
1946  |  	﻿�  Evolutionary Applications. 2019;12:1946–1959.wileyonlinelibrary.com/journal/eva

1  | INTRODUC TION

Local adaptation is pervasive and phenotypes often match their 
environments as demonstrated by the clinal distribution of many 
phenotypic traits along environmental gradients (Savolainen, 
Lascoux, & Merilä, 2013). Since most adaptive traits are quanti‐
tative, understanding the genetic control of quantitative traits 

is therefore of paramount importance to predict their evolution 
under environmental changes. Unravelling the genetic basis of 
most phenotypic traits is, however, challenging because of their 
complex determinism. Most phenotypic traits are indeed con‐
trolled by a large number of genetic and nongenetic factors (e.g. 
epigenetic factors, environmental effects), and the development 
of next‐generation sequencing has just begun to shed light on the 
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Abstract
Norway spruce (Picea abies) is a dominant conifer species of major economic impor‐
tance in northern Europe. Extensive breeding programs were established to improve 
phenotypic traits of economic interest. In southern Sweden, seeds used to create 
progeny tests were collected on about 3,000 trees of outstanding phenotype (‘plus’ 
trees) across the region. In a companion paper, we showed that some were of local 
origin but many were recent introductions from the rest of the natural range. The 
mixed origin of the trees together with partial sequencing of the exome of >1,500 
of these trees and phenotypic data retrieved from the Swedish breeding program 
offered a unique opportunity to dissect the genetic basis of local adaptation of three 
quantitative traits (height, diameter and bud‐burst) and assess the potential of assisted 
gene flow. Through a combination of multivariate analyses and genome‐wide asso‐
ciation studies, we showed that there was a very strong effect of geographical origin 
on growth (height and diameter) and phenology (bud‐burst) with trees from southern 
origins outperforming local provenances. Association studies revealed that growth 
traits were highly polygenic and bud‐burst somewhat less. Hence, our results suggest 
that assisted gene flow and genomic selection approaches could help to alleviate the 
effect of climate change on P. abies breeding programs in Sweden.
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complexity of their genetic architecture (e.g. Boyle, Li, & Pritchard, 
2017; Wray, Wijmenga, Sullivan, Yang, & Visscher, 2018; Zeng et 
al., 2018). Another major finding of the last decades is the fact 
that local adaptation at quantitative traits is primarily caused 
by correlated changes in allelic frequencies at a large number 
of loci rather than through strong shift in allele frequencies at a 
few quantitative trait loci (QTL; Le Corre & Kremer, 2003; Berg 
& Coop, 2014). These general properties of quantitative traits 
imply that identifying genetic polymorphism associated with phe‐
notypic traits or their local adaptation will be a daunting task. 
Consequently, we should try to optimize the use of available data, 
especially when working with long‐lived organisms such as trees. 
In the present study, we used data from the Norway spruce breed‐
ing program to study the genetic architecture of three phenotypic 
traits of adaptive and economic interest and assess the potential 
of assisted gene flow.

Climate change is rapidly altering the environment of plants and 
animals, especially at high latitudes (Root et al., 2003; Walther et 
al., 2002). In order to alleviate the impact of climate change, Aitken 
and Whitlock (2013) proposed to use assisted gene flow. The basic 
idea is that species currently adapted to dry and warm environments 
will be pre‐adapted to the new environmental conditions prevailing 
in regions that experienced colder and wetter climates until today. 
Hence, facilitating introgression of alleles from southern populations 
into more northern ones could accelerate the process of local adap‐
tation of quantitative traits to the new climatic conditions.

Transferring material from southern latitudes to more northern 
ones is not a new idea, and extensive seeds transfer already took 
place in the past. Indeed, since the 1950s, Sweden, Norway, and to 
a lesser extent Finland, started to import seeds of Norway spruce 
(Picea abies) for forest reproduction material from Belarus, the Czech 

Republic, Romania, Germany, Slovakia and the Baltic States (Myking, 
Rusanen, Steffenrem, Kjær, & Jansson, 2016; Jansen, Konrad, 
& Geburek, 2017). As a matter of fact, we recently showed using 
genomic data that a very large part of the plus trees (trees of out‐
standing phenotype) used to establish the Norway spruce breeding 
program in southern Sweden in the fifties corresponded to recent 
introductions (Chen et al., 2019). Because of the continuous intro‐
duction of material from the rest of the natural range of Norway 
spruce, the Norway spruce breeding program today includes indi‐
viduals from the seven P. abies genetic clusters (Chen et al., 2019): 
Alpine, Fennoscandian and Carpathian, but also central Europe 
(resulting from hybridization between Alpine and Carpathian clus‐
ters), central and southern Sweden (hybridization between Alpine 
and Fennoscandian clusters), northern Poland (hybridization be‐
tween Fennoscandian and Carpathian clusters) and Russia‐Baltics 
(hybridization between Fennoscandian and Carpathian clusters with 
a strong introgression of Picea obovata). The aim of these introduc‐
tions was twofold: (a) to obtain a large amount of seeds and (b) to 
take advantage of the fact that trees from lower latitudes have a 
longer growth period and thereby a higher yearly growth rate than 
local provenances when moved northwards (Clapham et al., 1998; 
Dormling, Gustafsson, & Wettstein, 1968; Ekberg, Eriksson, & 
Dormling, 1979).

The provenance and progeny tests installed in relation with the 
breeding program represent a great opportunity to study the genetic 
basis of quantitative traits and assess the amount of local adaptation. 
In particular, in contrast to individuals sampled in natural popula‐
tions, the genotype–phenotype relationships are easier to establish 
as trees from different geographical areas were planted in the same 
environment. However, the important seed transfers that occurred 
in the past also imply that the Norway spruce population in southern 

F I G U R E  1   Trees original locations. Black squares are Norway spruce progeny test belonging to the Swedish breeding program. ‘Plus’ and 
‘multiply’ signs are tree sampling locations, and the latter indicating a wrong assignation in available records. Discs are the centroid of the 
geographical coordinates of trees belonging to a same genetic cluster and having a known origin. The grey arrow (right panel) indicates the 
location of the trial ‘Ekebo’, where bud‐burst was characterized. Colours correspond to genetic clusters (Carpathian, dark blue, ROM; Alpine, 
light blue, ALP; Central Europe, green, CEU; Northern Poland, yellow, NPL; Russia‐Baltic, orange, Rus‐Bal; central and southern Sweden, red, 
CSE; Fennoscandian, pink, NFE)
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Sweden is today highly structured and admixed, a factor that will 
need to be accounted for when investigating genotype–phenotype 
associations or when establishing training sets for genomic selection 
(Heslot, Jannink, & Sorrells, 2015; Grattapaglia et al., 2018).

