
algorithms.

Performance of prediction for new diseases

An important aspect to evaluate a novel model is the abil-
ity to make predictions for new diseases. New diseases
refer to the diseases which have no any known exper-
imentally verified associated microbes, but have prior
features available for prediction. Due to the lack of known
microbe associations, few existing computational meth-
ods are capable of inferring potential microbes for new
diseases in the research field of MDAs. Therefore, one
of our main contributions is that the proposed method
is able to predict candidate microbes for new disease,
which is achieved by taking prior information related to
this disease and specific microbes into account. For the
purpose of evaluation, we select the cumulative distribu-
tion of the ranks as a measure criterion to distinguish the
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prediction performance of different models for new dis-
eases. This measure has been adopted for evaluation in
multiple research fields of computational biology [44—47].
Considering that most of diseases included in HMDAD
only have a small number of positive samples, and adopt-
ing them as test samples possibly results in the bias of
evaluation, we choose three common diseases (Crohn’s
disease, Liver cirrhosis, Type 1 diabetes) with more posi-
tive samples as test samples for more accurate evaluation.

For each of these diseases, we first artificially set all the
known associations between microbes and test disease as
unknown ones. And then different models are carried out
on this test set to obtain the ranks of microbes which
are experimentally verified to be associated with this test
disease. After that, we can plot the average cumulative dis-
tribution of the ranks for three diseases, as shown in Fig. 3
where x-axis represents the top-k predicted microbes and
y-axis denotes the probability of recovering an observed
association in the top-k prediction. Note that all base-
line methods are missing from the plot, as they cannot be
applied for prediction for new diseases without any known
associations. In Fig. 3, we can obviously observe that with
the increase of number of microbes looked at, the percent
of known true positive samples recovered by our method
constantly increases. Especially, our model successfully
recovers average 75.4% of known associations in the
top-100 predictions. This performance can be explained
because for any specific disease with known or unknown

associations, in the framework of WMGHMDA, weighted
meta-graph is capable of effectively capturing potential
semantic associations between this disease and candidate
microbes by combining prior biological knowledge asso-
ciated with this disease and microbes. Thus, it can be
concluded that our method is reliable and effective in
predicting potential microbes for new diseases.

The effects of parameters on WMGHMDA

In this section, we evaluate the impacts of parameters on
the performance. « is weighted factor defined to weight
the effects of the disease semantic similarity and the
Gaussian kernel disease similarity to the integrated dis-
ease similarity. We set « from 0.1 to 0.9 with a step value
of 0.1. B is a weighted factor used to control the contribu-
tion of the microbe functional similarity to the integrated
microbe similarity. The setting of 8 is similar to « varying
from 0.1 to 0.9. For the convenience of parameter tuning,
one parameter is tested with the remaining parameters
fixed. As shown in Fig. 4a, b, it can be obviously observed
that the AUC first increases, and then decreases for both
a and B. The best performance can be obtained when
a and B are set as 0.6 and 0.7, respectively. It demon-
strates that the values of « and B that are large or small
are not good for the improvement of the prediction accu-
racy of our approach. u is a weight factor controlling the
contribution of weighted meta-graph to the prediction
probability. Figure 4c shows that with p increasing, the
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Fig. 3 Performance of WMGHMDA in inferring candidate microbes for new diseases

AUC always presents an upward trend, and we can acquire
the best result when u is set as 0.9. The result validates the
effectiveness of weighted meta-graph.

Case studies on asthma and inflammatory bowel disease

To further verify the prediction accuracy of WMGH-
MDA, we take asthma and Inflammatory bowel disease
(IBD) as two case studies which are implemented on our
model. All candidate microbes for asthma and IBD are
prioritized according to their prediction scores. Here, the
performance of WMGHMDA is evaluated by observing
the number of confirmed candidate microbes ranked in
the top of 10, 20, 50 for a specific disease. It is necessary to
point out that for a given disease, if one microbe is asso-
ciated with this disease, the corresponding genus of this
microbe is also assumed to be related with this disease.

Finally, 9, 19, 37 and 10, 20, 45 out of the top-10, 20, 50
candidate microbes could be manually validated based on
previous literatures for asthma and IBD, respectively.

Asthma

Asthma is a common long-term inflammatory disease of
the airway of the lungs [48]. An increasing number of
statistics have shown that the microorganisms living in or
on human hosts significantly get involved in the patholog-
ical mechanism of asthma. Nine out of top-10 microbes
inferred to be associated with asthma obtain validation
from different literatures. For example, Marri et al. [49]
compared the changes of the microbiome of induced spu-
tum from both asthmatic and nonasthmatic adults. As
a result, they found that Firmicutes occurred in sam-
ples from nonasthmatic subjects with higher frequency.

Fig. 4 The impacts of parameters on the performance. (@) «, (b) B, (¢)

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Lachnospiraceae was found to be significantly more
prevalent in the sputum of asthma patients than in the
sputum of the controls [50]. It was discovery that the
abundance of Enterobacteriaceae of severe asthmatics was
higher than that of non-severe asthmatics [51]. Yu et al.
[52] showed that Lactobacilli were probiotic bacteria and
had potential for preventing asthma. The abundances of
Staphylococcus were presented to be larger in asthmatic
children than those in healthy controls and asthmatics
[53]. Vael et al., [54] investigated the relationship between
the development of asthma and early intestinal coloniza-
tion in the first 3 years of life, which, eventually, showed
that the count of Bacteroides fragillis was significantly
higher in children with a positive index compared to
those without at 3 weeks. This result indirectly demon-
strates that the change of Bacteroides is associated with
asthma. Only Clostridium difficile has been not validated
nowadays. Top-10 inferred candidate asthma-associated
microbes are also listed in Table 2. Furthermore, 19, 37

Page 8 0of 18

out of top-20, 50 candidate microbes for asthma are con-
firmed manually by previously published literatures, as
shown in Table 2.

