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Abstract

The extracellular matrix provides macroscale structural support to tissues as well as microscale 

mechanical cues, like stiffness, to the resident cells. As those cues modulate gene expression, 

proliferation, differentiation, and motility, quantifying the stiffness that cells sense is crucial to 

understanding cell behavior. Whereas the macroscopic modulus of a collagen network can be 

measured in uniform extension or shear, quantifying the local stiffness sensed by a cell remains a 

challenge due to the inhomogeneous and nonlinear nature of the fiber network at the scale of the 

cell. To address this challenge, we designed an experimental method to measure the modulus of a 

network of collagen fibers at this scale. We used spherical particles of an active hydrogel (poly N-

isopropylacrylamide) that contract when heated, thereby applying local forces to the collagen 

matrix and mimicking the contractile forces of a cell. After measuring the particles’ bulk modulus 

and contraction in networks of collagen fibers, we applied a nonlinear model for fibrous materials 

to compute the modulus of the local region surrounding each particle. We found the modulus at 

this length scale to be highly heterogeneous, with modulus varying by a factor of 3. In addition, at 

different values of applied strain, we observed both strain stiffening and strain softening, 

indicating nonlinearity of the collagen network. Thus, this experimental method quantifies local 

mechanical properties in a fibrous network at the scale of a cell, while also accounting for inherent 

nonlinearity.

Introduction

Cells sense mechanical signals, the most familiar being the stiffness of the surrounding 

extracellular matrix [1]. The ability of cells to sense the matrix stiffness regulates various 

cellular activities, such as migration [2–6], differentiation [7], proliferation [5, 8] and gene 

expression [9]. Quantifying stiffness sensed by a cell is therefore crucial for studies in 

mechanobiology. For a homogeneous material, measuring stiffness is a straightforward 

procedure, but the extracellular environment of real tissues is not a homogeneous continuum 

but rather a highly heterogeneous network of fibers. As cells apply forces to the matrix at 

length scales of tens of microns, they sense the stiffness not of the bulk material, but rather 

of local groups of fibers. Therefore, understanding how cells sense stiffness of real 

biological tissue requires experimental methods that quantify the modulus of a fibrous 

matrix at the scale of the cell.

On the scale of a cell, fibrous materials behave mechanically as a network of beams that 

stretch, bend, and buckle. The resulting relationship between stress and strain is nonlinear, 

showing stiffening in shear or extension and softening in compression [10–16]. To 
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accurately quantify stiffness sensed by a cell, an experiment would have to account for this 

nonlinearity. Several nonlinear constitutive models exist for fibrous materials [17–20], but 

they have not yet been validated for general loading conditions. Loadings applied to fibrous 

materials have generally been uniform extension/compression, simple shear, or 

combinations of extension/compression and shear [10, 11, 14, 15, 21–27]. These 

experiments have provided critical insights into how the deformations of the fibers bring 

about macroscopic phenomena like strain stiffening. Yet there remains a need to probe the 

matrix mechanics at length scales matching the cell size of tens of microns. Nanoindentation 

with a spherical probe could measure the modulus at this scale, but nanoindentation 

quantifies modulus only on the surface of a material—it cannot determine material 

properties inside the fiber network, as would be sensed by a cell. Moreover, nanoindentation 

typically assumes the material to be linear. Some studies are beginning to consider nonlinear 

hyperelastic models in analyzing nanoindentation data [28], but none has yet used a 

nonlinear model specifically designed for fiber networks, which are strongly nonlinear and 

weakening under compression [15, 16, 26]. An alternative to nanoindentation is active 

microrheology, such as by optical tweezers [29–32], which offers the advantage of 

quantifying stiffness at local points within the fibrous network. A disadvantage is that 

displacements achieved by optical tweezers are less than 0.5 μm, which is an order of 

magnitude smaller than cell-induced displacements observed by some experiments [13, 33–

36]. The relatively small displacements produced by optical tweezers impede efforts to 

quantify the nonlinear mechanics that may be produced by a contracting cell.

Further complicating all of these efforts is that fibrous materials exhibit a coupling between 

volume changing and shape changing deformations [22]. As the coupling depends on fiber 

length, alignment, and stiffness, it remains difficult to predict whether or how the coupling 

will affect the response to general loading conditions [37]. Thus, it remains difficult to 

predict whether the nonlinear mechanical response to one type of loading—such as uniform 

shear due to a rheometer or a point-like force due to optical tweezers—matches the response 

to a different type of loading—such as the distributed forces due to cell contraction. We 

therefore argue that the most reliable way to quantify nonlinear mechanics sensed by a cell 

would be with loading conditions that closely mimic the self-equilibrating forces of cell 

contraction.

Here we propose a new experimental method that quantifies the modulus of a fibrous matrix 

using contractile forces at the scale of the cell. We mimic cell contraction by using spherical 

particles made of an active hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), that, when 

heated, undergo a phase transition causing them to contract. After quantifying the modulus 

of the PNIPAAm particles, we embed them in collagen networks and measure their 

contraction. We compute the modulus of the fibrous network surrounding each particle by 

using a nonlinear model designed for fibrous materials, which weaken in compression [19]. 