In the present study, we will take advantage of these exten‐
sive past transfers and their inclusion in the breeding program to 
(a) assess the level of local adaptation of trees currently growing 
in southern Sweden and (b) investigate quantitative trait genetic 
architecture. A large part of the exomes of more than 1,500 trees 
that were used to create the Norway spruce breeding program for 
southern Sweden were sequenced (Figure 1). Offspring of these 
trees were used in progeny tests across southern Sweden in order to 
estimate the breeding values of their parents for three phenotypic 
traits of economic interest, diameter, height and bud‐burst. While di‐
ameter and height are related to wood production, bud‐burst reflects 
growth rhythm.

First, we reasoned that high pairwise correlations between 
genotype, phenotype and climatic variables at origin would not be 
obtained if the current genetic structure among populations were 
only the result of past demographic events and isolation by distance. 
Indeed, we detected a strong level of past local adaptation with high 
congruence between the clustering of genotypic, phenotypic and 
climatic data. Levels of productivity of southern provenances under 
current climatic conditions in southern Sweden are thus higher be‐
cause of a longer growth period. Through genome‐wide association 
studies (GWASs), we then investigated both the genetic basis of 
Norway spruce local adaptation to climate and the genetic control of 
three phenotypic traits of economic interest. We identified a large 
number of genes involved in the response to environmental variation 
or in the control of quantitative traits. Especially, we showed that the 
genetic control of growth traits is much more polygenic than that of 
bud‐burst. Our data also highlight how traits with different patterns 
of geographical variation can be used to assess the impact of correc‐
tion for population genetic structure in GWAS. More importantly, 
we argue that while data from breeding programs might sometimes 
be incomplete or suboptimal, they are readily available and contain a 
lot of valuable information for evolutionary biologists.

2  | MATERIAL AND METHODS

2.1 | Trees sampling

The original sampling included 1,672 samples from three related 
spruce species, Norway (P. abies), Siberian (P. obovata) and Serbian 
(Picea omorika) spruces (Chen et al., 2019). In the present study, only 
1,545 trees from P. abies populations were considered (Figure 1 and 
Table S1). These samples came from two sampling schemes:

1.	 A total of 1,475 individuals were ‘plus trees’, that is trees se‐
lected on the basis of their outstanding phenotype to create 
the base population of the Norway spruce Swedish breeding 
program. Needles were collected on trees from Skogforsk (The 
Forestry Research Institute of Sweden) clonal archives. Their 

progeny were represented in several progeny tests across 
central and southern Sweden (Figure 1, black squares). The 
trials were established between 1978 and 1998. They all are 
open‐pollinated progeny trials (for estimating breeding values 
of the parent trees and performing backward selection). All 
trials were designed as randomized incomplete blocks. The num‐
ber of families/parents tested in each trial varies between 30 
and 1,395 and the number of replicates between 11 and 40. 
Finally, all trials were designed as single‐tree plots (single trial 
information's are reported in Appendix S1). Among those 1,475 
‘plus trees’, 560 had no clear records of their geographical 
origin (i.e. information on the origin of trees was missing in 
the archives of the breeding program, Table S1).

2.	 A total of 70 individuals were sampled from P. abies natural popu‐
lations covering the main genetic domains of its distribution range 
(Lagercrantz & Ryman, 1990; Tollefsrud et al., 2009; Tsuda et al., 
2016; Chen et al., 2019). They were used as reference when de‐
fining the origin of the 560 ‘plus trees’ whose origin was missing 
(Table S1).

2.2 | Population structure analyses

The SNP data set defined by Chen et al. (2019) was used to assess 
population structure and to define genetic clusters of the 1,545 
P. abies individuals.

2.2.1 | SNP identification

The complete procedure for SNP identification is detailed in Chen et 
al. (2019). Briefly, after genomic DNA extraction, 40,018 probes of 
20bp long were designed to cover exons of 26,219 P. abies contigs 
(Vidalis et al., 2018). Paired‐end short reads were aligned to the ref‐
erence genome of P. abies (Nystedt et al., 2013) using BWA‐mem (Li & 
Durbin, 2009). PCR duplicates were removed using PICARD v1.141 
(http://broad​insti​tute.github.io/picard), and INDEL realignment 
was performed using GATK (McKenna et al., 2010) IndelRealigner. 
SNP calling was carried out using GATK HaplotypeCaller across all 
samples. After variant recalibration and filtering (≤2 reads for both, 
reference and alternative alleles and ≤50% coverage across individu‐
als), 1,004,742 SNPs were retained. The original study included few 
individuals belonging to P. obovata and P. omorika species. Only poly‐
morphic sites within P. abies were considered in the present study 
reducing the size of the data set to 917,107 SNPs.

2.2.2 | Genetic clusters definitions, inference of 
individuals’ unknown origin and relatedness

EIGENSOFT v6.1.4 (Galinsky et al., 2016) was used to perform 
principal component analysis (PCA) on the genetic variation 
of P.  abies and to define subsequent genetic clusters based on 
399,801 unlinked noncoding SNPs (pairwise LD  ≤  .2 and FDR 
value ≥ .05, after haplotype phasing using MACH v 1.0, Li, Willer, 

http://broadinstitute.github.io/picard
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Ding, Scheet, & Abecasis, 2010). Geographic origin of the 560 indi‐
viduals for which no confident records of geographical origin were 
available was then assessed based on their genotype similarity to 
ascertained individuals. P. abies individuals of known origin were 
first grouped into seven major clusters based on genetic cluster‐
ing results and their origin. These individuals were then used as a 
training set in a ‘Random Forest’ regression model (‘randomFor‐
est’ v4.6‐14 package, Liaw & Wiener, 2002, R software v.3.3.1, R 
Core Team, 2019). The first five components of the PCA analysis 
were used for model fitting to classify the unknown individuals 
into each of the seven clusters. Fivefold cross‐validation was per‐
formed for error estimation. Briefly, the ‘training’ data set made of 
individuals with known origin is randomly divided into five groups 
or folds. Then, one group is extracted from this training data set 
and serve as a validation set, and the model is fitted to the remain‐
ing groups and validated on the validation set. Individuals of ‘un‐
known’ origin were then assigned to the various genetic clusters 
defined from individuals from known origin. The whole regression 
process was repeated 1,000 times in order to estimate the confi‐
dence of each assignment.