Inflammatory bowel disease

Inflammatory bowel disease is a common group of inflam-
matory conditions of the colon and small intestine. Similar
to asthma, WMGHMDA is also applied to infer possible
related microorganisms for IBD. As a result, 10 of top-
10 candidate IBD-related microbes could be confirmed
by current researches. As an instance, it was demon-
strated that the decreases of abundances of Bacteroidete
and Firmicute were associated with the formation of IBD
[56]. The abundance of Clostridium coccoides was discov-
ered to be less represent in Crohn’s disease patients than
healthy objects [57]. It was confirmed that there was an
inversely association between the presence of Heicobac-
ter pylori and IBD [58]. Azimirad et al. [59] indicated that
there existed significant relationships between IBD and

Table 2 Prediction results of the top 50 asthma-associated microbes

Microbe Evidence Microbe Evidence
Firmicutes PMID:23265859 Treponema Unconfirmed
Clostridium difficile Unconfirmed Porphyromonas gingivalis PMID:20308298
Actinobacteria PMID:28947029 Selenomonas PMID:27093794
Clostridium coccoides PMID:21477358 Escherichia coli PMID:29161804
Lactobacillus PMID:20592920 Clostridium leptum PMID:29445257
Lachnospiraceae PMID:27433177 Gammaproteobacteria PMID:28947029
Staphylococcus PMID:29445257 Fusobacterium nucleatum [55]
Enterobacteriaceae PMID:28947029 Alcaligenaceae PMID:19407055
Bacteroides PMID:18822123 Coriobacteriaceae PMID:28947029
Veillonella PMID:25329665 Erysipelotrichaceae Unconfirmed
Clostridia PMID:21477358 Methanobrevibacter smithii Unconfirmed
Fusobacterium [55] Bacteroidaceae PMID:28947029
Enterococcus PMID:29788027 Verrucomicrobiaceae Unconfirmed
Burkholderia PMID:24451910 Dietzia maris Unconfirmed
Streptococcus PMID:17950502 Staphylococcus epidermidis PMID: 29569134
Enterobacter aerogenes PMID:24973962 Tropheryma whipplei PMID:26647445
Enterobacter hormaechei PMID:24973962 Acinetobacter PMID:29447223
Klebsiella pneumoniae PMID:24958709 Corynebacterium PMID:29885665
Shigella dysenteriae Unconfirmed Oxalobacter formigenes Unconfirmed
Propionibacterium PMID:27433177 Desulfovibrio Unconfirmed
Propionibacterium acnes PMID:27433177 Lysobacter Unconfirmed
Pseudomonas PMID:13268970 Rickettsiales Unconfirmed
Stenotrophomonas maltophilia Unconfirmed Streptococcus PMID:17950502
Faecalibacterium prausnitzii PMID:27253486 Xanthomonas Unconfirmed
Actinomyces PMID:23326024 Clostridium PMID:26565810

The first column records top 1-25 associated microbes. The third column records top 26-50 associated microbes
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Clostridiu difficile and staphylococcus. Through observ-
ing the composition of salivary microbiota from 35 IBD
patients, it was uncovered that Haemophilus largely con-
tributed to dysbiosis observe in the salivary microbiota
from IBD patients [60]. Ten out of top-10 predicted can-
didate microorganisms considered to be associated with
IBD are also listed in Table 3, from which we can found
that only Enterobacteriaceae has not been confirmed by
current researches. In addition, 20 out of top-20 candi-
date, 45 out of top-50 candidate microbes for IBD are
manually validated by current researches, as shown in
Table 3. In addition, the network of the top-50 pre-
dicted associations for IBD and asthma obtained by our
model is shown in Additional file 2: Figure S1. Obvi-
ously, it is observed that a microbe is possibly associated
with one or more diseases. In a word, these two sets
of case studies validate the powerful capability of our
method in inferring new possible microbes for diseases
again.
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Discussion
Evidences showed that the microbes living in or on
human body significantly contributed to the induction
progress of an extensive varieties of complex human dis-
eases, including formation, development and progression.
Inferring latent candidate microbes for diseases can not
only provide significant insights into the understanding
of the pathological mechanism of complex diseases, but
also promote disease prevention, diagnosis and treat-
ment, as well as drug development. In this study, we
proposed a novel Weighted Meta-Graph based compu-
tational method of WMGHMDA to predict potential
microbe-disease associations based on HIN. The exper-
imental results indicated that our method achieved a
desired improvement compared to some state-of-the-art
methods. Our method made full use of multiple prior
biological knowledge.

In particular, we integrated disease semantic similarity
and microbe functional similarity to complement and

Table 3 Prediction results of the top 50 inflammatory bowel disease-associated microbes

Microbe

Evidence

Microbe

Evidence

Bacteroidetes
Firmicutes

Prevotella
Clostridium difficile
Helicobacter pylori
Clostridium coccoides
Staphylococcus
Lactobacillus
Haemophilus
Enterobacteriaceae
Staphylococcus
Veillonella
Bacteroides

Clostridia

Bacteroides vulgatus
Bacteroides uniformis

Bacteroidaceae

Faecalibacterium prausnitzii

Streptococcus
Clostridium leptum
Enterococcus

Escherichia coli

Stenotrophomonas maltophilia

Fusobacterium
Burkholderia

PMID:25307765
PMID:25307765
PMID: 25307765
Azimirad et al,2012
PMID:22221289
PMID:19235886
Azimirad et al., 2012
PMID:26340825
PMID:24013298
PMID:24629344
Azimirad et al.,2012
PMID:28842640
PMID:25307765
PMID:25307765
PMID:29454108
PMID:26789999
PMID:17897884
PMID:24799893
PMID:23679203
PMID:28099495
PMID:24629344
PMID:29573336
Uncofirmed
PMID:25307765
PMID:24325678

Clostridium

Bacteroides ovatus
Betaproteobacteria
Clostridiales

Klebsiella
Bifidobacterium
Gammaproteobacteria
Porphyromonadaceae
Collinsella aerofaciens
Propionibacterium
Propionibacterium acnes
Alistipes
Parabacteroides
Prevotellaceae
Veillonellaceae
Fusobacteriaceae
Shigella

Enterobacter aerogenes
Enterobacter hormaechei
Klebsiella pneumoniae
Coxiellaceae
Bacteroidales
Enterococcus faecium
Erysipelotrichales

Bacilli

Azimirad et al., 2012

PMID:29454108
Unconfirmed

PMID:29965986
PMID:29573336
PMID:24478468
PMID:29385143
PMID:29573237
PMID:26848182
PMID:26640113
PMID:26640113
PMID:28877044
PMID:25307765
PMID:29514953
PMID: 28842640
PMID:24629344
PMID:29485143
Unconfirmed

Unconfirmed

PMID:29573336
Unconfirmed

PMID:24629344
PMID:29135456
PMID:29965986
PMID:29049404

The first column records top 1-25 associated microbes. The third column records top 26-50 associated microbes
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improve the disease similarity and microbe similarity,
respectively. This prior information is essential for the
predictions for new diseases. The prediction experiments
for three common complex diseases indicated that prior
information was helpful for making predictions for new
diseases. In fact, the introduction of prior information
also alleviates the problem that previous computational
methods tend to "recommend” well-investigated candi-
date microbes or diseases. In this study, we introduced
meta-graph to solve the problem of inferring poten-
tial associations between diseases and microbes with the
consideration of its power in capturing complex seman-
tics in HIN. Further, inspired by the fact that there
are prolific subtle semantics hidden in HIN, we gener-
alized unweighted meta-graph to weighted meta-graph
to more accurately capture them. In addition, weighted
meta-graphs with diverse patterns are likely to lead to dif-
ferentiated contributions to a microbe-disease pair. Thus,
to identify such differences and enhance the prediction
accuracy, we further introduced bias rating to describe the
distinct contributions of different weighted meta-graph.
The comprehensive experimental results indicated that
the introduction of weighted meta-graph can improve
prediction performance.