The results show a large amount of heterogeneity in modulus at the length scale of a cell, 

with modulus varying by a factor of up to 3. We also observed strain stiffening occurring in 

short and medium fiber networks at contractile strains of 0.1–0.2 and strain softening in 

networks having longer fibers at contractile strains of 0.2–0.3, indicating that our 

experimental method can reveal nonlinearity at this length scale.
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Theoretical Analysis

Here we give equations that relate contraction of the PNIPAAm particle to the modulus of 

the surrounding matrix. We use the superscripts P and M to represent the particle and matrix, 

respectively. We begin with linear analysis, and we then extend the analysis to the case of a 

nonlinear matrix.

Linear Analysis

As the PNIPAAm particles are spherical inclusions undergoing a uniform volumetric strain, 

the strain can be related to modulus using Eshelby’s solution for a linear elastic medium 

[38]. The key results from Eshelby are that the strains inside the particle are uniform, and the 

displacements in the linear elastic matrix outside the particle decay as r−2. As the problem is 

spherically symmetric, the only nonzero component of the displacement is the radial one, 

which we refer to as u. Radial position is denoted by r, and the particle’s radius is a.

To relate contraction of the particle to modulus of the surrounding matrix, we use the 

boundary conditions of matching radial displacement and traction at the interface between 

particle and matrix,

uP(r = a) = uM(r = a) and σP(r = a) = σM(r = a), (1)

where σ is the radial component of the stress tensor. We begin by analyzing the particle. As 

shown by Eshelby, strains and stresses in the particle are constant. As the particle is linearly 

elastic and under a state of isotropic tensile stress, the radial stress in the particle is σP = 3KP 

εm, where εm is the mechanical strain and KP is the bulk modulus of the particle. In addition 

to mechanical strain, there is a thermal strain εT. By superposition, the total strain ε is equal 

to εm+εT. Hence, the radial stresses are

σP = 3KP ε − εT . (2)

For stresses and strains to be uniform inside the particle, the radial displacement uP must be 

of the form uP = Cr, where C is a constant. The displacement at r = a is therefore given by 

the product of particle’s radial strain ε and its initial radius a. Thus, C = ε and

uP = εr . (3)

In the matrix outside the inclusion, displacements scale as u ~ r−2 and are therefore given by

uM = Ar−2 . (4)

Radial and angular normal strains are thus εr
M = − 2Ar−3 and εθ

M = Ar−3. Applying Hooke’s 

law gives the normal radial stresses,

σM = − 4AμMr−3, (5)
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where μM is the shear modulus of the matrix. Applying the boundary conditions (Eq. 1) and 

solving for μM gives

μM = 3KP

4
εT

ε − 1 . (6)

It will be useful to write this in terms of Young’s modulus of the matrix EM and the function 

f1(ν) = 2/(1 + ν), where ν is Poisson’s ratio of the matrix. The shear and Young’s moduli 

are related by μM = EMf1(ν)/4, which gives:

EM = 3KP

f 1(ν)
εT

ε − 1 . (7)

Nonlinear Analysis

As fibrous materials such as collagen networks are nonlinear, the simple linear analysis is 

insufficient to quantify the modulus. The most dramatic nonlinearity for these materials is 

that the modulus is smaller in compression than in tension. This phenomenon, referred to as 

compression weakening, has been observed directly in uniaxial tension/compression 

experiments on networks of fibrin and collagen [15]. Other experiments have shown that 

displacements propagate over a longer range than predicted by linear elasticity, which can be 

explained by compression weakening [13, 16, 37]. We therefore consider the nonlinear 

compression-weakening model of Rosakis et al. [19], which gives the solution for a 

contracting spherical particle within a compression weakening 3D matrix. The model shows 

that displacements in the matrix scale as u ~ r−n, with n less than the linear elastic value of 2, 

in agreement with previous experiments [13, 16, 39] and models [13, 37], which also 

observed n < 2.

The model presented by Rosakis et al. [19] begins with linear elasticity and makes one 

modification to account for compression weakening by including a factor ρ, which 

represents the ratio of stiffness in compression to tension. For a linear material, ρ = 1, and 

for a material with no stiffness in compression ρ = 0. Thus, the model has three constants, 

two elastic moduli and the compression weakening factor ρ. We find it most useful to use 

Young’s modulus EM and Poisson’s ratio ν for the elastic constants of the matrix; equations 

are presented here after converting the elastic constants used by Rosakis et al. to EM and ν. 

Eq. 4.7 of Rosakis et al. gives the radial normal stresses due to a contracting particle in a 

compression weakening material. For an infinite matrix, the normal stress at the interface 

between the particle and matrix can be written as

σM(r = a) = EMε f (ν, ρ), (8)

where ε is the radial strain of the particle, EM is Young’s modulus of the matrix, and the 

dimensionless function f(ν, ρ) is given by
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f (ν, ρ) = 1
2

(νρ − 1) 9νρ − 8ρ − 1
νρ − 1 + 5νρ − 1

2ν2ρ + νρ − 1
. (9)

The particle is linear and elastic with radial stresses given by Eq. 2. Combining this with Eq. 