Finally, for GWAS, the individual relatedness (kinship) matrix was 
estimated using the ‘Centered IBS’ method (Endelman & Jannink, 
2012) implemented in the TASSEL software (v.5.2.38, Bradbury et 
al., 2007).

2.3 | Phenotypes

Breeding values (BVs) for two growth traits diameter and height and 
measures of bud‐burst were extracted from the records of Skogforsk 
for 763, 808 and 834 ‘plus trees’, respectively. Complete records of 
the three traits were available for 712 of those trees but the ori‐
gin was known for only 279 of them. Briefly, for height and diameter 
more than 15 progenies of each ‘plus tree’ were planted in up to 
five progeny tests per tree scattered across central and southern 
Sweden. For height and diameter, the BVs were then computed, for 
each progeny test, using mixed linear model and BLUPs (best linear 
unbiased predictors) methodology through a restricted maximum 
likelihood approach from the following statistical model:

where for a given trait, yijk is the observation for individual k from 
family j in block i, μ is the mean of the trait, b is the fixed effect of 
block, f is the random effect of family with a normal distribution 



(

0,�2
�

)

 and ε is the error term with a normal distribution 
(

0,�2
�

)

. BVs were then reported as relative percentages to the mean. 
Therefore, a value of 100 corresponds to the average BV and a rela‐
tive BV of 110 thus indicates that the given genotype has a BV 10% 
higher than the average. For a given genotype, the average BV across 
the different progeny tests was then considered. bud‐burst was mea‐
sured using Krutzsch scale (Krutzsch, 1973), ranging from 0 (no 
burst) to 9 (full development of the needles) from a single clonal 

archive and transformed to normal scores based on midpoint values 
of the cumulative frequency distribution (Danell, 1991) before 
analysis.

2.3.1 | Inference of missing phenotype

Missing phenotypes (N = 782, N = 737 and N = 711, respectively, for 
diameter, height and bud‐burst) were inferred from genotypic data 
using the ‘genomic selection’ method implemented in TASSEL soft‐
ware (v.5.2.38 Bradbury et al., 2007; Zhang et al., 2010). Briefly, each 
trait was considered independently and the missing breeding values 
for a given trait were estimated using a mixed model that included 
a population structure matrix as fixed effects and a kinship matrix 
as random effects to capture the covariance between genotypes. 
In other words, the BLUPs of individuals whose phenotype is miss‐
ing are imputed from the phenotypes of closely related individuals. 
Fivefold cross‐validation was performed for accuracy estimation (20 
iterations each).

2.4 | Relationships between phenotype and 
ancestral environment

The relationship between tree origins and their phenotypes was es‐
timated using the following generalized linear model (GLM):

where for a given trait, y is the observation for genotype k (BVs 
for height and diameter or normal score for bud‐burst) from origin i, μ 
is the mean value of the trait, and o is the tree‐origin specific fixed 
effect (a factor with seven levels corresponding to the seven genetic 
clusters), and εik is the error term, 

(

0,�2
�

)

. The significance of the 
difference between factor levels (genetic clusters) was computed 
from the complete model (2) using likelihood ratio test (LRT). Factor 
levels were grouped if no significant difference (p > .05) was identi‐
fied, and tree origin effect of reduced levels was further assessed as 
a simplified model (2).

2.4.1 | Ancestral environment characterization

Data for 19 bioclimatic variables (monthly averages for the 1970–
2000 period, 10 arc minute resolution, ~340 km2) were downloaded 
from the online WorldClim database (v.2.0 http://world​clim.org/, 
Fick & Hijmans, 2017). Two additional variables were computed 
from these data, the summer heat‐moisture index (SHM) and an‐
nual heat‐moisture index (AHM). A measure of yearly photoperiodic 
amplitude (ΔDL) was also computed as the difference between the 
average day length in June and the average day length in January 
(see Table S3 for the complete list and details). For trees of unknown 
origin, bioclimatic data were extracted at the location corresponding 
to the centroid of the geographical coordinates of trees belonging 
to the same genetic cluster and having a known geographical origin 
(Figure 1, large ‘plus’ signs).

(1)yijk=�+bi+ fj+�ijk

(2)yik=�+oi+�ik

http://worldclim.org/
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2.5 | Outlier detection and genotype–phenotype–
environment associations

2.5.1 | Genotype ‐ environment association

The Bayenv software (v.2, Coop, Witonsky, Rienzo, & Pritchard, 
2010; Günther & Coop, 2013) was used to estimate correlations be‐
tween allele frequencies at individual loci and bioclimatic variables, 
while accounting for population structure. A Bayesian mixed linear 
model, considering bioclimatic variables as fixed effects and a vari‐
ance–covariance matrix of allele frequencies as random effect (to 
capture shared polymorphism due to populations common history), 
was fitted to population allele frequencies. In parallel, Spearman's 
rank correlation coefficient, rho, was also computed from standard‐
ized allele frequencies, from which the covariance structure among 
populations was removed.

Forty‐eight P. abies populations were defined by grouping trees 
from close geographic origins and belonging to the same genetic 
cluster (≥5 trees per population, several population per genetic clus‐
ter, circles). Note that only trees with a known origin were consid‐
ered as the populations were defined from geographic coordinates 
(777 trees). Twenty variance–covariance matrices were estimated 
from 20,000 noncoding, and unlinked SNPs randomly sampled from 
the 399,801 noncoding and unlinked SNP data set. The average ma‐
trix across the 20 runs was then considered in the model. Finally, 
for each population, bioclimatic data for each tree location were 
averaged. For each climatic variable, the following filtering (based 
on Bayes factor and Spearman's rho) was applied to retain only the 
most relevant SNPs: (a) the SNPs were ranked according to their 
Bayes factor (BF) and a SNP was retained if its BF > 150 (very strong 
strength of evidence according to Kass and Raftery (1995) or, if its 
BF > 20 (strong strength of evidence) and was within the .1% highest 
BF; (b) in parallel SNPs were ranked according to Spearman's rho and 
only those that were satisfying the first criteria and were within the 
1% highest absolute rho were conserved for further analysis, as rec‐
ommended by Günther and Coop (2013).