The reliable performance of WMGHMDA results from
several major factors as follows: to begin with, the
observed experimentally validated human MDAs are reli-
able. In addition, the introduction of multiple prior bio-
logical information about diseases and microbes improves
the completeness of similarity for diseases and microbes,
which potentially enhances the prediction capability of
our method. Last but not least, a crucial advantage of
WMGHMDA is that it achieves potential MDAs infer-
ence based on weighted meta-graph. On the one hand,
compared with unweighted meta-graph, weighted meta-
graph has stronger ability to capture potential subtle
semantic associations between seed diseases and target
microbes. On the other hand, for a microbe-disease pair,
the bias contributions of different weighted meta-graphs
to it are considered in this paper. Weighted meta-graph
with higher bias rating is assigned greater weight value
when probability score is calculated, which also promotes
the improvement of the prediction performance.

Although the performance of WMGHMDA is desirable,
several aspects are still expected to be further improved
in future studies. Initially, the available of known MDAs is
still not enough to insure more desirable prediction per-
formance, which, however, could be addressed by adding
manually more known microbe-disease association to
database. Furthermore, it is greatly easy for the proposed
model to suffer from decrease of accuracy owing to the
high rate of false positive and false negative samples in
the microbe-disease association database. Additionally,
our method cannot be applied to make predictions for all
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new diseases. It is because for a new disease without any
known evidences and DAG information, it fails to obtain
its similarity between other diseases and it that is essen-
tial for new disease prediction. But this limitation could
be overcome by incorporating more prior information or
developing other effective similarity calculation method.

Finally, it is anticipated that the prediction accuracy of
microbe-disease association could be improved through
two aspects. On one hand, more prior biological knowl-
edge could be introduced, such as microbe sequence sim-
ilarity, disease gene-based similarity network and disease
symptom similarity network. Compared with the study
of disease similarity, the attention paid on the study of
microbe similarity are relatively poor. It is an alterna-
tive way to adopt the combination of CRISPR-Cas9 with
functional enrichment to measure microbe sequence sim-
ilarity by first mapping genetic interaction network based
on microbial sequencing data and then detecting similar
features on the network. On the other hand, compu-
tational approaches have been fully developed in other
computational biology fields, such as microRNA-disease
association prediction. Inspired by the advanced compu-
tational methods in these fields, we expect to develop
more effective computational model.

Conclusion

Identifying potential microbe-disease associations is a pri-
mary step towards understanding the pathological mech-
anism of human diseases. In this study, we proposed a
Weighted Meta-Graph-based computational method for
disease-microbe association prediction. We compared our
method with several state-of-the-art methods based on
database HMDAD. According to the experimental results,
it indicated that our method performed better than base-
line methods. Also, we applied our method to make pre-
dictions for three common human diseases to validate its
effectiveness for new diseases. As a result, our method
achieved a desired prediction performance. In addition,
in case studies, most of the inferred candidate microbes
could be validated by previous reports. Therefore, we
believe that the proposed method has potential to inves-
tigate the underlying pathological mechanism of human
diseases.

Methods

Human microbe-disease associations

The known experimentally validated human microbe-
disease association data were retrieved from Human
Microbe-Disease Association Database (HMDAD, http://
www.cuilab.cn/hmdad.) which contains 483 distinct
experimentally validated microbe-disease entries involv-
ing 39 diseases and 292 microbes [21]. For the sake
of convenience, we construct an adjacency matrix A €
R"d>*"m to represent the known human microbe-disease
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associations, where n; denotes the number of diseases
while n,, the number of microbes. If there exists exper-
imentally confirmed association between disease d; and
microbe m; , then A;; equals to 1, otherwise 0.

Microbe functional similarity

In this paper, we calculate microbe functional similarity
based on the method proposed by Kamneva et al. [61]. In
order to accurately calculate the functional similarity for a
given pair of microbes, we first need to obtain a protein-
protein functional association network where the nodes
represent gene families encoded by either of the genomes
and the links represent gene neighbor score values based
on STRING database (https://string-db.org.). Gene fami-
lies are labeled to denote if a protein from a given gene
family is present in genome A, genome B, or both, which
produces 3 types of gene families. There exist 6 types of
undirected edges (both to A, both to B, both to both, A
to A, A to B and B to B) in such a network. We define
the microbe functional similarity between two microbes
as a fraction of edges which cross organismal boundaries
(i.e. A to B) among all the edges connecting gene families
encoded exclusively in one of the genomes (i.e. A to B, A
to A and B to B). A simple example is shown in Additional
file 3: Figure S2. The similarity scores are transformed into
a My, X Ny, microbe functional similarity matrix FS where
FS(m;, mj) represents the similarity between microbe m;
and microbe #3; .

Disease semantic similarity

Mesh (Medical Subject Headings) database (http://www.
ncbi.nlm.nih.gov/.) includes a plenty of descriptors about
diseases, based on which a Directed Acyclic Graph (DAG)
can be constructed to describe a disease [62]. The DAG of
disease D is composed of not only its ancestor nodes and
D itself but also the directed edges from patient nodes to
child nodes. Based on the DAG, we can define the contri-
bution value of disease d in DAG(D) to the semantic value
of disease D as follows:

SVp(d) =1, if d=D,
SVp(d) = max {A * SVD(d/)|d/ € children of d} ,
if d #D,

1)

where A represents the semantic contribution decay fac-
tor utilized to limit the effects of diseases with different
distances to disease D (According to Wang et al. [63], we
set A as 0.5). Generally, the larger the distance of disease
D to its ancestor disease is, the less its contribution to
the semantic value of disease D is. The semantic value of
disease D can be defined as follows:

SVID) =) 1) SVP@), )

Page 11 of 18

where T(D) represents all the ancestor diseases of dis-
ease D and D itself. Based on the assumption that the
larger the shared part of the DAGs of two diseases is,
the greater their similar score is, the semantic similarity
value between disease d; and disease d; could be defined
as follows:

Yterdntdy (SVa, (6) + SV (@)
SV(d;) + SV(d))

§8(d;, dy) =

Gaussian interaction profile kernel similarity for microbes
Based on the assumption that microbes with similar func-
tions tend to present interaction or non-interaction with
similar diseases [21], we construct microbe similarity net-
work and disease similarity network via known experi-
mentally confirmed human microbe-disease interaction
relationships using Gaussian kernel interaction profile,
respectively. For a specific microbe m;, the correspond-
ing interaction profile could be denoted as IP(;), which
describes the interaction relationships between microbe
m; and all considered diseases, i.e., if a disease is con-
firmed experimentally to be associated with m;, the cor-
responding value of IP(m;) equals to 1, otherwise O.
According to the interaction profiles, the Gaussian kernel
microbe similarity GM can be calculated and defined as
follows [29]:

GM(mi,m) = exp (~hm|[1POm) = PO |P), (&)

1 &
Am =M,/ (n Z IIIP(mz‘)IIZ) ) (5)
m =1

where A, represents the normalized kernel bandwidth,
and can be updated by another normalized bandwidth
A,,. For convenience, we set A,, = 1 according to previ-
ous relevant research [63]. n,, is the number of microbes.
GM(i, j) at the i row and j# column denotes the similar-
ity between microbe m; and s .