8 gives

EM = 3KP

f (ν, ρ)
εT

ε − 1 , (10)

which has the same form as the linear solution, Eq. 7.

Assuming limits on ν and ρ are 0 ≤ ν ≤ 0.5 and 0 ≤ ρ ≤ 1, function f ranges from 1 to 2, as 

shown in Fig. 1. Note that when ρ = 1, the nonlinear f(ν, ρ) matches the linear f1(ν), i.e., 

f(ν, 1) = f1(ν). Thus, the nonlinear solution of Rosakis et al. converges to the linear Eshelby 

solution in the linear limit of ρ = 1.

As f(ν, ρ) ranges from 1 to 2, Eq. 10 allows the Young’s modulus to be computed to within 

a factor of 2 with no knowledge of ν or ρ. We can gain some information about ν and ρ 
from further analysis of the displacement field. We have previously shown that in fibrous 

materials, radial displacements fit to u = Ar−n with n less than the linear elastic solution of 2 

[13, 16, 39]. The model of Rosakis et al. also predicts n < 2; see Eq. 4.4 of Rosakis et al. 

(Note that n in our notation is equal to −ξ− in the notation of Rosakis et al.) According to 

Rosakis et al., the power n ranges from 1 to 2 and depends only on ν and ρ; a plot is shown 

in Fig. 2.

In experiments with PNIPAAm particles in collagen, we have typically observed n ≈ 1 [16, 

39]. This should give us information about possible values of ν and ρ. From Fig. 2, we see 

that n < 2 implies ρ < 1, but n is relatively insensitive to ρ. For example, n ranges from 1 to 

1.1 for ρ ranging from 0 to 0.8. Though no experiment has directly measured ρ, one 

experiment measured the modulus of a collagen network in both compression and tension 

observing the modulus in compression to be 0.004 times the modulus in tension, implying ρ 
= 0:004, and f(ν, 1) ≈ 1, which applies for all values of ν (Fig. 1). Other experiments will 

need to be performed to verify this measurement. More information could be gained from 

independent measurement of the Poisson’s ratio of collagen. Unfortunately, experiments 

currently disagree as to the Poisson’s ratio—experimental studies have reported Poisson’s 

ratio ranging from 0.1 to 0.3 for small deformation in nominally isotropic networks [40, 41]. 

As the Poisson’s ratio is unknown and further experiments are needed to confirm the value 

of the compression weakening factor ρ for collagen, we will report our results as the product 

EMf(ν, ρ). As f(ν, ρ) ranges from 1 to 2, this may cause errors of up to a factor of 2, but if 

we assume that ν and ρ are each constants, then relative comparisons of EMf(ν, ρ) measured 

by different contracting particles will be exact.
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Relationship between Particle Strain and Matrix Strain

Eqs. 6 and 10 use the total radial strain ε and thermal strain εT of each PNIPAAm particle. 

We represent these using the engineering strain, i.e., by dividing the radial displacement by 

the initial radius. As all particles contract, we will report the magnitude of strain, referring to 

it as “contractile radial strain.”

The radial displacement and radius of the particle can be used to determine the strains within 

the matrix surrounding the particle. As there is spherical symmetry, the normal radial and 

angular strains in the matrix is given by εr
M = du/dr and εθ

M = u/r, where u is the radial 

displacement. Thus, the maximum angular strains occur at r = a, are equal to the strain of the 

PNIPAAm particle ε, and are contractile. The radial strain can be computed from the fact 

that radial displacements scale as u ~ r−n [13, 16, 39]. Letting the particle radius be a and the 

displacement at r = a be −ua (with the negative sign indicating inwards), the radial 

displacements in the matrix are u = −ua(r/a)−n. The radial strain is then 

εr
M = nua/a (r /a)−n − 1. Its maximum is at r = a, giving a value of εr

M(r = a) = nua/a. For 

collagen, we have previously observed n = 1 [16, 39], indicating that the maximum radial 

strain in the matrix is ua/a, which is the same magnitude as the maximum angular strains, but 

is expanding (tensile) rather than contractile. The maximum magnitudes of strain within the 

surrounding matrix are therefore equal to the contractile radial strain of each PNIPAAm 

particle.

Materials and Methods

To compute the local modulus of the collagen matrix, we applied Eq. 10, which required that 

we first quantify εT, the particles’ thermal contraction in no matrix, and KP, the particles’ 

bulk modulus, Fig. 3. Determining KP required separate calibration experiments, which we 

performed in linear elastic polyacrylamide, allowing us to apply Eq. 6 using a known value 

of the shear modulus of the polyacrylamide. Full details of our methods are described below.

