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RstA, a two‑component response 
regulator, plays important roles 
in multiple virulence‑associated processes 
in enterohemorrhagic Escherichia coli O157:H7
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Abstract 

Background:  Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) causes bloody diarrhea and hemolytic-
uremic syndrome. EHEC O157 encounters varied microenvironments during infection, and can efficiently adapt to 
these using the two-component system (TCS). Recently, a functional TCS, RstAB, has been implicated in the regulation 
of virulence of several bacterial pathogens. However, the regulatory function of RstAB in EHEC O157 is poorly under-
stood. This study aimed at providing insights into the global effects of RstA on gene expression in EHEC O157.

Results:  In the present study, we analyzed gene expression differences between the EHEC O157 wild-type strain and 
a ΔrstA mutant using RNA-seq technology. Genes with differential expression in the ΔrstA mutant compared to that in 
the wild-type strain were identified and grouped into clusters of orthologous categories. RstA promoted EHEC O157 
LEE gene expression, adhesion in vitro, and colonization in vivo by indirect regulation. We also found that RstA could 
bind directly to the promoter region of hdeA and yeaI to enhance acid tolerance and decrease biofilm formation by 
modulating the concentration of c-di-GMP.

Conclusions:  In summary, the RstAB TCS in EHEC O157 plays a major role in the regulation of virulence, acid toler-
ance, and biofilm formation. We clarified the regulatory function of RstA, providing an insight into mechanisms that 
may be potential drug targets for treatment of EHEC O157-related infections.
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Background
Enterohaemorrhagic Escherichia coli O157:H7 (EHEC 
O157) is an important intestinal pathogenic bacterium 
that can causes diarrhea, hemorrhagic colitis, and in 
10% of cases of systemic hemolytic uremic syndrome. 
EHEC O157 is the most extensively studied EHEC and 
is responsible for regular outbreaks of foodborne illness 

worldwide [1]. EHEC O157 colonization involves the 
formation of attaching and effacing (A/E) lesions on the 
intestinal epithelium, which are characterized by loss 
of microvilli and allow intimate attachment of the bac-
terium to the host cell membrane [2]. A/E lesion for-
mation genes are localized on a pathogenicity island, 
known as the locus for enterocyte effacement (LEE), 
which encodes a bacterial type III secretion system 
(T3SS) and is capable of injecting bacterial effector 
proteins into the host cell cytoplasm [3]. The LEE con-
tains 41 genes that are organized in five major operons 
(LEE1, LEE2, LEE3, LEE5, and LEE4) [3]. LEE1, LEE2, 
and LEE3 encode the major structural components of 

Open Access

Gut Pathogens

*Correspondence:  yangbin@nankai.edu.cn
†Yutao Liu and Shujie Li contributed equally to this work
2 TEDA, Institute of Biological Sciences and Biotechnology, Nankai 
University, TEDA, Tianjin 300457, People’s Republic of China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6300-3140
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13099-019-0335-4&domain=pdf


Page 2 of 11Liu et al. Gut Pathog           (2019) 11:53 

the T3SS, LEE4 encodes several secreted proteins [4–
6], and LEE5 encodes Tir and Intimin [7]. ORF1 on the 
LEE1 operon encodes the master regulator Ler (LEE 
encoded regulator). Ler is capable of activating LEE2 
to LEE5 [8, 9]. Transcriptional regulation of the LEE is 
extremely complex. The regulatory system of the LEE 
involves at least three kinds of regulators: LEE-encoded 
regulators (including Ler [9], GrlA and GrlR [10]), 
global regulators (such as H-NS, IHF and Fis [11]), and 
horizontally transferred regulators (such as EivF, EtrA, 
and GrvA). Although the complexity of LEE regulation 
in EHEC O157 has been acknowledged, the mechanism 
by which LEE regulation occurs in not fully understood.