Gaussian interaction profile kernel similarity for diseases
Similarly, the Gaussian kernel disease similarity GD can
be computed as follows:

GD(dy dj) = exp (—2al[IP@) — 1P@)|*), ©)
1 &

ha = hy/ (nd > ||1P(di)||2) : (7)
i=1

where )Jd is also set to 1 and n, is the number of diseases.

GD(i, j) at the i row and j% column implies the similarity
between disease d; and d; .

Integrated similarity for diseases
In order to complement and improve disease similarity,
we construct a new similarity network for diseases by
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combining multiple disease similarity networks calculated
from different perspective, namely the disease semantic
similarity and the Gaussian kernel disease similarity, as
is mentioned above. Specifically, the integrated disease
similarity can be defined as follows:

aSS(d;, dj) + (1 — a)GD(d;, d)),
if d; and d; has semantic similarity,
GD(d;, d)), otherwise,

DS(d;, d,‘) =

(8)

where « is weight factor defined to limit the effects of
the disease semantic similarity and the Gaussian ker-
nel disease similarity to the combined disease similarity.
The values of these parameters are determined by the
experimental results.

Integrated similarity for microbes

Similarly, a new similarity network for microbes is con-
structed by integrating microbe functional similarity and
Gaussian kernel microbe similarity. Formally, the inte-
grated microbe similarity can be calculated as follows:

MS = BFS+ (1 — B)GM )

where B is a weight factor used to weight the impacts of
the Gaussian kernel microbe similarity and the microbe
functional similarity to the final combined microbe simi-
larity.

Construction of heterogeneous information network

Based on the calculated similarities for diseases and
microbes, we can further construct disease similarity net-
work and microbe similarity network, based on which
a HIN can be constructed through known experimen-
tally validated MDAs. As for microbe similarity network,
M = {my,my,...,my,} implies the node set of microbes
and the edge weights denote the similarities between
microbes. Similarly, as for the disease network, D =
{d1,da, ...,dy,} denotes the node set of diseases and the
edge weights represent the similarities between diseases.
In addition, a bipartite network is also constructed in the
HIN with the node set consisting of microbe and disease
nodes and the edge weights representing the absence or
presence of relationships between diseases and microbes,
i.e, if there is an edge between d; and m1j, it implies that d;
is experimentally confirmed to be related with #1; and the
corresponding edge weight equals to 1, otherwise 0.

WMGHMDA

In this work, we developed a novel Weighted Meta-Graph
based computational framework for predicting microbe-
disease associations (WMGHMDA). The flowchart of
WMGHMDA is shown in Fig. 5, Firstly, to improve the
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completeness of similarity, we obtain the integrated dis-
ease similarity by combining disease semantic similarity
with Gaussian kernel disease similarity, and the integrated
microbe similarity by combining microbe functional sim-
ilarity with Gaussian kernel microbe similarity, based on
which a HIN is constructed via known microbe-disease
interaction network. Secondly, we design a Weighted
Meta-Graph search algorithm and implement it on the
HIN to calculate the probability score for each microbe-
disease pair. Finally, for a disease, all candidate microbes
are prioritized according to their probability scores.

Meta-graph

The concept of meta-graph has been developed to capture
more complex semantics in HIN that meta-path can-
not[64]. Since each particular meta-graph represents an
essential semantic unit between a source node and a tar-
get node in HIN, meta-graph has been widely applied
in representation learning and recommendation system
[65-68]. Inspired by this, we extend meta-graph to solve
the problem of uncovering missing MDAs based on HIN.
Here, we focus on the concepts related to our paper.
Specially, we define the meta-graph in heterogeneous bio-
logical network for prediction.

Meta-graph is the subset of HIN schema. Formally,
meta-graph could be defined as sub-graph G; = (V,E),
where V = {d;|i=1,2,...,ng}U{mj|j = 1,2,...,n,]} rep-
resents the set of nodes including diseases and microbes,
and E = {(vi,y)Ii,j = 1,2,...,n, n € (ng U ny)}
implies the set of edges including inter-layer relationship
connections in the bipartite network and intra-layer sim-
ilarity connections in both of disease similarity network
and microbe similarity network. A meta-path is a special
case of a meta-graph. Here, we call it meta-graph uni-
formly. Figure 6 displays six types of meta-graphs which
depict possible semantic relations between a seed dis-
ease node and a target microbe node. Here we regard
the products of the weight values of all edges existing in
a meta-graph as its contribution value to the prediction
probability of the microbe-disease association pair. For
example, for the given disease d; and microbe 1, the con-
tribution value of a meta-graph to the probability score of
the pair could be defined and calculated as follows if there
exists no observed relationship between them (assuming
that the meta-graph is linear and includes less than three
intermediate nodes):

ng My
P(diymj) =y > " DS(di, di)Ad, m)MS(my, mj).
k=1 t=1
(10)

Weighted meta-graph based prediction model
In order to more accurately capture potential subtle
semantics between disease nodes and microbe nodes,
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Fig. 5 The flowchart of WMGHMDA model to predict potential human microbe-disease associations. The first step is constructing a heterogeneous
network by connecting the microbe similarity network where the microbe similarity is obtained by combining the Gaussian kernel microbe
similarity with the microbe functional similarity, the disease similarity network where the disease similarity is obtained by combining the Gaussian

kernel disease similarity with the disease semantic similarity, and the known microbe-disease association network. The second step is iteratively
executing Weighted Meta-Graph search algorithm on the heterogeneous network to calculate the scores of the microbe-disease pairs. Finally,

prioritizing candidate microbes for diseases according to their scores

here we generalize common unweighted meta-graph to
weighted meta-graph. In the weighted meta-graph, the
weight values of intra-layer edges represent the similari-
ties between diseases or microbes, and the weight values
of inter-layer edges denote the possibilities of existing
associations between diseases and microbes, i.e,, if a dis-
ease is experimentally verified to be related to a microbe,
the weight value of corresponding bipartite edge equals
to 1, otherwise 0. Empirically, as the number of the edges
and the intermediate nodes of a meta-graph increases, the
importance of the meta-graph also gradually decreases.
Thus, based on this, we only adopt six types of weighted
meta-graph patterns (as shown in Fig. 6), with the num-
ber of edges less than five or the number of interme-
diate nodes less than three, to identify latent MDAs in
HIN. They include weighted meta-graphs with single-
path (such as Fig. 6a,b,c,d) and weighted meta-graphs with

dual-path (such as Fig. 6e,f). With the above-mentioned
definition of the contribution of meta-graph, for these six
different types of weighted meta-graphs, the correspond-
ing contribution values could be described as follows
according to formula (10), respectively:

Py(di, mj) = A(d;, mj), (11)
Hq
Py(dmj) = Y DS(d;,di)Adr, m)), (12)
k=1, ki
7
Pe(diymy) = Y A(di, m)MS(my, mj), (13)
t=1,t#j
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(d)

Fig. 6 Examples of weighted meta-graphs used for microbe-disease association prediction. Red line represents the similarity linking between
diseases that weights similarity degree; Black line is bipartite linking that denotes whether a disease is associated with a microbe or not, i.e, if a
disease is confirmed to be related to a microbe, the weight value of corresponding edge equals to 1, otherwise 0. The numbers of the given nodes
directly connected to the bipartite edge are 2, 1, 1,0, 1, 1 from (a) to (f), respectively

(O seed disease
D neighbor disease

D target microbe
h D neighbor microbe

—— bipartite linking

i similarity linking

ng Nm
Py(d;, mj) = Z Z

k=1,k#i t=1,t#j
[Ds(dh dk)A(dk, mt)MS(mt; m})] )

(14)

nyg nyg
Po(diymp) = Y Y
k=1,k#i t=1,t#i,t#k
[DS(d;, di) Ay, m)DS(di, dr) Aldy, mj)],

(15)

My Ny
Prdpm) = > Y
k=1,k#j t=1,t4],t#+k
[A(dy, mp)MS (my, m) A(d, my) MS(my, mj) ).

(16)

However, weighted meta-graphs with different structure
characteristics could actually yield bias contributions to
a microbe-disease pair. Here, for identifying this bias, we
introduce bias rating to describe the differentiated con-
tributions of different weighted meta-graphs. The main
differences between weighted meta-graphs depend on the
number of the given nodes. Here, the given node refers
to the node that is directly connected to the bipartite
edge and could be a seed disease node as well as a tar-
get microbe node. Specifically, as shown in Fig. 6, different
numbers of the given nodes are included in these six kinds
of weighted meta-graphes. For example, the numbers of

the given nodes for Fig. 6a-f are 2, 1, 1, 0, 1, 1, respec-
tively. Based on the assumption that meta-graph with
more given nodes has greater contribution potential, it
indicates that compared with the other weighted meta-
graphs, Fig. 6a possibly has more potential to contribute
useful information to an association pair while Fig. 6d
could contribute the least useful information. Note that
although Fig. 6b,c have the same numbers of the given
nodes as Fig. 6e,f, the later may play more important role
in predicting candidate microbes for diseases. It can be
explained that both Fig. 6e and f are dural-path weighted
meta-graphs, which implies that a seed disease node has
more semantic paths simultaneously connecting it to a
target microbe node in such meta-graph. In other words,
such weighted meta-graph can hide more prolific seman-
tic information, implying more contribution potential.
Therefore, depending on the potential of contribution, we
assign different bias ratings for different weighted meta-
graphs. The greater the potential of contribution is, the
higher the bias rating is.

According to the definition of weighted meta-graph,
it can be found that a given microbe-disease associa-
tion pair can be hidden in multiple varieties of weighted
meta-graphs in HIN. Based on the assumption that more
weighted meta-graphs are determined to be related to
a microbe-disease pair, the pair is more likely to have
association, the accumulating contribution values of all
weighted meta-graphs connecting a seed disease with a
target microbe can be served as their final prediction
probability. Mathematically, for specific disease d; and
microbe mj, after implementing Weighted Meta-Graph
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search algorithm on the HIN to traverse all relevant
weighted meta-graphs, the prediction score P could be
defined and calculated by summing up the contribution
values of these weighted meta-graphs as follows:
N M
P(di,mj) =YY NP (di,my)

=1 r=1

(17)

where P} (d;, mj) denotes the contribution value of the rth
meta-graph belonging to the [ type of weighted meta-
graph to the pair (d;,m;), N (N = 6) represents the
category number of weighted meta-graph, and M denotes
the number of the weighted meta-graph included in a spe-
cific weighted meta-graph pattern. A(A €[0,1]) is bias
rating applied to distinguish the contributions of different
types of weighted meta-graphs to the final predicted prob-
ability P. It is noteworthy that all weighted meta-graphs
in the same category are considered to present identi-
cal bias ratings on a microbe-disease pair. We iteratively
implement the above search progress based on Weighted
Meta-Graph search algorithm until the prediction prob-
ability matrix P; converges and describe the iteration
formula with matrix formation as follows:

Py =p [MPe + Ao (DS — 1) Py + A3Pr(MS — Iy,)
+1a(DS — 1;)Pe(MS — I,))
+As5([(DS — 17)Pe] © [(DS — 1;)P:]))”
+26 ([P (MS — 1)) © [P(MS — 1)) |
+ @0 = w4,
(18)

where I; and I, represent unit matrices with the sizes of
ng and n,,, respectively, and X is bias rating (According to
the experimental results, the best performance is obtained
when A1 = 0.35, A, = 0.1, X3 = 0.1, A4 = 0.05, X5 =
0.2 and 1¢ = 0.2.). The element of probability matrix Py at
the /# row and j% column means the probability score of
association between disease d; and microbe m; at step k. ©
denotes Hadamard product, y is a decay coefficient used
to control the contributions of dural-path weighted meta-
graphs (Here, we set y as 0.1.), and u € (0,1) is a decay
factor similar to the restart probability in the random walk
with restart. The initial values of probability matrix P; is
defined as the normalized adjacent matrix A . According
to Wang et al. [69], it assures that formula (18) will con-
verge if DS and MS are properly normalized using Eqgs.
(19) and (20), respectively.

0, DS dyy /Y, DS, dy)
MS(m;, my) = MS(my, my)

S WS ) - [ 1S o)
(20)
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After some steps, the prediction probability P; is steady,
according to which all candidate microbes for each dis-
ease could be prioritized. The top microbes are considered
as the most possible microbes associated with the given
disease.