Generating PNIPAAm Particles

Particles of PNIPAAm were created by adapting a previously described oil/water emulsion 

protocol [16]. Kerosene with 3.5% Span 80 (Tokyo Chemical Industries) was de-gassed for 

1 hour under vacuum and used as the solvent for the reaction. The solvent was maintained 

under nitrogen for 10 minutes before stirring at 450 rpm on stir plate at 22°C for an 

additional 5 minutes. An aqueous solution was then prepared by combining 0.25 g N-

isopropylacrylamide (Sigma 415324), 1.6 ml of 2% bis-acrylamide (Bio-Rad), 0.05 g 

ammonium persulfate (Bio-Rad), 1.5 ml of 1×tris-buffered saline, and enough deionized 

water to bring the final volume to 10 ml. These concentrations of N-isopropylacrylamide 

and bis-acrylamide were far lower than previous studies [16], and they yielded soft 

PNIPAAm particles having modulus similar to that of the collagen networks to be studied. 

Stiffer or softer particles can be generated by increasing or decreasing the amounts of N-

isopropylacrylamide or bis-acrylamide. TEMED (Bio-Rad, 0.36% final concentration) was 

added and mixed with the aqueous solution immediately before adding the aqueous solution 

to the solvent. The emulsion was then stirred at 450 rpm at 22°C, under a nitrogen 
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environment for 1 hour or until polymerized particles formed. The resulting particles were 

allowed to settle overnight and washed twice with hexane. The particles were subsequently 

washed with isopropyl alcohol, ethanol, deionized water, and finally 1× PBS. Between each 

wash the particles were allowed to settle for at least 1 hour. The solution of particles was 

then filtered using a cell strainer to remove particles with diameter less than 40 μm. The final 

solution was comprised of particles (average diameter ≈ 100 μm) and 1× PBS.

Collagen Matrix

The PNIPAAm particles were embedded into matrices of rat tail collagen I (Corning) as 

previously described [16, 42]. The collagen comes in solution in acetic acid; collagen fibers 

polymerize upon neutralizing the pH which we do using HEPES buffer. The solution of 

acetic acid and HEPES buffer affects the contraction of the PNIPAAm particles, which we 

address in the next section. Polymerization occurred at 22°C for 85 minutes (which 

produced networks having long fibers), or 26°C or 30°C for 50 minutes (which produced 

networks having medium and short fibers, respectively). We measured the average fiber 

length for each type of collagen network from network pore area by segmenting high 

resolution images of each networks as previously described in [39]. Networks having long 

fibers had fiber lengths of 27.8 ± 5.7 μm (mean ± standard deviation), while medium and 

short fibers were 16.9 ± 2.8 and 10.4 ± 1.2 μm, respectively.

Representative images of particles embedded in fiber networks are shown in Fig. 5. We 

found that precise temperature control was necessary to give us control of the fiber length, so 

the temperature was controlled using a thermoelectric hot plate (CP-061HT, TE Technology) 

with TC-720 temperature controller (TE Technology) having temperature resolution of 

approximately 0.1°C. Each collagen gel had a final collagen concentration of 3 mg/ml and a 

thickness of ≈ 150 μm. After polymerization, 1 ml of PBS was added to each dish to prevent 

dehydration of the collagen networks.

Thermal Contraction of PNIPAAm Particles

To quantify thermal contraction of PNIPAAm particles in no matrix, they were imaged at 

different temperatures while in a salt solution. Specifically, 1 ml of particles solution was 

added to a mixture of 1 ml 0.02 M acetic acid and 1 ml of 1× HEPES buffer. This salt 

solution was made based on our observation that it affected the contraction of the PNIPAAm 

particles. As this solution matches that of collagen matrices, it was used for all experiments 

to ensure that the particles’ thermal strain εT would match that in collagen.

Polyacrylamide Matrix

PNIPAAm particles were polymerized within a polyacrylamide matrix to calibrate their 

moduli. The polyacrylamide gel consisted of two layers. The bottom layer had a thickness of 

170 μm while the upper one was 300 μm. These layers were created following the same 

recipe, except that PNIPAAm particles were included in only the upper layer. The two-layer 

polyacrylamide gels were created after we noticed that the particles located close to the glass 

bottom of the dish contracted less than the particles located at a greater distance from the 

glass bottom. In all of our experiments, we observed multiple layers of polyacrylamide to 

adhere well to one another. The bottom polyacrylamide layer was comprised of 29 mg/ml 
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acrylamide, 0.29 mg/ml bis-acrylamide, 0.57 mg/ml APS (Bio-Rad), 0.5 μm red fluorescent 

particles (0.76 mg/ml final concentration, Life Technologies F8812) and 1.9 μl/ml TEMED 

(Bio-Rad) all in deionized water. The bottom layer was added to a glass-bottom dish 

(Cellvis) and allowed to polymerize for 45 minutes with a glass coverslip on top. Once 

polymerized, the glass coverslip was removed and the upper layer was added onto the 

bottom. The upper polyacrylamide layer was made with the same volumes and 

concentrations except that 0.68 ml/ml of particle solution was also added. The upper layer 

was allowed to polymerize for 45 mins with a glass coverslip on top. After polymerization, 

the glass coverslip was removed. We then added a salt solution to each dish to match that of 

collagen matrices, keeping the ratio (1:1:1) of particles solution (already existing in the 2-

layer polyacrylamide gel), 0.02 M acetic acid and HEPES buffer constant.

Temperature Control

To control the temperature during imaging, all experiments used an H301 incubator 

(Okolab) mounted on the microscope stage and controlled with a UNO controller (Okolab). 