2.5.2 | Genotype–phenotype association

For each trait independently, the additive allelic effect of each SNP 
on the phenotype and the corresponding standard error were esti‐
mated through a linear mixed model considering population struc‐
ture (first three principal components of a SNP‐based PCA) and 
individual relatedness (kinship matrix). The analysis was performed 
through a compressed mixed linear model (Zhang et al., 2010) imple‐
mented in the R package GAPIT (Lipka et al., 2012). For this analy‐
sis, only bi‐allelic SNPs with a minimum allele frequency > .05 and a 
minimum number of individuals per genotype of 10 were considered.

The statistical significance of the SNP associated to the three 
phenotypic traits was investigated using a recently developed 
Empirical Bayes approach for adaptive shrinkage (Stephens, 2017) 
implemented in the R package ashr (Stephens et al., 2018). Traditional 
false discovery rate (FDR, Storey, 2003) methods are based on the 

sole p‐values. In contrast, ashr uses both allelic effect sizes and their 
standard errors. It models the GWAS results as a mixture of SNPs 
that have a true effect size of exactly zero and SNPs that have a 
true effect size that differs from zero. The ‘local false sign rate’, lfsr, 
which refers to the probability of getting the sign of an effect wrong, 
is then used as a measure of significance and to compute s‐values 
(Stephens, 2017), which are the analogues of Storey's q‐values 
(Storey, 2011). The ‘local false sign rate’ is therefore more robust to 
errors in model fit than FDR (Stephens, 2017).

2.5.3 | Gene function and enrichment test

Gene ontology (GO) enrichment was performed using the ‘top GO’ 
R package (v2.26.0; Alexa & Rahnenfuhrer, 2010). Annotation from 
ConGenIE (the Conifer Genome Integrative Explorer, http://conge​
nie.org/) was used as reference (i.e. custom input), and all the GO 
terms were conserved (nodeSize parameter  =  1). For the various 
lists of candidate genes defined through both SNP‐environment 
and SNP‐phenotype analyses, enrichment of genes in particular GO 
terms biological processes (BP) was assessed using ‘weight’ algo‐
rithm and Fisher's exact test (p < .05). Finally, the REViGO software 
(Supek, Bošnjak, Škunca, & Šmuc, 2011) was used to remove GO 
terms redundancy and to cluster the remaining terms in a two‐di‐
mensional space derived by applying multidimensional scaling to a 
matrix of the GO terms semantic similarities (default parameter set‐
ting: allowed similarity = .7, SimRel to measure the semantic similar‐
ity, UniProt as database). The Cytoscape software v3.6.1 (Shannon 
et al., 2003) was then used to visualize GO terms networks.

3  | RESULTS

3.1 | Ancestral environment is a strong predictor of 
phenotype in Norway spruce

Trait values estimated from progeny tests across southern Sweden 
were used to assess the influence of tree origin (genetic cluster) on 
phenotypes. All three traits, diameter, height and bud‐burst, differ 
among genetic clusters (Model 2, F = 39, df = 6, p <  .001; F = 20, 
df = 6, p < .001; F = 12, df = 6, p < .001, respectively, for diameter, 
height and bud‐burst; Figure 2). Trees from the Alpine and Carpathian 
domains or from Central Europe tended to be bigger than trees 
from more northern domains. For instance, trees originating from 
Romania were, on average, ~25% larger and ~13% taller than trees 
from Fennoscandia. Patterns of variation in bud‐burst differed mark‐
edly from patterns of variation in height or diameter as bud‐burst 
mainly decreased along longitude, that is along a continentality gra‐
dient in Europe (Figure 2).

Climatic variables at tree original locations were then used to 
characterize the environment at origin and investigate environ‐
ment–phenotype relationships. Unfortunately, due to missing re‐
cords, tree origin and phenotype information were both available for 
only 279 trees. Both data sets were thus completed by considering 
bioclimatic data at the location corresponding to the centroid of the 

http://congenie.org/
http://congenie.org/
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geographical coordinates of trees belonging to the same genetic 
cluster and having a known origin (Figure 1, large ‘plus’ sign) and by 
imputing missing phenotypes using linear mixed models (see Section 
2 ‘Missing phenotype inference’). Please note that both geographic 
origin and at least one phenotypic trait were inferred for only 198 
trees (~13%), and for the vast majority of the trees, either the origin 
or the phenotypic traits measures were available. Correlations be‐
tween observed and predicted phenotypes were strong (Spearman's 
ρ = .99 for diameter and height and ρ = .83 for bud‐burst, Figure S1), 
but accuracy was much higher for diameter and height (.52 and .41, 
respectively) than for bud‐burst (.27). This provided us with a com‐
plete data set for the 1,543 trees.

Genotypic (~400  K SNPs), phenotypic (diameter, height and 
bud‐burst) and environmental variables were each then described 
through PCA (‘ade4’ R package v.1.7‐10, Chessel, Dufour, & 
Thioulouse, 2004). The latter were characterized by annual mean 
and seasonality of precipitation (μAPrec and PrecSeas, resp.) 
and of temperature (μATemp and PrecTemp, resp.), as well as by 
an indicator of photoperiod (ΔDL; see Table S3 for more details). 
Strikingly, genotype, phenotype and environment data presented 
very similar clustering patterns (Figure 3a–c) and the principal 
component coefficients of the different PCA were highly cor‐
related (Figure 3d). To control whether such strong correlations 
were not due to the fact that many individuals shared the same 
climatic data, we reanalysed the data by randomly sampling one 
individual at each location, thereby avoiding any redundancy in 
bioclimatic information. Spearman's correlation coefficients were 
as strong as with the complete data set though the associated p‐
value increased due to a much smaller data set (N = 103), but re‐
mained highly significant (Table S2). We also checked the influence 
of the inferred data on this pattern by considering only trees with 
complete records (N = 279) or trees of known origin with at least 
one phenotypic trait inferred (N = 685). In both cases, we retrieved 

the same pattern as with the complete data set (Figure S2a,b), but, 
as expected, the intensity of some correlations for the PCA with 
only 279 trees was lower even though the correlations remained 
significant.