The main time complexity of the algorithm is from the
search of meta-graph and the corresponding calculation
of contribution values. Given that the numbers of disease
and microbe are n,; and n,,, respectively, for six types of
weighted meta-graphs (i.e. Fig. 6a-f), this process takes
O(nyny,), O (ndznm) , O (ndnmz) , O (ndznmz) , O (ndgnm)
and O (n4m,°) in the worst case scenario by con-
sidering each disease node as seed node while each
microbe node as target node, respectively. There-
fore, the time complexity of the algorithm is O (n m,,
(ng + nm)z). Our algorithm is implemented on Matlab
R2016a.

Implement wWMGHMDA on new diseases

For new diseases which lack known associated microbes
in the database but have other features available for pre-
diction, few previous computational methods could be
applied to make predictions. We implement WMGH-
MDA on new diseases for exploring potential microbes.
One of the advantages of weighted meta-graph is that it
is able to effectively capture the hidden semantic asso-
ciations for microbe-disease pairs on the HIN. WMGH-
MDA embeds weighted meta-graph with multiple prior
features related to diseases and microbes, such as dis-
ease semantic similarity and microbe functional similarity,
which provides a possibility to bridge a new disease node
with microbe node in HIN. Therefore, for new diseases,
although there are no evidences to confirm their associa-
tions between microbes and them, WMGHMDA can still
be applied to make predictions. An example is shown in
Fig. 7.

Given a specific unlabelled disease d3, for each of asso-
ciation pairs between d3 and m, it is easy to seek relevant
weighted meta-graphs hidden in the HIN. For example,
we can find two types of weighted meta-graphs related
to association pair d3 — my, such as weighted meta-
graphs consisting of d3, d4, m4 and d3, da, ma, ma, respec-
tively. If there is a higher similarity between the node
ds and a labeled disease node d; (i.e., dy) or between
the specific microbe node m; (i.e., m4) and a labeled
microbe node my (i.e., my), it means that disease dj3
is associated with microbe m; with greater probabil-
ity. After the Weighted Meta-Graph search algorithm is
implemented, each microbe in the HIN will obtain a
probability score denoting the possibility of being asso-
ciated with new disease d3 . The greater score indi-
cates closer interaction between the microbes and ds.
The probability scores can be calculated according to
formula (17).
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Disease network

@<

Microbe network @

Fig. 7 The heterogeneous information network. Two types of weighted meta-graphs (i.e. Fig. 6b,d) can be utilized to obtain the probability score of
interaction between new disease node d3 and candidate microbe node my, such as weighted meta-graphs consisting of d3, ds, m4 and

d3, dr, my, ma, respectively. ds represents unlabeled disease; dy, d», ds and ds denote labeled disease; m1, m,, ms, ma, ms and me represent labeled
microbes; Solid lines and dotted line in the bipartite network means known and unknown bipartite linkings, respectively

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512859-019-3066-0.

Additional file 1: Table S1. Performance comparisons between our
method and baseline methods (NTSHMDA, nGRHMDA, biRWHMDA,
IRLSHMDA, KATZHMDA, bDSILP and pRWHMDA) in terms of precision,
recall, and f1-score, respectively.

Additional file 2: Figure S1. Network of the top-50 predicted
associations for iBD and asthma obtained by our method. ellipses with
Orange and circles represent diseases and microbes, respectively. the blue
lines and red lines denote the associations of predicted microbes with iBD
and asthma, respectively.

Additional file 3: Figure S2. A simple example of how microbe
functional similarity is calculated.

Abbreviations

LOOCV: Leave-one-out cross validation; AUC: Area under ROC curve; DAG:
Directed acyclic graph; HIN: Heterogeneous information network; HMDAD:
Human microbe-disease association database; RWR: Random walk with
restart; MDAs: Microbe-disease associations; WMGHMDA: Weighted
meta-graph-based method for human microbe disease association prediction

Acknowledgements
Not applicable.

Authors’ contributions

YHL and JWL initiated the study. YHL developed the code, conducted the
experiments and wrote the manuscript. All authors read and approved the
final version.

Funding

This work was supported by the National Natural Science Foundation of China
(Grant no. 61873089, 61572180). The funding bodies did not play any role in
the design of the study and collection, analysis, and interpretation of data and
in writing the manuscript.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the
article and its Additional files. The code used in the current study is available at
https://github.com/yahuilong/WMGHMDA.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 July 2019 Accepted: 2 September 2019
Published online: 01 November 2019

References

1. HolmesE, Wijeyesekera A, Taylorrobinson SD, Nicholson J-K. The
promise of metabolic phenotyping in gastroenterology and hepatology.
Nat Rev Gastroenterol Hepat. 2015;12(8):458-71.

2. Ventura M, OFlaherty S, Claesson MJ, Francesca T, Todd RK, Douwe VS,
Paul WO. Genomescale analyses of health-promoting bacteria:
probiogenomics. Nat Rev Microbiol. 2009;7:61-71.

3. Sommer F, Backhed F. The gut microbiota-masters of host development
and physiology. Nat Rev Microbiol. 2013;11:227-38.

4. Consortium HMP. A framework for human microbiome research. Nature.
2012;486(7402):215-21.

5. Consortium HMP. Structure, function and diversity of the healthy human
microbiome. Nature. 2012;486(7402):207-14.

6. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS,
GORDON JI, Relman DA. Metagenomic analysis of the human distal gut
microbiome. Science. 2006;312(5778):1355-9.

7. Khachatryan ZA, Ktsoyan Z, Manukyan G, Denise K, Ghazaryan KA,
Aminov R. Predominant role of host genetics in controlling the
composition of gut microbiota. PLoS ONE. 2008;3(8):e3064.


https://doi.org/10.1186/s12859-019-3066-0
https://github.com/yahuilong/WMGHMDA

Long and Luo BMC Bioinformatics

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

(2019) 20:541

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A,

Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M,

Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in
obese and lean twins. Nature. 2009;457(7228):480-4.

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R,
Beaumont M, Treuren WV, Knight R, Bell JT, Spector TD, Clark AG, Ley
RE. Human genetics shape the gut microbiome. Cell. 2014;159(4):789-99.
Davenport ER, Man OM, Michelini K, Barreiro LB, Ober C, Gilad Y.
Seasonal variation in human gut microbiome composition. PLoS ONE.
2014,9(3):€90731.

Mason MR, Preshaw PM, Nagaraja HN, Dabdoub SM, Rahman A,

Kumar PS. The subgingival microbiome of clinically healthy current and
never smokers. ISME J. 2015;9:268-72.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,

Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA4, Biddinger SB,
Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human
gut microbiome. Nature. 2014;505(7484):559-63.

Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J,
Mitreva M, Clardy J, Linington RG, Fischbach MA. A systematic analysis
of biosynthetic gene clusters in the human microbiome reveals a
common family of antibiotics. Cell. 2014;158(6):1402-14.