In EHEC O157, biofilm formation is regulated by a 
complex network of regulatory cascades. The biofilm 
master regulator CsgD (curli specific gene D) is a key 
transcriptional response regulator controlling the for-
mation of curli fimbriae and cellulose production [12]. 
Biofilm formation can also be regulated by cyclic digua-
nylate (c-di-GMP) concentration [13]. c-di-GMP is a 
common second messenger in bacteria, which is syn-
thesized by diguanylate cyclases (DGCs) and degraded 
by c-di-GMP-specific phosphodiesterases (PDEs) [14]. 
Among these genes, yeaI, which is a DGC-encoding 
gene, increases the c-di-GMP concentration in E. coli 
BW25113 [15] and promotes biofilm formation in 
uropathogenic E.coli CFT073 [16].

Colonization of the mammalian gastrointestinal tract 
brings bacteria into contact with a strong acid barrier 
in the stomach and organic acids in the intestine [17]. 
To reach their site of colonization, EHEC must trav-
erse the acidic environment of the stomach. Although 
the environment within the large intestine is less acidic, 
EHEC must survive volatile organic acids produced via 
anaerobic fermentation by the local microbiota [18]. 
Several distinct acid resistance (AR) pathways have 
been identified in E. coli, and are present in EHEC 
[19]. Acid resistance and/or induction of acid tolerance 
may better enable pathogens to survive gastrointesti-
nal acidity and ultimately cause disease, and may thus 
enhance virulence [20–22]. The gene asr is important 
for adaptation to the acidic stomach, as asr mutants 
are unable to establish colonies in the stomach [23]. 
The periplasmic chaperones HdeA and HdeB are also 
important for cell survival at low pH [24] by protect-
ing periplasmic proteins from aggregation at low pH, 
which is crucial considering the high permeability of 
the outer membrane [25]. Transcription of the hdeAB 
operon is activated by RpoS and GadE, and repressed 
by H-NS and MarA [26]. GadE, GadW, and GadX also 
play a critical role in the transcriptional regulation of 
the glutamate-dependent acid resistance (GDAR) sys-
tem in E. coli K-12 MG1655 [27].

Two-component signal transduction systems (TCSs) 
enable bacteria to sense environmental stimuli and trans-
fer this information across the cytoplasmic membrane 
to the cytoplasm [28]. A typical TCS consists of a sen-
sor histidine kinase (HK) and its cognate DNA-binding 
response regulator (RR). The membrane HK typically has 
extracellular and cytoplasmic domains linked via a trans-
membrane domain. Upon ligand binding to the extracel-
lular domain and subsequent conformational change, 
auto-phosphorylation of the conserved histidine residue 
in the cytoplasmic domain takes place. The phosphate is 
then transferred to the aspartic residue on the RR. Phos-
phorylation of the RR activates an output domain that 
can modulate gene expression [29]. Most RRs are tran-
scriptional factors, and once phosphorylated they bind to 
target promoters, activating or repressing transcription 
[28]. Recently, a functional TCS, RstAB, has been impli-
cated in the regulation of bacterial virulence in Vibrio 
alginolyticus, Salmonella typhimurium, Photobacterium 
damselae, Clostridioides difficile, and avian pathogenic 
E. coli [30–35]. The regulatory function of the TCS pro-
tein RstA on bacterial virulence in EHEC O157 remains 
unclear. Therefore, in the present study, we investigated 
the global effects of RstA on gene expression in EHEC 
O157. Genes whose expression was affected by RstA 
were identified and grouped into different clusters of 
orthologous group (COG) categories. We aimed to con-
tribute to the understanding of the regulatory function of 
RstA in EHEC O157, especially with regard to virulence, 
which may impact future disease control and treatment 
effort against this important pathogen.

Results
Transcriptional data analysis
To gain an understanding of RstA regulation at the global 
level, we systematically catalogued the transcriptomes of 
the EHEC O157:H7 strain EDL933 wild type strain (WT) 
and the ΔrstA mutant using high-throughput Illumina 
RNA-seq analysis. After filtering low quality reads, a total 
of 17,129,356 to 23,535,490 reads were obtained for the 
EHEC O157 WT and the ΔrstA mutant, respectively. 
Approximately 99.5% of the total reads for the EHEC 
O157 WT and 99.3% of those for the ΔrstA mutant were 
uniquely mapped to the reference genome (Additional 
file 1: Table S1). A total of 1237 genes were differentially 
expressed in the ΔrstA mutant compared to that in the 
EHEC O157 WT of these, 892 and 345 genes were cat-
egorized as up- and down-regulated, respectively (Addi-
tional file 2: Excel files S1 and S2). These results indicate 
that RstA acts as both an activator and repressor in EHEC 
O157. We selected 10 of the differentially regulated genes 
at random for validation by qRT-PCR using the same 
culture conditions. The qRT-PCR results correlated well 
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with the RNA-seq data, indicating that the RNA-seq data 
were robust and valid (Fig. 1).