The temperature was measured separately with a digital thermometer (Fisherbrand 

Traceable) having a probe that was placed inside a dish of water within the incubator. The 

thermometer had accuracy of 0.1°C, which was greater than that of the incubator. As the 

thermometers probe was in the same conditions as the PNIPAAm particles, it gave a more 

accurate measurement of temperature of the PNIPAAm particles, which was necessary for 

these experiments. In all experiments, an initial image was collected at a reference 

temperature of 26°C; subsequent images were captured at 30, 32, 34, 35, 36, and 38°C. 

After each temperature change, particles contracted within a few minutes, though the 

thermal incubator required 30–45 minutes to equilibrate. We showed previously that the 

particles recover to their initial size upon decreasing the temperature back to the reference 

temperature [16].

Microscopy and Image Analysis

Images of PNIPAAm particles in no matrix were collected using a Nikon Ti-E microscope 

and a 20× 0.75 numerical aperture (NA) air objective in phase contrast mode. Images of 

PNIPAAm particles in polyacrylamide and collagen matrices were collected using an Andor 

Spinning Disk confocal microscope (Yokogawa CSU-X1) with a Nikon Ti-E base and a 20× 

0.75 NA air objective. For each location, a z-stack was obtained with increments of 0.5 μm. 

Images were analyzed by using ImageJ to measure the radius of each particle at each 

temperature.

Shear Modulus of Polyacrylamide

Calibration of the moduli of the PNIPAAm particles occured by observing their contraction 

in homogeneous polyacrylamide gels and applying Eq. 6. This required measuring the 

modulus of the polyacrylamide, which we did using a rheometer (Kinexus ultra+, Malvern 

Panalytical). To allow the rheometer to grip the gels, we polymerized polyacrylamide (using 

the recipe described previously) between two glass coverslips treated with 0.2% acetic acid 

and 0.3% 3-(Trimethoxysilyl)propyl methacrylate. Cyanoacrylate glue was used to adhere 

the coverslips to the rheometer. All gels were disks with a diameter of 18 mm, and a height 

between 2.25 mm and 2.55 mm. The rheometer’s 20-mm diameter flat plate geometry was 
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used. Shear strains were induced by twisting each sample about its axis. The maximum 

shear strain applied to each gel was less than or equal to 40%, which stayed within the linear 

range. The angular velocity was kept below 0.0114 rad/s (corresponding to a maximum 

strain rate of 4% per second) to ensure the loading was quasi-static. The angular acceleration 

was kept below 0.0038 rad/s2 to ensure that inertial loads would be negligible. Shear 

modulus was calculated by fitting a line to the data of torque versus angle (Fig. 4) and 

applying the standard equation for torsion of a uniform cylinder. The mean value of shear 

modulus was found to be 9.6 Pa, in agreement with a previous report [43].

Statistical Analysis

Applying Eq. 10 to measure the local modulus of collagen required that we measure (i) the 

particles’ contraction in no matrix and (ii) the particles’ bulk modulus. To measure the bulk 

modulus, we performed separate calibration experiments with the particles in linear elastic 

polyacrylamide. The calibration experiments used Eq. 6 and required that we measure (iii) 
the modulus of the polyacrylamide and (iv) the particles’ contraction in the polyacrylamide. 

Experimental uncertainties resulted from variability in the data acquired from each of these 

four measurements. We quantified the uncertainties by computing 95% confidence intervals 

using bootstrap analysis. To compute confidence intervals on the bulk modulus of the 

PNIPAAm particles, we used data sets i, iii, and iv with Eq. 6; for confidence intervals on 

the modulus of collagen, we use data sets i and ii with Eq. 10.

To perform the bootstrap, we began by sampling the data randomly with replacement N 
times. For a typical bootstrap analysis, N is the number of measured data points, but here 

each of our measurements (i–iv) have a different number of data points. Therefore, we set N 
to be the average of the smallest and largest number of data points. We applied Eq. 6 (for the 

particles’ bulk modulus) or Eq. 10 (for the modulus of collagen), which gave N different 

values of modulus. We then computed the mean over N, giving one bootstrap estimate for 

the mean of the modulus. This procedure was repeated 104 times, giving 104 estimates of the 

modulus. The 95% confidence interval was computed by taking the 2.5 and 97.5 percentiles 

of those 104 data points. Additionally, a mean over those 104 data points was computed to 

estimate the mean modulus.

Results

To determine the matrix modulus using Eq. 10, we first measured the particles’ thermal 

contraction εT and bulk modulus KP. Thermal contraction was measured in no matrix as 

described in the methods. To determine the bulk modulus KP we measured the contraction of 

particles embedded in a linear elastic polyacrylamide matrix and applied Eq. 6. Accurate 

measurement of the bulk modulus KP using this equation requires the shear modulus of the 

surrounding polyacrylamide matrix μM to be of the same order of magnitude as KP, both of 

which must have modulus on the same order of magnitude as the collagen networks to be 

tested later. This requires the quantity 3(εT /ε − 1)/4 to be of order 1. We therefore calibrated 

the polyacrylamide to have a modulus similar to the collagen, and then calibrated the 

particles to have a modulus of a similar order of magnitude. After several iterations, we 

produced a recipe for PNIPAAm that generated particles which contracted approximately 
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half as much in polyacrylamide as compared to their thermal contraction (Fig. 6). Thus, the 

ratio εT /ε is approximately 2, which implies that the PNIPAAm particles and 

polyacrylamide matrix have elastic moduli on the same order of magnitude. As shown in 

Fig. 6, heterogeneity in contraction from one particle to the next is modest, indicating that 

errors due particle heterogeneity are likely to be small.