Rivas MN, Crother TR, Arditi M. The microbiome in asthma. Curr Opin
Pediatr. 2016,28(6):764-71.

Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC,
Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV.
Innate immunity and intestinal microbiota in the development of type 1
diabetes. Nature. 2008;455(7216):1109-13.

Henao-Mejia J, Elinav E, Thaiss CA, Licona-Limon P, Flavell RA. Role of
the intestinal microbiome in liver disease. J Autoimmun. 2013;46:66-73.
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer.
2013;13(11):800-12.

Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, Woyke T,
Allgaier M, Bristow J, Wiener-Kronish JP, Sutherland ER, King TS, Icitovic
N, Martin RJ, Calhoun WJ, Castro M, Denlinger LC, Dimango E, Kraft M,
Peters SP, Wasserman SI, Wechsler ME, Boushey HA, Lynch SV. Airway
microbiota bronchial hyperresponsiveness in patients with suboptimally
controlled asthma. J Allergy Clin Immunol. 2011;127(2):372-81.

Larsen N, Vogensen FK, Berg FWJ, Nielsen DS, Aadreasen AS, Pedersen
BK, Soud WAA, Sorense SJ, Hansen LH, Jakobsen M. Gut microbiota in
human adults with type 2 diabetes differs from non-diabetic adults. PLoS
ONE. 2010;5(2):9085.

Moore WE, Moore LH. Intestinal floras of populations that have a high risk
of colon cancer. Appl Environ Microbiol. 1995;61(9):3202-7.

Ma W, Zhang L, Zeng P, Huang C, LiJ, Geng B, Yang J, Kong W, Zhou
X, Cui Q. An anlaysis of human microbe-disease associations. Brief
Bioinforma. 2017;18(1):85-97.

Chen X, Huang YA, You ZH, Yan GY, Wang XS. A novel approach based
on KATZ measure to predict associations of human microbiaota with
non-infectious diseases. Bioinformatics. 2017;33(5):733-9.

Shen XJ, ChenY, Jiang XP, Hu XH, He TT, Yang JC. Predicting disease
microbe association by random walking on the heterogeneous network.
In: IEEE International Conference on Bioinformatics and Biomedicine;
2016. https://doi.org/10.1109/BIBM.2016.7822619.

Luo JW, Long YH. NTSHMDA: Prediction of Human Microbe-Disease
Association based on Random Walk by Integrating Network Topological
Similarity. [EEE/ACM Trans Comput Biol Bioinforma. 2018. https://doi.org/
10.1109/TCBB.2018.2883041.

Huang ZA, Chen X, Zhu Z, LiuH, Yan GY, You ZH, Wen Z. PBHMDA:
Path-based human microbe-disease association prediction. Front
Microbiol. 2017;8:233.

Huang YA, You ZH, Chen X, Huang ZA, Zhang SW, Yan GY. Prediction of
microbe disease association from the integration of neighbor and graph
with collaborative recommendation model. J Transl Med. 2017;15:209.
Zhang W, Yang WT, Lu XT, Huang F, Luo F. The Bi-direction similarity
integration method for predicting microbe-disease association. IEEE
Access. 2017;99:1.

LiuY, Luo JW, Ding PJ. Inferring MicroRNA Targets based on Restricted
Boltzman Machines. IEEE J Biomed Health Inform. 2017,23(1):427-36.
Chen X, Yan GY. Novel human LncRNA-disease association inference
based on INcRNA expression profiles. Bioinformatics. 2013;29(20):2617-24.

30.

32.

33.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

51.

52.

Page 17 of 18

Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex
diseases: from experimental results to computational models. Brief
Bioinforma. 2016;18(4):558-76.

. ChenX, Ren B, Chen M, Wang QX, Zhang LX, Yan GY. NLLSS: Predicting

synergistic drug combinations based on semi-supervised learning. PLoS
Comput Biol. 2016;12(7):e1004975.

Chen X, YinJ, QuJ, Huang L. MDHGI: Matrix decomposition and
heterogeneous graph inference for miRNA-disease association
prediction. PLoS Comput Biol. 2018;14(8):e1006418.

Xiao Q, Luo J, Liang C, CaiJ, Ding P. A graph regularized non-negative
matrix factorization method for identifying microRNA-disease
associations. Bioinformatics. 2018;34(2):239-48.

Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: from
experimental results to computational models. Brief Bioinforma.
2019;20(2):515-39.

LiY, Liang C, Wong KC, Luo JW, Zhang ZL. Mirsynergy: detecting
synergistic mMiRNA regulatory modules by overlapping neighbourhood
expansion. Bioinformatics. 2014;30(18):2627-35.

Wang F, Huang ZA, Chen X, Zhu Z, Wen Z, Zhao J, Yan GY. LRLSHMDA:
Laplacian regularized least squares for human microbe-disease
association prediction. Sci Rep. 2017;7:7601.

He BS, Peng LH, LiZJ. Human microbe-disease association prediction
with graph regularized non-negative matrix factorization. Front Microbiol.
2018. https://doi.org/10.3389/fmicb.2018.02560.

Shen Z, Jiang ZC, Bao WZ. CMFHMDA: Collaborative matrix factorization
for human microbe-disease association prediction. Intell Comput Theor
Appl. 2017261-9. https://doi.org/10.1007/978-3-319-63312-1_24.

Bao WZ, Jiang ZC, Huang DS. Novel human microbe-disease association
prediction using network consistency projection. BMC Bioinformatics.
2017;18 Suppl 16:543.

Wang L, Ping PY, Kuang LN, Ye ST, Buland LFM, Pei TR. A novel
approach based on bipartite network to predict human microbe-disease
associations. Curr Bioinforma. 2018;13(2):141-8.

Zou'S, Zhang JP, Zhang ZP. A novel approach for predicting
microbe-disease associations by bi-random walk on the heterogeneous
network. PLoS ONE. 2017;12(9):e0184394.

Wu CY, GaoR, Zhang DL, Han SY, Zhang Y. PRWHMDA: Human
microbe-disease association prediction by random walk on the
heterogeneous networks with PSO. Int J Biol Sci. 2018;14(8):849-57.
Davis J, Goadrich M. The relationship between precision-recall and roc
curves. In: 29th International Conference on Machine Learning; 2006.

p. 233-40. https://doi.org/10.1145/1143844.1143874.

Mordelet F, Vert JP. ProDiGe: Prioritization Of Disease Genes with
multitask machine learning from positive and unlabeled examples. BMC
Bioinformatics. 2011;12:389.

Natarajan N, Dhillon IS. Inductive matrix completion for predicting
gene-disease associations. Bioinformatics. 2014;30(13):60-68.

ShiHB, XulJ, Zhang GG, Xu LD, LiCQ, Wang L, Zhao Z, Jiang W, Guo Z,
Li X. Walking the interactome to identify human miRNA-disease
associations through the functional link between miRNA targets and
disease genes. BMC Syst Biol. 2013;7:101.