Genes with differential regulation in the wild type 
and mutant strains were classified using the NCBI COG 
functional categories annotation system. The COG cat-
egories that were significantly enriched in the group of 
up-regulated genes were primarily involved in the cell 
wall, membrane, envelope biogenesis, translation, ribo-
somal structure and biogenesis, carbohydrate transport 
and metabolism, nucleotide transport and metabolism, 
energy production and conversion, lipid transport and 
metabolism, and amino acid transport and metabolism. 
The COG categories that were significantly enriched in 
the list of down-regulated genes included posttransla-
tional modification, protein turnover, and chaperones 
(Fig. 2, Additional file 1: Fig. S1).

RstA regulates the LEE pathogenicity island
Based on RNA-seq results, the expression of majority 
of LEE genes (from the LEE1 to LEE5 operon) were sig-
nificantly downregulated in the ΔrstA mutant relative 
to the EHEC O157 WT strain (Fig. 3a, Additional file 2: 
Excel file S3). To determine whether RstA is involved in 
the virulence of EHEC O157, qRT-PCR was performed 
to measure the expression of seven representative LEE 
genes, including ler (the master regulator of LEE genes), 
escT (LEE1), escC (LEE2), escN (LEE3), eae (intimin, 
LEE5), tir (intimin receptor, LEE 5), and espB (LEE 4) 
in EHEC O157 WT and the ΔrstA mutant strains. The 
transcript levels of these representative LEE genes were 
down-regulated in the ΔrstA mutant compared to those 
in the EHEC O157 WT (Fig.  3b). We then evaluated 

the adherence of the ΔrstA mutant to HeLa cells, and 
found that deletion of rstA significantly reduced bacte-
rial adherence to HeLa cells compared with that of the 
EHEC O157 WT (Fig. 3c). Both EHEC O157 WT and the 
ΔrstA mutant exhibited a similar growth rate, indicating 
the difference in adherence capacity between these two 
strains was not due to different growth rates (Fig. 3d). We 
found consistent results using fluorescent actin staining 
(FAS), which suggested that the ΔrstA mutant formed 
fewer pedestals on HeLa cells than the EHEC O157 WT 
(Fig.  3f, g). Mouse colonization experiments were used 
to determine the adherence capacity of these bacterial 
strains in  vivo. The amount of the ΔrstA mutant recov-
ered from the colon of infected mice was significantly 
lower than that of the EHEC O157 WT strain at 6 h post-
infection (Fig.  3e). These differences could be restored 
to wild-type levels when a complementary plasmid 
pTRC99a-RstA was introduced into the ΔrstA mutant. 
Collectively, these results suggest that RstA is a positive 
regulator of bacterial virulence in EHEC O157.

RstA is involved in the regulation of EHEC O157 acid 
tolerance
The immediate challenge facing EHEC O157 in an 
infected human host is survival in the extreme acidic 
environment of the stomach. In the present study, we 
used RNA-seq to determine that genes encoding acid 
resistance proteins (HdeAB, Asr and GadEWX) and 
we found that these genes were down-regulated in the 
ΔrstA mutant compared to those in the EHEC O157 WT 
strain (Fig. 4a, Additional file 2: Excel file S4). We there-
fore compared the survival of EHEC O157 WT and the 
ΔrstA mutant when exposed to acidified LB broth (pH 
3.0).The viable cells were recovered on LB agar plates 
after incubation in the acidified broth at 37 °C for 0–6 h, 
and the number of CFUs were determined as a ratio to 
the initial inoculum (CFU/ml at 0 h). The survival assay 
showed that the survival rate of EHEC O157 WT were 
much higher than the ΔrstA mutant after 2 h in acidified 
LB broth (Fig. 4b), indicating that RstA plays a significant 
role for EHEC O157 survival in low pH environment.