Further, a more thorough investigation of the phenotype–envi‐
ronment relationships (21 climatic variables considered, see com‐
plete list in Table S3) showed that diameter and height decreased 
mainly along a South to North latitudinal gradient (Pearson's r = −.62 
and −.47, respectively, all p <  .001) and were thus strongly associ‐
ated to climatic variables following this gradient (e.g. ΔDL: r = −.61 
and −.46; summer heat‐moisture index, SHM: r = −.54 and −.38; an‐
nual precipitation, μAPrec: r = .50 and .31; all p < .001 Table S3 and 
Figure S4 for the complete analysis). On the other hand, bud‐burst 
followed both a latitudinal gradient (South to North, r = .39, p < .001) 
and a longitudinal gradient (West to East, r = −.47, p < .001). It was 
thus more associated with climatic variables reflecting continentality 
(e.g. PrecSeas: r = −.54; mean diurnal temperature range, μRangeD‐
uir: r = −.52; annual temperature range, ARangeTemp: r = −.39; all 
p < .001. See Table S3 and Figure S3 for the complete analysis).

3.2 | Genotype–environment association analysis 
revealed close link to environment of origin despite 
strong population structure

In order to identify loci underlying local adaptation in Norway 
spruce, different populations were defined according to tree origi‐
nal locations (i.e. trees from close geographic origins belonging to 
the same genetic cluster were grouped, and several populations per 
genetic cluster have been defined, Table S4, ‘circles’); note that only 
trees with a known origin were used in the present analysis (48 pop‐
ulations, 777 trees, Table S4). Climatic variables were then used as 
fixed factors in independent mixed linear models (MLMs) account‐
ing for population structure (Bayenv software v.2, Coop et al., 2010; 

F I G U R E  2   Influence of trees origin on phenotype. Diameter, height (breeding values, BVs) and bud‐burst (normal scores) values are 
represented for the different genetic clusters (Carpathian, dark blue, ROM; Alpine, light blue, ALP; Central Europe, green, CEU; Northern 
Poland, yellow, NPL; Russia‐Baltic, orange, Rus‐Bal; central and southern Sweden, red, CSE; Fennoscandian, pink, NFE). The genetic clusters 
are ordered regarding latitude for height and diameter and given longitude for bud‐burst. The number of trees belonging to each genetic 
cluster is given within parentheses. Letters represent the levels of significance
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Günther & Coop, 2013), to explain SNP frequencies variation across 
populations (Figure S4).

After stringent filtering steps to control for false positives (see 
Section 2 ‘SNP‐Environment relationships’), many SNPs were found 
to be significantly associated with environmental variables (min = 46 
SNPs for Temp_1, annual mean temperature and max = 344 SNPs 
for Prec_4, total precipitation of the driest month, Table S5). 
Approximately 25% of these SNPs belong to intergenic regions, a 
half belongs to introns and the remaining quarter belongs to exons 
(Table S5; SNP annotations and transcript descriptions are given in 
Appendix S2). For each climatic variable, the redundancy varied a lot 
from 0% to ~65%, meaning, for the latter, that two‐third of the can‐
didate SNPs are related to the same transcripts (Table S5). Despite 

such a degree of redundancy, many genes were found to be associ‐
ated with each climatic variable (min = 43 genes for Temp_1, annual 
mean temperature, and max = 148 genes for photoperiod, Table S5). 
On average, a larger number of transcripts were associated with 
precipitation‐related variables (μprec  =  87, mean overlap between 
variables 44%, Table S6a) than with temperature‐related variables 
(μtemp = 68, overlap 12%, Welch's two‐sample t test, t = −4.9, df = 11, 
p <  .001) or moisture (μmoist = 68, overlap 38%). The largest group 
consists of transcripts associated to photoperiod (N = 148, Table S5). 
Importantly, the present study demonstrates that climatic variation 
creates a widespread selective pressure across the Norway spruce 
genome as nonoverlapping categories of genes were associated 
to different climatic variables. For instance, the average overlap 

F I G U R E  3   Pattern of variation of trees genotype, phenotype and original environment. Principal component analyses (PCA) based on 
(a), SNPs data (modified from Chen et al., 2019), (b) Phenotypic data and (c), climatic variables of the populations of origin (see Table S3 
for climatic variable details). Correlation circles for phenotypic (b) or climatic variables (c) used for the respective PCA analysis are also 
represented. Colours correspond to genetic clusters (Carpathian, dark blue, ROM; Alpine, light blue, ALP; Central Europe, green, CEU; 
Northern Poland, yellow, NPL; Russia‐Baltic, orange, Rus‐Bal; central and southern Sweden, red, CSE; Fennoscandian, pink, NFE). Panel (d) 
represents Spearman's correlation coefficient, r, between principal component 1 (Comp 1) or 2 (Comp 2) of the various PCA, disc diameters 
are proportional to the corresponding correlation coefficient

(b)(a)

(d)(c)
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between genes involved in response to temperature variables and 
those involved in response to precipitation was only 5% (Table S6b).

However, this limited overlap at the gene level masks a much 
more important overlap at the functional level as many of these 
genes tend to be involved in the same BP as shown by the strong 
overlap between GO terms (Appendix S2). The smallest overlap was 
between photoperiod and moisture index, 15%, and the largest, 
72%, expectedly, was for precipitation and moisture (Figure S5a).

3.3 | Growth traits and bud‐burst have different 
genetic architecture

To characterize the genetic architecture of the different phenotypic 
traits and to identify SNPs involved in their control, GWASs were 
conducted with MLMs. Population structure was considered by in‐
cluding the three first principal components of a SNP‐based PCA as 
fixed effects and a kinship matrix as random effect in the MLM; note 
also that only trees with a measured phenotype (i.e. not inferred) 
were included in these analyses (763, 808 and 834 trees, respec‐
tively, for diameter, height and bud‐burst).

Diameter and height had a highly polygenic control as no <180 
and 175 SNPs, respectively, had a significant effect on trait values 
(s‐value  <  .1, s is the analogue of q‐value for false sign rate detec‐
tion, see Section 2 ‘SNP‐Phenotype relationships’, Table S5 and 
Figure 4a). In striking contrast, a mere 32 SNPs were detected for 
bud‐burst. These SNPs affected more than 130 different genes for 
growth traits (~20% redundancy) but only 15 genes for bud‐burst 
(~50% redundancy).