Applying Eq. 6 then gives the particles’ bulk modulus at different temperatures. Fig. 7 shows 

the mean bulk modulus and the 95% confidence interval computed by bootstrap analysis for 

each temperature. We designed our PNIPAAm particles to be extremely compliant, with a 

bulk modulus on the order of 10 Pa. The bulk modulus takes a minimum value at ≈ 34°C, 

which is near to the phase transition temperature for PNIPAAm. The reduction in bulk 

modulus near the phase transition temperature is consistent with other studies [44, 45], 

which observed the minimal value of bulk modulus to occur at temperatures of 31–32°C, 

and provided an explanation based on a theoretical model [45]. Additionally, the shape of 

the curve in Fig. 7 matches previous studies: the bulk modulus declines by a factor of ≈ 1.8 

as temperature is increased to the phase transition temperature and then increases by a factor 

of ≈ 2.7 as temperature is further increased. These relative changes in bulk modulus closely 

match those reported previously [44, 45]. Therefore, the measurement of bulk modulus 

shown in Fig. 7 is robust.

With data on the particles’ thermal contraction εT and bulk modulus KP, it is now possible to 

apply Eq. 10 to measure the modulus of the nonlinear networks of collagen. For this we 

measured the contraction of PNIPAAm particles in three different collagen networks, 

polymerized at 22°C, 26°C, or 30°C. These different polymerization temperatures produced 

collagen networks having long, medium, and short fibers (Fig. 5). Contractile strains for 

particles in the networks of different fiber length are shown in Fig. 8. From this data, we 

calculated the product of Young’s modulus E and function f(ν, ρ) at different contractile 

radial strains (different temperatures). The results showed heterogeneity in the values of 

Ef(ν, ρ) across the particles for each of the three types of collagen matrices (Fig. 9). In 

particular, networks made of long fibers had values of modulus Ef(ν, ρ) that varied by a 

factor of 3 from one location to the next. Additionally, networks having long fibers had a 

greater modulus Ef(ν, ρ) than those made of short fibers, even though the total concentration 

of collagen (3 mg/ml) was no different. While perhaps surprising, this trend has been 

observed previously in experiments [46, 47] that applied torsion to macroscopic specimens, 

indicating that this trend occurs on both the macroscale and the microscale. Results also 

showed a decrease in the values of modulus Ef(ν, ρ) at contractile strains of up to 0.1, 

followed by an increase for contractile strains in the range of 0.1 to 0.2 for the majority of 

the curves, indicating initial strain softening [12, 27] followed by strain stiffening [10, 14, 

15, 21, 22, 24, 26]. At larger strains of 0.2–0.3, the modulus then decreased for most 

collagen networks, possibly due to plastic deformation.

Our measurements could potentially be affected by the finite thickness of the collagen gels 

and the presence of glass boundaries at the top and bottom of each gel. The stiff boundaries 

would produce an environment stiffer than the collagen network, thereby reducing the 

particles’ contraction. To check whether the finite sample thickness affected our 

measurements, we plotted the product Ef(ν, ρ) measured by particles in collagen networks 
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against each particle’s initial radius. As the largest particles would be most affected by the 

boundaries, a positive correlation between Ef(ν, ρ) and particle radius would indicate a 

boundary effect. Fig. 10 shows results for contractile radial strain of ≈ 0.1. The plot shows 

significant scatter in the data with no discernible trend. A statistical test for correlation 

between Ef(ν, ρ) and particle radius gives p = 0.61, and the coefficient of determination (R2) 

for a linear fit to the data is 0.0068, indicating no correlation between measured modulus 

Ef(ν, ρ) and initial particle radius. The values of p and R2 are similar for contractile strains 

up to 0.4. For strains greater than this, a small correlation (R2 ≈ 0:2, p ≈ 0:01) appears, 

indicating a potential effect of the boundaries. If contractile strains of this magnitude were 

required for future experiments, smaller particles or a thicker collagen network could be 

used to avoid this issue. Nevertheless, for contractile radial strains up to 0.4, our 

measurements are unaffected by the finite collagen gel thickness.