RstA impacts biofilm formation
In the present study, we used RNA-seq to compare the 
transcriptomes of the EHEC O157 WT and the ΔrstA 
mutant strains, and identified several upregulated digua-
nylate cyclase genes in the ΔrstA mutant strain. These 
genes participate in the formation of the ubiquitous 
second messenger, cyclic-di-GMP (c-di-GMP) (Fig.  5a, 
Additional file  2: Excel file S5), which promotes biofilm 
formation in many bacteria [36].

To evaluate the effect of RstA in biofilm formation in 
EHEC O157, a crystal violet staining assay was performed 

Fig. 1  Confirmation of RNA-seq results by qRT-PCR. RNA-seq results 
were validated by comparing EHEC O157 WT and ΔrstA mutant 
strains using qRT-PCR to measure the relative expression of 10 
randomly selected genes that were differentially expressed according 
to RNA-seq. The trend of expression was similar according to both 
RNA-seq and qRT-PCR for these 10 genes, validating the RNA-seq 
data. Data are presented as mean ± SD; n = 3
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to quantify biofilm formation by EHEC O157 WT, the 
ΔrstA mutant, and the complementary strain. Bio-
film formation was significantly increased in the ΔrstA 
mutant compared to that in the EHEC O157 WT and the 

complementary strain (Fig. 5b), indicating that RstA is a 
negative regulator of biofilm formation in EHEC O157. 
We then measured the concentration of intracellular 
c-di-GMP using HPLC, and found significantly increased 

Fig. 2  Clusters of orthologous group (COG) analysis of RstA-regulated genes in EHEC O157. Bars represent the number of up-regulated (blue) or 
down-regulated (orange) genes in the ΔrstA mutant compared to those in the EHEC O157 WT strain. The significant enrichment of a given COG 
in the sets of up- or downregulated genes was determined using one-tailed Fisher’s exact test with Benjamini–Hochberg false discovery rate 
correction
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concentrations of intracellular c-di-GMP in the ΔrstA 
mutant (Fig.  5c). Taken together, these findings support 
the conclusion that RstA inhibits biofilm formation in 
EHEC O157 by controlling the biosynthesis of c-di-GMP.

RstA box analysis in EHEC O157
RstA has been shown to bind to the conserved motif 
TACATNTNGTT​ACA​, which is termed the RstA box 
and is present in the promoter region of many RstA-acti-
vated or repressed genes in E. coli [37]. Furthermore, the 
consensus TACA repeat sequence is necessary for RstA 

binding [38]. Then, we searched for this RstA box-like 
sequence (TACANNNNNNTACA, N = 5–6) along the 
entire EHEC O157 EDL933 genome, and found 19 possi-
ble targets in the intergenic region. Among these targets, 
14 are located in the promoter region and 8 were identi-
fied here for the first time (Additional file 1: Table S4).

No RstA box was found in the promoter region of any 
of the LEE operons (PLEE1, PLEE2/3, PLEE4, PLEE5). Electro-
phoretic mobility shift assay (EMSA) results confirmed 
that RstA cannot directly bind to the promoter region 
of LEE operons (Fig. 6a–d). This suggests that RstA may 

Fig. 3  Effect of rstA on EHEC O157 adherence and LEE genes expression. a A heat map representing differential regulation of virulence genes in 
the EHEC O157 WT and mutant strains. The z-score indicates whether the genes were upregulated (red) or downregulated (green). b qRT-PCR 
analysis of changes in LEE genes expression in EHEC O157 WT, ΔrstA mutant, and rstA complementary strain. c Adherence of EHEC O157 WT, the 
ΔrstA mutant, rstA complementary strain to HeLa cells. d Growth of EHEC O157 WT, the ΔrstA mutant, rstA complementary strain in LB medium. e 
Adherence capacity of EHEC O157 WT, ΔrstA mutant and rstA complementary strain in the distal colon of mice at 6 h. Statistical significance was 
assessed using the Mann–Whitney rank-sum test. f Detection of AE lesion formation by EHEC O157 WT, ΔrstA mutant, and rstA complementary 
strain by FAS in HeLa cells at 3 h. The HeLa cell actin cytoskeleton (green) and nuclei of bacterial and HeLa cells (red) are shown. AE lesions are 
indicated by arrowheads. g The number of pedestals/infected HeLa cell of EHEC O157 WT, ΔrstA mutant, and rstA complementary strain (n = 50 
cells). In b–d, data represent mean ± SD (n = 3). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 (Student’s t-test)
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activates LEE genes expression indirectly via an unknown 
regulator(s). With increasing concentrations of RstA 
protein, we observed slowly migrating bands for the pro-
moter region of asr, hdeA and yeaI, but not rpoS (nega-
tive control) under the same conditions. This indicates 
that RstA enhances acid tolerance by directly regulating 
the expression of hdeA and asr, and represses biofilm for-
mation by regulating the concentration of c-di-GMP via 
yeaI (Fig. 6e–h).