Moreover, the phenotypic correlations between traits are due 
to pleiotropic effects at the genotypic level (Table 1 and Figure S6). 
For instance, tree height and diameter were strongly correlated 
(Spearman's ρ =  .86) and such a correlation was due to correlation 
between SNP allelic effect sizes (ρ = .91 and .93, when considering 
SNPs significant for height or SNPs significant for diameter, respec‐
tively). The pattern for bud‐burst was different as SNPs involved 
in its control had a strong influence on both height and diameter 
(ρ = −.92 and ρ = −.91, respectively), but the converse was not true 
(ρ = −.36 and ρ = −.05).

Finally, as for SNP related to environment, genes associated 
to the variation in phenotypic traits belong to BP, functions, path‐
ways and network expected for the trait under consideration. For 
instance, genes involved in the control of phenotypic traits are as‐
sociated to GO terms such as, to name a few, regulation of auxin 

metabolism, response to light and photoperiodism, gravitropism, cell 
growth or organs development (Appendix S2). Furthermore, in con‐
trast with climatic variables, at the network scale, GO terms associ‐
ated only with diameter and those associated only with height tended 
to belong to the same functional clusters (Figure S5b).

4  | DISCUSSION

Norway spruce (P. abies) is a dominant conifer species of major eco‐
nomic importance in northern Europe. Extensive breeding programs 
were established to improve phenotypic traits of interest, focusing 
on productivity, wood quality and resistance to pathogens. Here, ge‐
netic and phenotypic information was collected on more than 1,500 
trees of outstanding phenotype (‘plus trees’) that were used to es‐
tablish the Swedish breeding population. Some of these trees were 
of local origin, but many corresponded to recent introductions from 
the rest of the natural range. In the present study, we demonstrated 
that these data present a unique opportunity to study the genetic 
basis and the role of local adaptation in the control of quantitative 
traits. This last point is crucial for breeders and forest managers as it 
provides them with a mean to assess the potential of assisted migra‐
tion as a strategy to mitigate the impact of climate change on forest 
productivity and health.

4.1 | Caveats and solutions

We used breeding values for two phenotypic traits, height and di‐
ameter, that were collected from different series of progeny tests 
of the Swedish breeding program. While it is unquestionable that 
breeding programs are a treasure trove for biologists, working from 
data originating from series of trials planted in the early 80s includes 
some serious challenges.

First, the data are heterogeneous. Indeed, the phenotypic data 
were collected on trees that were planted in progeny tests located 
at different latitudes in Sweden and the age of the trees at mea‐
surement varied across trials (from 6 to 15 years old for height and 
from 9 to 15 for diameter). A part of that variance was considered 
when computing the breeding values within trials as trees from 
the same trial were of the same age and obviously faced the same 
environment, but this nonetheless neglected genotype by environ‐
ment interactions and did not remove the age variation across tri‐
als. In some trials, breeding values for height were computed with 

TA B L E  1   Linear regressions between either trait values or between allelic effect sizes

Trait A Trait B

Phenotypic All SNPs A significant SNPs B significant SNPs

r2 t df r2 t df r2 t df r2 t df

Height Bud‐burst .12 −15 1,553 .01 −43 161,112 .12 −5 173 .9 −16 28

Diameter Bud‐burst .08 −12 1,553 0 −26 161,112 .01 −2ns 178 .9 −16 28

Height Diameter .72 63 1,553 .64 539 161,112 .95 58 173 .95 59 178

Note: r2: Adjusted R‐squared; t: t‐statistic value, all are significantly different from 0, p < .001 unless indicated (ns); df: degree of freedom.
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five‐year intervals and were highly similar (r2 ~ .8, data not shown) 
and genotype by environment (GxE) interactions are known to be 
weak in P. abies breeding program in central and southern Sweden 
(Berlin, Jansson, & Högberg, 2015). The heterogeneity introduced 
by these two effects should thus be somehow limited. Finally, the 
trees belonged to different trial series, a trial series being a set of 
progeny tests comprising the same individuals. If the average BVs 
across a trial series is used, then GxE interactions are to some extent 
included. However, it should be pointed out that BVs from different 
trial series are not strictly speaking comparable as they were ana‐
lysed separately. As the BVs from each trial series were compiled 
and used as one complete data set, there may be a bias. Such a bias 
would have been avoided if all the trial series had been evaluated 
simultaneously. The BVs would then have been truly comparable on 
the same scale, but this was unfortunately not possible at the time 
the present study was initiated. Interestingly, while this heteroge‐
neity will certainly have weakened the clustering of the individuals 
based on their phenotypic data, it did not erase it altogether. Hence, 
our results are conservative.

Second, the data are incomplete: for roughly a third of the data 
set, the exact coordinates of the origin of some of the samples were 
unknown and phenotypic data were missing for about half of the 
trees. These difficulties were circumvented by using a large‐scale 
SNP data set and supervised machine‐learning algorithm to precisely 
assign each genotype to a given geographic origin (accuracy >  .92, 
see Chen et al., 2019) and to infer the phenotypic values for trees for 
which records were lacking (genomic selection). Despite heteroge‐
neity in the phenotypic data, the method was accurate enough (e.g. 
>50% for diameter) to provide us with a complete data set (~1,500 
trees) for studying phenotype–environment relationships.

Re‐sequencing technologies are continuously developed, and 
their efficiency keeps increasing. They are now affordable (and prices 
are still decreasing), and it is now possible to obtain genomic data for 
a large number of individuals. Thanks to new statistical approaches, 
mostly based on machine learning (see Schrider & Kern, 2018, and 
examples within), it is now possible to overcome issues often en‐
countered with such large and long‐term survey data sets such as 
incompleteness. Breeding programs thus represent a valuable and 
still underused source of study material for evolutionary biologists. 
This is especially true for forest trees, as progeny tests and common 
gardens require extensive space and need to be measured over long 
periods of time, something that cannot easily be done today within 
universities or research institutes; in our case, the trials were spread 
all over southern Sweden and some were started half a century ago.