The experiments have numerous sources of uncertainty (e.g., see items i–iv in the section 

labeled “Statistical Analysis”), all of which combine together to produce variability in the 

experimental data. To quantify how these experimental uncertainties affect the measurement 

of modulus Ef(ν, ρ), we computed 95% confidence intervals of Ef(ν, ρ) for each particle 

using bootstrap analysis as described in the Statistical Analysis section. Fig. 11 shows the 

confidence intervals for each particle at the lowest tested temperature, which corresponds to 

a contractile strain of approximately 0.1. Confidence intervals for other levels of contractile 

strain (i.e., measured at different temperatures) appear similar to those in Fig. 11. For each 

type of collagen network (i.e., having short, medium, or long fibers) there exist confidence 

intervals that do not overlap, indicating the moduli measured at different locations are 

statistically different. Additionally, there are non-overlapping confidence intervals between 

the different types of collagen networks, indicating the moduli of the different collagen 

networks are also statistically different. These observations give statistical significance to the 

trends observed in Fig. 9.

Perhaps the clearest trend revealed by these experiments is the heterogeneity in modulus 

measured by the contracting particles. To quantify the heterogeneity, we calculated the 10th 

and 90th percentiles of measured modulus Ef(ρ, ν) and took their ratio. This ratio gives the 

factor by which the modulus varies within the same fiber network. At a contractile strain of 

approximately 0.1, the ratio was 1.47 with a 95% confidence interval (CI) of (1.45, 1.50) for 

the networks with short fibers, 2.43 with 95% CI (2.37, 2.50) for medium fibers, and 2.88 

with 95% CI (2.84, 2.92) for long fibers. The local modulus therefore varies by a factor of 

up to 3 for different positions within the same fiber network.

Discussion

We have developed an experimental method to measure the modulus of a collagen network 

at the scale of a cell. Our method uses particles (~100 μm diameter) of PNIPAAm, an active 

gel that contracts when heated. We first measured the particles’ contraction in no matrix and 

polyarylamide matrix at different temperatures, which enabled us to compute their bulk 

modulus at these temperatures. We then measured the particles’ contraction in fibrous 

networks of collagen, and, using a nonlinear hyperelastic model [19], we computed the 

modulus of the collagen network in the local region surrounding each particle. This provided 
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independent measurements of the modulus at different positions within each collagen 

network. Results showed that modulus at the scale of these particles is highly heterogeneous, 

varying by a factor of up to 3. This experimental method quantifies local mechanical 

properties at the scale of a cell, while also accounting for nonlinearity of the fibrous collagen 

network.

The hyperelastic model used here begins with linear elasticity and adds one constant factor, 

ρ, which accounts for compression weakening. In addition to weakening under compression, 

fibers also align under tension. As a result, fibrous networks stiffen with increasing tensile 

strain, a phenomenon not accounted for in the hyperelastic model used here. Other 

hyperelastic models have been designed to simulate fiber alignment in fibrous materials [18, 

20, 48], and, in principle, they could be applied to our data. However, we recently showed 

using a theoretical model that fiber reorientation and alignment due to a contracting 

inclusion are modest [37]. Additionally, we showed in experiments that displacements due to 

a contracting sphere propagate over a longer range than predicted by linear elasticity, even in 

directions perpendicular to fiber alignment [16]. Together, these observations imply that 

compression weakening—rather than fiber alignment—is the dominant nonlinear 

mechanism for the loading applied here. Therefore, our choice of a hyperelastic model that 

simulates compression weakening is appropriate.

As we designed the experiment to control the contraction of the PNIPAAm particles, we 

were able to measure the local modulus at different levels of contractile radial strain (Fig. 9). 

Single contracting cells contract at strains of approximately 0.2–0.3 [49], a range which is 

tested in our experiments. It is important to note that in our method strain decays over 

distance from the contracting particle, so the contractile radial strain represents a maximum 

value. Many curves of modulus vs. strain initially decreased, indicating strain softening at 

contractile strains of up to 0.1. This initial strain softening has been reported in other studies 

as well [12, 27]. (Note that these studies and others applied uniform extension or simple 

shear, which produces a nominally constant strain throughout the fiber network.) For 

contractile strains in the range of 0.1 to 0.2, the curves then increased, indicating strain 

stiffening which is consistent with other studies applying shear or uniform extension, which 

also observed strain stiffening in this range [10, 14, 15, 21, 22, 24, 26].

Collagen networks having longer fibers, and some with short, exhibited a second regime of 

strain softening at a contractile radial strain of 0.2–0.3. Though the cause of strain softening 

is unclear, it is likely related to damage under these high strains. Consistent with this, other 

studies have observed permanent deformation [25, 39, 50], possibly associated with 

breaking of connections between fibers, which becomes more likely as the force supported 

by each fiber increases [51]. Data collected here show that the networks having the longest 

fibers have the greatest modulus, implying that they also support the greatest stress. 

Networks having longer fibers are also likely to have fewer connections between fibers. 

Therefore, networks having longer fibers likely have greater force supported by each fiber-

to-fiber connection, which in turn may cause those connections to break more frequently at 

high strains, thereby producing the strain softening observed.