Discussion
RstA is a well-known TCS regulator that decreases bacte-
rial adhesion and virulence in different bacterial species, 
including avian pathogenic E. coli, Edwardsiella ictaluri, 
Photobacterium damselae and Clostridioides difficile. In 
the present study, we investigated the effects of RstA on 
the global gene expression of EHEC O157 using RNA-
seq. We validated the RNA-seq results using qRT-PCR 
to evaluate the changes in expression of 10 randomly 
selected genes in the WT and mutant strains. For all 
examined genes, the fold change detected by RNA-seq 
had the same trend as that observed by real-time PCR. 
These results are consistent with the results of previous 
experiments, validating our use of RNA-seq and verifying 
the results obtained here.

In EHEC O157, 33 response regulators and 30 sen-
sor kinases have been assumed to exist on the basis of 
genome sequence analysis results. Several response reg-
ulators have been reported to regulate the expression 
of virulence genes in EHEC O157. In the present study, 
we observed that inactivation of RstA results in signifi-
cant downregulation of LEE genes expression in EHEC 
O157. Several other genes related to virulence were 
also regulated by RstA, including stx1, stx2, nleA, nleB, 
nleB2, nleC, and nleL, which implies that RstA is a global 

Fig. 4  Effect of rstA on EHEC O157 acid tolerance. a A heat map 
representing differential regulation of acid tolerance related genes 
in the WT and mutant strains. The z-score indicates whether the 
genes were upregulated (red) or downregulated (green). b Survival 
assay of EHEC O157 WT and the ΔrstA mutant strain in acid challenge 
after incubation in acidified broth (pH 3.0) for 0–6 h. Data represent 
mean ± SD (n = 3). *P ≤ 0.05, **P ≤ 0.01 (Student’s t-test)

Fig. 5  Effect of rstA on EHEC O157 biofilm formation. a A heat map representing differential regulation of diguanylate cyclase genes in the EHEC 
O157 WT and the ΔrstA mutant strain. The z-score indicates whether the genes were upregulated (red) or downregulated (green). b Biofilm 
formation in EHEC O157 WT, ΔrstA mutant, and rstA complementary by crystal violet staining. c Intracellular c-di-GMP concentration of EHEC O157 
WT, the ΔrstA mutant and rstA complementary strain. In b, c, Data represent mean ± SD (n = 3). *P ≤ 0.05, **P ≤ 0.01 (Student’s t-test)
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virulence regulator in EHEC O157 (Additional file  2: 
Excel file S6). According to the results of the adherence, 
FAS, and colonization assays, RstA contributes to EHEC 
O157 adherence in vitro and colonization in vivo. These 
results taken together indicate that RstA is a transcrip-
tional activator of virulence in EHEC O157. Therefore, 
it was somewhat surprising that no RstA box was found 
in the promoter region of these genes. The EMSA results 
also confirm that RstA does not directly bind to the pro-
moters of LEE1, LEE2/3, LEE4, and LEE5. This suggests 
that the observed positive regulation of LEE genes by 
RstA occurs via an indirect mechanism, possibly with an 
unknown intermediate regulator.