Chen X, Wang L, QuJ, Guan NN, LiJQ. Predicting miRNA-disease
association based on inductive matrix completion. Bioinformatics.
2018;34(24):4256-65.

Fein BT. Bronchial asthma caused by Pseudomonas aeruginosa diagnosed
by bronchoscopic examination. Annals Allergy. 1955;13(6):639-41.

Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD.
Asthma-associated differences in microbial composition of induced
sputum. J Allergy Clin Immunol. 2013;131(2):346-52.

Jung JW, Choi JC, ShinJW, Kim JY, Park IW, ChoiBW, Park HW, Cho SH,
Kim K, Kang HR. Lung microbiome analysis in Steroid-Naive asthma
patients by using while sputum. Tuberc Respir Dis. 2016;79(3):165.

LiN, QiuR, Yang Z, LiJ, Chung KF, Zhong N, Zhang Q. Sputum
mcirobiota in severe asthma patients: Relationship to eosinophilic
inflammation. Respir Med. 2017;131:192-8.

Yu J, Jang SO, Kim BJ, Song YH, Kwon JW, Kang MJ, Choi WA, Jung HD,
Hong SJ. The effects of Lactobacillus rhamnosus on the Prevention of
Asthma in a Murine Model. Allergy Asthma Immunol Res. 2010;2(3):
199-205.


https://doi.org/10.1109/BIBM.2016.7822619
https://doi.org/10.1109/TCBB.2018.2883041
https://doi.org/10.1109/TCBB.2018.2883041
https://doi.org/10.3389/fmicb.2018.02560
https://doi.org/10.1007/978-3-319-63312-1_24
https://doi.org/10.1145/1143844.1143874

Long and Luo BMC Bioinformatics

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

(2019) 20:541

Boutin S, Depner M, Stahl M, Graeber SY, Dittrich SA, Legatzki A, von
Mutius E, Mall M, Dalpke AH. Comparison of Oropharyngeal Microbiota
from Children with Asthma and Cystic Fibrosis. Mediat Inflamm.
20171-10. https://doi.org/10.1155/2017/5047403.

Vael C, NelenV, Verhulst SL, Goossens H, Desager K, Early intestinal
bacteroides fragilis colonization developmentofasthma. BMC Pulm Med.
2008;08:19.

Thanh HD, Kim SA, Park HK, Shin JW, Park SG, Kim WY. Analysis of
Oropharyngeal microbiota between the patients with Bronchial Asthma
and the Non-Asthmatic persons. J Bacteriol Virol. 2013;43(4):270.

Walters AW, Xu Z, Knight R. Meta-analyses of human gut microbes
associated with obesity and IBD. Febs Lett. 2014;588(22):4223-33.

Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier |, Beaugerie L,
Cosnes J, Corthier G, Marteau P, Doré J. Low counts of Faecalibacterium
prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183-9.
Sonnenberg A, Genta RM. Low prevalence of Helicobacter pylori
infection among patients with inflammatory bowel disease. Aliment
Pharmacol Ther. 2012;35(4):469-76.

Azimirad M, Bahreiny R, Hasani Z. Prevalence of superantigenic
Staphylococcus aureus and toxigenic Clostridium difficile in patients with
IBD. In: Conferences Portal University of Medical Sciences; 2012. http://
congress.arums.ac.ir/index.php/IICM/5/paper/view/1246.

Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, Kimura R,
Iraha A, Ishida H, FujitaJ, Mano S, Morita H, Dohi T, Oota H, Hattori M.
Dysbiosis of salivary microbiota in inflammatory bowel disease and its
association with oral immunological biomarkers. DNA Res. 2014;21(1):
15-25.

Kamneva OK. Genome composition and phylogeny of microbes predict
their co-occurrence in the environment. PLoS Comput. Biol. 2017;13(2):
€1005366.

Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc.
2000;88(03):265-6.

Wang D, Wang J, LuM, Song F, Cui Q. Inferring the human microRNA
functional similarity and functional network based on
microRNA-associated diseases. Bioinformatics. 2010;26(13):1644-50.

Sun YZ, Han JW. Mining heterogeneous information networks: principles
and methodologies. Synth Lect Data Min Know! Discov. 2012;3(2):1-159.
Dong Y, Chawla NV, Swami A. metapath2vec: Scalable representation
learning for heterogeneous networks. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining; 2017. p. 135-44.

Zhao H, Yao QM, LiJD, Song YQ, Lee DL. Meta-Graph based
recommendation fusion over heterogeneous information networks. In:
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining; 2017. p. 635-44. https://doi.org/
10.1145/3097983.3098063.

FuTY, Lee WC, Lei Z. Hin2vec: Explore meta-paths in heterogeneous
information networks for representation learning. In: International
Conference on Information and Knowledge Management; 2017.

p. 1797-806. https://doi.org/10.1145/3132847.3132953.

ShiY, GuiH, Zhu Q, Kaplan L, Han JW. Aspem: Embedding learning by
aspects in heterogeneous information networks. In: International
Conference on Data Ming; 2018. arXiv preprint arXiv:1803.01848.

Wang WH, Yang S, LiJ. Drug target predictions based on heterogeneous
graph inference. In: Proceedings of the Pacific Symposium; 2013.

p. 53-64. https://doi.org/10.1142/9789814447973_0006.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 18 of 18

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions


https://doi.org/10.1155/2017/5047403
http://congress.arums.ac.ir/index.php/IICM/5/paper/vie w/1246
http://congress.arums.ac.ir/index.php/IICM/5/paper/vie w/1246
https://doi.org/10.1145/3097983.3098063
https://doi.org/10.1145/3097983.3098063
https://doi.org/10.1145/3132847.3132953
https://doi.org/10.1142/9789814447973_0006

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work

	Results
	Performance evaluation
	Comparison with other methods
	Do novo cross-validation
	Evaluate the performance of WMGHMDA in recovering known associations

	Performance of prediction for new diseases
	The effects of parameters on WMGHMDA
	Case studies on asthma and inflammatory bowel disease
	Asthma
	Inflammatory bowel disease


	Discussion
	Conclusion
	Methods
	Human microbe-disease associations
	Microbe functional similarity
	Disease semantic similarity
	Gaussian interaction profile kernel similarity for microbes
	Gaussian interaction profile kernel similarity for diseases
	Integrated similarity for diseases
	Integrated similarity for microbes
	Construction of heterogeneous information network
	WMGHMDA
	Meta-graph
	Weighted meta-graph based prediction model

	Implement wMGHMDA on new diseases

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-019-3066-0.
	Additional file 1
	Additional file 2
	Additional file 3

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