4.2 | Population structure, local adaptation and 
genetic architecture of quantitative traits

Animal and plant species are known to have undergone cycles of 
contractions and expansions as a result of successive glacial and 
interglacial periods (Bennett, 1997). The contraction phase is re‐
sponsible for reproductive isolation between refugial area, which, 
in association with bottlenecks (reduction of the effective size of a 

population), can lead to a strong divergence between populations 
or even speciation events (Petit et al., 2003). During the expansion 
phase, secondary contacts between the genetic entities can occur, 
resulting in introgression that can play a major role in the evolution 
of species (see Arnold, 2004 and references within). Re‐colonization 
also involves facing different environments, and natural selection 
also played a role in the current distribution of species (Saccheri & 
Hanski, 2006). The phenotypes of individuals are therefore the re‐
sult of a complex interplay between demographic history of popu‐
lations and local adaptation. Because (re)‐colonization routes often 
followed environmental gradients, these two effects are generally 
confounded and disentangling the role of each in trait evolution re‐
mains challenging (Gaggiotti et al., 2009).

In P. abies, contraction phases resulted in three strongly differ‐
entiated genetic clusters, a northern domain in Fennoscandia and 
two southern domains in the Alps and the Carpathians, that have 
been amply documented (Acheré, Favre, Besnard, & Jeandroz, 2005; 
Borghetti, Glannini, & Menozzi, 1988; Chen et al., 2018; Heuertz et 
al., 2006; Lagercrantz & Ryman, 1990; Tollefsrud et al., 2009; Tsuda 
et al., 2016). These three genetic clusters had a major impact on 
phenotypic divergence as illustrated in our study and in the seminal 
work of Lagercrantz and Ryman (1990). In the latter, the authors an‐
alysed 48 Norway spruce provenances at both 22 allozyme loci and 
seven morphological characters describing seed, growth and phe‐
nology. They analysed both allozyme and phenotypic variations with 
principal components analysis and, as in our case, observed a striking 
similarity between the two resulting plots indicating that population 
history had a strong impact on the divergence of phenotypic traits.

In our case, the strongest correlation was found between gen‐
otype and climatic data at trees origin, which roughly reflects ge‐
ography. This is expected since Norway spruce is known to present 
a relatively strong population structure, with the different popula‐
tions located in different selective environments. Genotypic data 
thus capture both demographic history and local adaptation. If the 
correlation between genotypic data and climatic data were only re‐
flecting past demography and isolation by distance, we would not 
expect to also detect a correlation between both genotypic data and 
phenotypic data, on the one hand, and between phenotypic data 
and climatic data, on the other hand. However, both were also high 
and significant (Figure 3d). Correlations involving phenotypic data 
were the lowest, probably because the phenotypic data were also 
the noisiest and are inherently more complex than environmental 
variables. As stated above, even if limited, both GxE interactions and 
differences in trees age at measurement between trials have prob‐
ably introduced heterogeneity in the phenotypic data sets. In any 
case, the fact that environmental variables at the locations of origin 
of the different clusters show the same clustering as both pheno‐
typic traits and genetic polymorphism strongly suggests that this 
divergence is not entirely neutral and may reflect local adaptation 
(Savolainen et al., 2013).

This agrees with other studies of local adaptation in forest 
trees that have all concluded that local adaptation is common in 
forest trees despite extensive gene flow (e.g. Avia, Kärkkäinen, 
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Lagercrantz, & Savolainen, 2014; Chen et al., 2012, 2014; Lind et al., 
2014; Yeaman et al., 2016). In a simple, single‐locus model of local 
adaptation, one would have expected low levels of local adaptation 
when gene flow is strong (Bulmer, 1972). This apparent paradox was 
first explained by Le Corre and Kremer (2003; see also Le Corre & 
Kremer, 2012; Kremer & Le Corre, 2012). Their model was later ex‐
tended by Berg and Coop (2014) which, in brief, showed that high 
differentiation between populations at quantitative traits will not 
result from large change in allele frequencies at a limited number of 
loci but instead will follow from coordinated small changes in allele 
frequencies at a myriad of loci, each of small effect, underlying the 
variation in the quantitative traits.

We indeed found that the three traits used in the present study 
were highly polygenic, albeit height and diameter appeared more 
polygenic than bud‐burst. The latter is unlikely to be a consequence 
of differences in heritability among traits as bud‐burst tend to have a 
higher heritability than height and diameter, and therefore, all things 
being equal it should be easier to detect loci associated with bud‐
burst than to height and diameter (Hannerz, 1998 and references 
therein). Incidentally, our results also have important consequences 
for the estimation of trait polygenicity and more specifically for 

understanding the presence of a large number of false positives due 
to population structure. Chen et al. (2019), indicated the presence 
of secondary contacts between these main domains (Figure 3a), and 
current P. abies populations are mainly structured along a latitudi‐
nal gradient as are the climatic variables influencing growth traits 
(Figure 2, Figure 3b,c). In contrast, bud‐burst varies along both lati‐
tudinal and longitudinal gradients (Figure 3b). A lower confounding 
effect of population structure is thus expected for bud‐burst than 
for growth traits when investigating trait genetic architecture. In 
order to evaluate the impact of population structure on our ability 
to detect growth trait‐related SNPs, we reproduced the GWAS but 
without controlling for population structure (Figure 4). As expected 
for bud‐burst, p‐values were biased towards lower values, going 
down from 761 significant SNPs to 32, after correction for popu‐
lation structure and multiple testing. While significant and already 
rather massive, this effect was minor compared with the impact of 
population structure on SNPs associated with growth traits where 
the number of significant SNPs went from >50,000 without cor‐
rection for population structure to ~180 with correction (Figure 4). 
Obviously, population structure impeded a proper detection of SNPs 
affecting growth traits in P. abies, because of likely over‐correction 

F I G U R E  4   Q–Q plot of observed versus expected p‐values. For each phenotypic trait, −log10 p‐values, controlling for population 
structure (a) or not (b), are represented as a function of expected −log10 p‐values assuming a uniform distribution. The red line is the one 
to one quantile, line and the grey area is the 95% confidence intervals around it. The red circle and the ‘plus’ sign represent the medians of 
observed and expected p‐values, respectively. Significant corrected p‐values (s‐value < .1, see text) are coloured in green
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for population structure. It also means that our estimates of ~180 
SNPs affecting growth traits is likely to be conservative and thus 
that the genetic architecture of height and diameter is highly poly‐
genic. These results are in line with what was recently described for 
other quantitative traits in model species (e.g. Berg, Zhang, & Coop, 
2017; Boyle et al., 2017; Daub et al., 2013), reconciliating genomic 
data with Fisher's infinitesimal model (Barton, Etheridge, & Véber, 
2017; Turelli, 2017).