To be able to establish colonization in a host, EHEC 
O157 must survive the acidic conditions in the stomach 
before it reaches the intestine [39]. In the present study, 
RNA-seq comparison of mutant and WT strains revealed 
that several important acid tolerance genes (hdeAB 
operon, asr and gadEWX) were down-regulated in the 
ΔrstA mutant. We performed a survival assay and found 

that the ΔrstA mutant was more acid sensitive than the 
EHEC O157 WT. According to our EMSA results, rstA 
can directly bind to the promoter region of both asr and 
hdeA. These results suggest that rstA plays important 
roles in acid tolerance during host colonization. Previous 
studies have shown that changes in temperature, pH, and 
starvation, dramatically affect rstA expression in V. algi-
nolyticus [30]. This suggests that RstAB may sense envi-
ronmental pH changes to regulate acid tolerance genes. 
However, whether rstA responds directly to low pH as a 
signal to activate acid tolerance pathways is unknown, 
and requires further investigation.

Biofilm formation is mediated by bacterial surface 
structures that are regulated by environmental condi-
tions. RstAB inhibits biofilm formation in Salmonella 
enterica and promotes biofilm formation in Vibrio algi-
nolyticus [30, 40]. In the present study, we demonstrated 
that disruption of rstA in EHEC O157 also results in 
significant up-regulation of several c-di-GMP synthesis 
genes, suggesting that biofilm formation is influenced 

Fig. 6  EMSA of the binding of RstA. EMSA of the binding of RstA to PLEE1 (a), PLEE2/3 (b), PLEE4 (c), and PLEE5 (d), rpoS (e, negative control), Pasr (f), PhdeA 
(g) and PyeaI (h). PCR products were added to the reaction mixtures at 40 ng each. RstA protein was added to the reaction buffer in each assay in 
lanes 2–5 at 0.25, 0.5, 1, and 2 μM, respectively. No protein was added in lane 1. No binding was observed in a–e, while binding was observed in f–h 
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by c-di-GMP concentration. As expected, the ΔrstA 
mutant exhibited increased biofilm formation ability and 
intracellular c-di-GMP concentration. Among these up-
regulated c-di-GMP synthesis genes, yeaI was directly 
regulated by rstA, and thus rstA can increase biofilm for-
mation by increasing the concentration of c-di-GMP.

Our RNA-seq results show that 66 regulator genes were 
differentially expressed (40 up-regulated and 26 down-
regulated) in the ΔrstA mutant compared with WT strain 
(Additional file  2: Excel file S7). COG analysis of these 
genes indicated that these regulators participate in mul-
tiple biological processes (including intracellular traffick-
ing, secretion, vesicular transport, amino acid transport 
metabolism signal transduction mechanisms, and tran-
scription). This suggests that rstA can be both activator 
and repressor, and is capable of regulating more complex 
pathways than expected. Among the up-regulated regula-
tors, an RstA box was found in the promoter region of 
narP (z3450), which regulates nitrate/nitrite respiration 
[41]. The regulatory effect of rstA on other regulators 
needs to be confirmed experimentally.

Conclusions
The present study has contributed to our understand-
ing of the EHEC O157 RstAB regulon, and identified a 
number of novel genes and functions that are affected by 
rstA. We found that RstA positively regulates virulence 
and acid tolerance, but negatively regulates biofilm for-
mation in EHEC O157. In summary, the RstAB TCS in 
EHEC O157 plays a major role in the regulation of vir-
ulence, acid tolerance, and biofilm formation. Further 
research is required to reveal the mechanisms by which 
RstA regulates LEE genes. This may identify novel gene 
targets to control infections caused by this pathogen, 
which is particularly important given the emergence of 
drug resistance.

Methods
Bacterial strains and media
Bacterial strains, plasmids and primers used in this study 
are listed in Additional file 1: Tables S2 and S3. The ΔrstA 
mutant was constructed using the λ-Red recombina-
tion system and confirmed by PCR amplification and 
sequencing. A complementary strain was constructed by 
cloning RstA into the plasmid pTRC99a, and the result-
ing constructs were electroporated into EHEC O157 
ΔrstA mutant. Antibiotics were added at the following 
final concentrations as required: 100  μg/ml ampicillin, 
25 μg/ml chloramphenicol, 50 μg/ml nalidixic acid.

RNA isolation, purification and sequencing
Overnight cultures of EHEC O157 wild type (EHEC 
O157 WT) and the ΔrstA mutant were 1:100 subcultured 

in 20  ml of fresh Dulbecco’s modified Eagle medium 
(DMEM, virulence-inducing medium for EHEC O157, 
Hyclone; #SH30022.01) without antibiotics at 37 °C with 
shaking at 180  rpm, until the exponential growth phase 
was reached (OD600 = 0.6–0.8). Total RNA was extracted 
using TRIzol Reagent (Invitrogen; # 15596026) and puri-
fied using the RNeasy Mini Kit (Qiagen; #74104). The 
RNA was quantified and qualified using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), 
a NanoDrop (Thermo Fisher Scientific Inc.), and 1% 
agarose gel electrophoresis. One microgram total RNA 
with a RIN value > 6.5 was used for library preparation. 
rRNA (including 16S and 23S rRNA) was depleted from 
total RNA using The Ribo-off rRNA Depletion Kit (Bac-
teria) (Vazyme; #N407). Libraries were constructed by 
VAHTSTM Total RNA-seq (H/M/R) Library Prep Kit 
for Illumina® (Vazyme; #NR603) according to manufac-
turer’s instructions. Libraries with different indices were 
multiplexed and loaded on an Illumina HiSeq instrument 
according to manufacturer’s instructions (Illumina, San 
Diego, CA, USA). The sequences were processed and 
data were analyzed by GENEWIZ, Inc (Suzhou, China). 
All sequence data have been deposited in the NCBI 
SRA database under the accession codes SRR9678084, 
SRR9678085, SRR9678086, and SRR9678087.

Quantitative RT‑PCR (qRT‑PCR)
Total RNA was extracted as previously described. First-
strand cDNA was synthesized using the PrimeScript 1st 
Strand cDNA Synthesis Kit (Takara; #D6110 A), accord-
ing to the manufacturer’s instructions. Primers for qPCR 
are listed in Additional file  1: Table  S3. The 16S rRNA 
gene (rrsH) was used as a reference to standardize expres-
sion across the samples [42]. Samples were amplified by 
PCR and amplicons were detected using SYBR green dye 
and an Applied Biosystems ABI 7500 sequence detection 
system (Applied Biosystems, CA, USA). The relative dif-
ference in gene expression was calculated using the cycle 
threshold method (2−ΔΔct) [43]. Data were collected from 
at least three biological replicates.

Bacterial adherence assay
Overnight cultures were subcultured in DMEM at 37 °C 
until they reached an OD600 of 0.6–0.8 for adaptation. 
Before infection, HeLa cells were washed three times 
with phosphate-buffered saline (PBS). The cell culture 
medium was replaced with fresh DMEM without antibi-
otics or fetal bovine serum. Cells were then infected with 
bacteria in DMEM at a multiplicity of infection (MOI) 
of 100:1. After incubation with HeLa cells for 3 h, unat-
tached bacteria were removed by washing with PBS six 
times. The HeLa cells were then lysed with 0.1% SDS in 
H2O. Lysates were plated onto LB agar plates to count the 
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number of viable adhered bacteria. Each experiment was 
carried out at least three times.

Gut colonization assay
Six-week-old female BALB/c mice were provided with 
food and water ad  libitum before infection. In each 
group, female BALB/c mice (n = 10) were orally infected 
with 109 CFU of bacteria in 100 μl PBS. The infected mice 
were anaesthetized and euthanized via cervical disloca-
tion at 6 h after infection. The distal colons were excised 
and the luminal contents were removed. Each distal 
colon of the intestine was washed with PBS three times 
to remove unattached bacteria, and then weighed and 
homogenized in 0.5  ml of PBS. The homogenates were 
diluted, and samples of the O157 WT strain, the ΔrstA 
mutant, and complementary strain were plated on LB 
agar containing nalidixic acid (50 μg/ml), chlorampheni-
col (25 μg/ml), or ampicillin (100 μg/ml), respectively, to 
determine the number of CFU per gram of organ tissue.