4.3 | Southern genotypes outcompete local trees 
for growth traits

The strong association between genotype and phenotype variations 
showed that height, diameter and bud‐burst possess a strong genetic 
control. On the other hand, the association between genetic diver‐
sity and the environment of origin reflected a strong influence of 
population evolutionary history on genetic diversity. Finally, the fact 
that phenotypic traits followed environmental gradients revealed 
a strong pattern of local adaptation of Norway spruce populations 
to their original environment. Yet, despite this strong signature of 
local adaptation to the home environment, southern genotypes, 
for instance those from Romania, were taller and larger than north‐
ern ones when grown in southern Sweden although they resumed 
growth later in the spring than most northerly provenances. By link‐
ing phenotypic data to climatic variables, our study, as several be‐
fore it (Dormling, 1979; Heide, 1974), highlights the importance of 
temperature in the control of bud‐burst and of, temperature, precipi‐
tation and photoperiod, on growth traits. Given climate change ex‐
pectations in southern and central Sweden (+2 to 4°C annual mean 
temperature and higher annual precipitations, Swedish commission 
on climate & vulnerability, 2007), it will be crucial to consider the 
tree origins in future development of the breeding program in these 
regions.

Generally, transfer of trees within a range of four degrees of 
latitude is recommended to increase forest productivity (Persson & 
Persson, 1992; Rosvall, Andersson, & Ericsson, 1998), but transfer 
from farther provenance could, in contrast, lead to maladaptation 
(Savolainen et al., 2013 and references therein). A major limitation 
for assisted gene flow for boreal species come from the risk of frost 
damages due to late‐spring frost for northern genotypes (because of 
a too early bud break) or early fall frost for southern ones (because 
of a too long growth period, e.g. Montwé, Isaac‐Renton, Hamann, 
& Spiecker, 2018 but see MacLachlan, Wang, Hamann, Smets, & 
Aitken, 2017; MacLachlan, Yeaman, & Aitken, 2018 for lodgepole 
and interior spruce, respectively). In Norway spruce, the impact of 
frost damage on different provenances was investigated in a trial 
located in central Sweden by Hannerz & Westin (2005). They con‐
cluded that Belarus provenances were more productive than local 
ones but that the Belarus provenances also had an increased risk of 
autumn frost damage because of later hardening (Hannerz & Westin, 
2005).

In the present case, frost damages were recorded within nine 
trials (135 trees) and no difference in frost resistance was observed 

between genetic clusters despite differences between trials (data 
not shown). However, the trees analysed in the present study are 
plus trees that were selected based on their superior phenotypes 
in southern Sweden. They are therefore not a random sample and, 
hence, we cannot draw inference on the effect of assisted gene flow 
from southern provenances in general. It is highly possible that ‘un‐
controlled’ assisted gene flow could lead to an average decrease in 
growth performance and quality. Nonetheless, our data suggest that 
the samples that survive can have higher growth than local prove‐
nances. In the long term, episodic frost are expected to decrease in 
central and southern Sweden given global warming (Swedish com‐
mission on climate & vulnerability, 2007) even if frost damage risk 
could first increase during a transient period (Langvall, 2011). Given 
the superior productivity of more southerly provenances, assisted 
migration still appears as a strategy worth of further testing. In par‐
ticular, biotic communities (insects, fungus and microbiome) and soil 
content represent two additional sources of maladaptation for large‐
scale transfers that deserve further scrutiny (e.g. Aitken, Yeaman, 
Holliday, Wang, & Curtis‐McLane, 2008; Crémieux et al., 2008; 
Macel et al., 2007; Vitt, Havens, Kramer, Sollenberger, & Yates, 
2010; Wang & Klinka, 1997). Indeed, in our different GWASs, we 
detected numerous genes involved in immune system responses as 
well as in metal‐ion transport or pH regulation. Investigating the rel‐
ative impact of the afore‐mentioned risks would require additional 
studies to get a complete assessment of the effect of local soil and 
biotic communities on nonlocal genotypes.

Finally, thanks to large‐scale genomic data (>400 K SNPs), Chen 
et al. (2019) were able to characterize P. abies population structure 
at a finer scale than in previous studies. This indicated the exis‐
tence of a new genetic cluster corresponding to hybrids between 
Fennoscandian and Alpine trees (CSE cluster). In the present study, 
we further showed that trees belonging to that cluster also had an 
intermediate phenotype evidencing that if some limitations to south‐
ern genotypes settlement exist they are clearly not strong enough to 
impede Alpine trees to reproduce with local ones. Hence, assisted 
gene flow would in the long‐term lead to a dilution of the local gene 
pool, a risk that should certainly be considered.

5  | CONCLUSION

The sequencing of >1,500 Norway spruce trees coming from the 
Swedish breeding program allowed us to analyse the influence of 
tree origins on phenotypic traits and to investigate their genetic 
basis. From a practical point of view, our study lends support on 
strategies based on assisted gene flow to alleviate the impact of 
climate change in central and southern Sweden breeding program. 
First, trees with southern origin are taller and bigger than local ones 
(two valuable characteristics for the wood industry), and second, we 
showed that the control of these traits is highly polygenic, arguing 
for genomic selection approaches for trait improvement, especially 
considering the strong genetic correlation between both traits. From 
a more general perspective, our study revealed a strong pattern of 
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local adaptation in Norway spruce, phenotypic traits following envi‐
ronmental gradients and tree origins explaining a large part of their 
variance. It also showed that breeding programs are valuable re‐
sources for large‐scale genomic studies. By tightly controlling envi‐
ronmental variance, they are ideal systems for investigations on the 
genetic basis of phenotypic traits. Re‐sequencing technologies being 
continuously developed and becoming more affordable, it will soon 
be possible to sequence a number of individuals large enough to 
apply statistical methods currently limited to humans and a handful 
of model species, allowing investigating, for instance, the strength 
and direction of selection acting on a trait of interest (Guo, Yang, 
& Visscher, 2018; Zeng et al., 2018 and references therein). Finally, 
our study showed that comparing traits that followed different geo‐
graphic gradients could help to better comprehend and address the 
confounding effect of population structure on GWAS. Developing a 
statistical framework to control for population structure using this 
insight will, however, requires further investigation.
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