Fluorescent actin staining
Fluorescent actin staining (FAS) assays were performed 
as described previously [44]. Overnight cultures were 
subcultured in DMEM at 37  °C until they reached an 
OD600 of 0.6–0.8 for adaptation. HeLa cells were grown 
on coverslips for 24 h at 37  °C with 5% CO2. HeLa cells 
on coverslips were then infected with bacteria in DMEM 
at a multiplicity of infection (MOI) of 100:1. After incu-
bation for 3 h at 37 °C and 5% CO2, the coverslips were 
washed with PBS and the bacteria were fixed with for-
maldehyde, and the cells were permeabilized with 0.2% 
Triton-X and stained with fluorescein isothiocyanate-
labeled phalloidin to visualize actin filaments. Bacteria 
and HeLa cell nuclei were stained with propidium iodide. 
AE lesions formed by each strain were calculated for at 
least 50 HeLa cells.

Quantitative biofilm assay
Biofilm formation was quantified by crystal violet stain-
ing, as previously described [22]. Overnight cultures 
were diluted in fresh medium (1:100) and incubated in 
96-well polystyrene microtiter plates at 37  °C for 24  h. 
The loosely associated bacteria were removed by washing 
with PBS three-times, and the remaining bacteria were 
stained with 0.5% crystal violet for 5  min. The biofilm 
was then destained by adding 200  μl of 95% ethanol to 
each well, and quantified using an enzyme-linked immu-
nosorbent assay plate reader at 590 nm. Each experiment 
was carried out at least three times.

High performance liquid chromatography
c-di-GMP was quantified using HPLC as described pre-
viously [45]. Overnight cultures were subcultured in LB 

medium at 37  °C until they reached an OD600 of 0.6 for 
adaptation. Approximately 100 mg of cells were harvested 
in a pellet by centrifugation. The pellet was washed with 
PBS and resuspended in H2O. The suspension was heated 
at 95 °C for 15 min, followed by sonication. Ethanol was 
added to the sample to a final concentration of 70%. 
After centrifugation, the supernatant was pooled, fro-
zen, and subsequently lyophilized overnight. The lyophi-
lized flakes were resuspended in 1 ml of H2O and filtered 
through a 0.2  µm pore size filter. HPLC was performed 
using a 5 μm, 4.6 × 250 mm reverse phase column (Agela 
Venusil XBP-C18, VX952505-0) at room temperature 
with detection at 253 nm, on a Surveyor Plus HPLC Sys-
tem (Thermo Finnigan). Each experiment was carried out 
at least three times.

Acid tolerance assay
Overnight cultures were washed with PBS three times 
then diluted to a concentration of 106 CFU/ml in LB 
acidified to pH 3.0 with HCl. Then cultures were incu-
bated at 37  °C for 0 to 6  h with shaking at 180  rpm. A 
100  μl aliquot was removed from the flask and suitable 
dilutions were plated on LB agar once every hour. Experi-
ments were performed independently three times.

EMSA
The 6 × His-tagged RstA protein was expressed and 
purified in E. coli BL21 (DE3). DNA target fragments 
were amplified by PCR and purified using a SPARKeasy 
Gel DNA Extraction Kit (Sparkjade; #AE0101-C). Puri-
fied PCR fragments (40 ng) were incubated at 25  °C for 
30  min with 6× His-tagged RstA protein at concentra-
tions ranging from 0 to 2 µM in 20 μl reactions contain-
ing binding buffer (1  mM Tris–HCl [pH 7.5], 0.2  mM 
dithiothreitol, 5 mM MgCl2, 10 mM KCl, and 10% glyc-
erol, 30  mM acetyl phosphate). The protein-DNA frag-
ments were electrophoretically separated on a native 
polyacrylamide gel at 4  °C and 80  V/cm. The gel was 
stained for 10 min in a solution of 0.1% GelRed (Biotium; 
#41000), and protein bands were visualized by ultraviolet 
transillumination.

Statistical analysis
Statistical analysis was conducted using MedCalc 
(v12.3.0.0). The mean ± SD from three independent 
experiments was calculated. Differences between two 
mean values were evaluated by two-tailed Student’s 
t test. Statistical significance was assessed with the 
Mann–Whitney rank-sum test in mouse colonization 
experiments. The significant enrichment of a given 
COG in the sets of up- or downregulated genes was 
determined using one-tailed Fisher’s exact test with 
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Benjamini–Hochberg false discovery rate correction 
[46]. A P value < 0.05 was considered to indicate statis-
tical significance.
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