Proestaki et al. Page 12

Exp Mech. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For all collagen networks, the measured modulus was heterogeneous over space. For 

collagen networks of 3 mg/ml, the local modulus varied by a factor of up to 3. Other studies 

using microrheology have reported an even larger range with values of stiffness varying by a 

factor of 10 [32, 52, 53]. The difference in heterogeneity between our results and those 

obtained by microrheology probably arises from the different length scales of the 

experimental methods. In our method we use particles having size of tens of microns, 

whereas microrheology uses much smaller particles, having size of ~ 1 μm. Such small 

particles would connect to only a few fibers. Slight variations in the number of fibers near to 

each particle would therefore produce large differences in the local stiffness detected by that 

particle. By contrast, the larger PNIPAAm particles used in this study attach to many fibers 

and therefore smooth out some heterogeneity due to randomness of the network. How a cell 

senses this heterogeneity may depend on the mechanism by which a cell senses the 

surrounding matrix. A single adhesion complex at the tip of a cell protrusion may interact 

with the matrix at scales < 1 μm, but mechanotransduction mechanisms are not restricted to 

the length scale of a focal adhesion. Studies on cytoskeletal signaling proteins have shown 

that integrin clustering and talin unfolding, which are dependent on the local stiffness at the 

site of the focal adhesion [54], also result in actin stress fibers that can propagate forces 

along the length of a cell’s protrusion and even to the nucleus [55]. Multiple 

mechanotransduction mechanisms result. Tension of actin stress fibers in the cytosekeleton 

allows for binding of numerous mechanosensitive proteins [54],and tensile forces applied by 

the cytoskeleton to the nucleus are a known mechanism for mechanotransduction [56, 57]. 

Therefore, it is reasonable to conclude that an important length scale for 

mechanotransduction is the distance connecting the adhesion complexes at the end of a 

cell’s protrusions to the nucleus, typically tens of μm. As our experimental method matches 

this length scale, it gives a relevant measure of modulus for mechanotransduction by the 

cytoskeleton and nucleus. At this scale, our data show that heterogeneity in the modulus is 

lower than measured by microrheology, but it is nevertheless significant.

The large heterogeneity in the modulus of fibrous materials implies that cell response to 

matrix mechanics is likely to be highly heterogeneous. This complicates our understanding 

of cell sensing of matrix properties, but the experimental method presented here could be a 

starting point for sorting out these complications. Experiments could be designed to test cell 

response to a distribution of moduli that matches the data collected here, for example by 

varying modulus by a factor of 3. By characterizing cell response to different distributions of 

moduli, it may be possible to relate specific cell behaviors to a range of moduli rather than to 

a single value. In addition, our experimental method could provide data needed to calibrate 

theoretical models for matrix mechanics. Those models, after validation by our experimental 

method, could then quantify mechanical properties (and their heterogeneity) in systems that 

are difficult to test experimentally, such as the microenvironment of a tumor.
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Figure 1: 
Dimensionless function f(ν, ρ) defined in Eq. 9, where ν is Poisson’s ratio and ρ is the 

dimensionless compression weakening factor. Contour lines show values of f = 1.1, 1.2, …, 

1.9.
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Figure 2: 
Plot of power n as a function of matrix Poisson’s ratio ν and compression weakening factor 

ρ. Contour lines show n = 1.01 and 1.1.
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Figure 3: 
Diagram of the experimental procedure.
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Figure 4: 
Shear modulus of polyacrylamide. (A) Torque plotted versus angle of twist for one 

polyacrylamide specimen. From the linear fit and the specimen’s dimensions, the shear 

modulus was computed. (B) Shear modulus measured for 24 different polyacrylamide gels.
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Figure 5: 
Collagen networks (3 mg/ml) polymerized at 22°C, 26°C and 30°C having long, medium, 

and short fibers, respectively.
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Figure 6: 
Contractile radial strain of PNIPAAm particles measured in no matrix (magenta) or 

polyacrylamide matrix (green). Contraction of PNIPAAm particles in no matrix gives the 

thermal contraction εT. Each line represents the contraction of a different PNIPAAm 

particle. The reference temperature used to calculate contractile radial strain is 26°C. The 

labels on the horizontal axis represent the temperatures tested in the experiments.
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Figure 7: 
Mean bulk modulus of PNIPAAm particles plotted against temperature. Vertical lines show 

95% confidence intervals of the means.
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Figure 8: 
Contractile radial strain of PNIPAAm particles measured in no matrix (magenta) or collagen 

networks having short (red), medium (blue), or long (black) fibers. Contraction of 

PNIPAAm particles in no matrix gives the thermal contraction εT. Each line represents the 

contraction of a different PNIPAAm particle. The reference temperature used to calculate 

contractile radial strain is 26°C. The labels on the horizontal axis represent the temperatures 

tested in the experiments.
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Figure 9: 
Product of Young’s modulus E and function f(ν, ρ) measured by particles in collagen 

networks having short (red), medium (blue), or long (black) fibers. Each line represents a 

measurement by a different PNIPAAm particle. The horizontal axis gives contractile strain 

of each particle, which is equal to the magnitudes of normal strains within the collagen 

network at each particle–network interface.
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Figure 10: 
Product of Young’s modulus E and function f(ν, ρ) measured by particles in collagen 

networks having short, medium, or long fibers (all shown in black) at the lowest level of 

contraction (30°C), corresponding to contractile radial strain of ≈ 0:1. The horizontal axis 

gives initial radius of each particle.
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Figure 11: 
Product of Young’s modulus E and function f(ν, ρ) measured by particles in collagen 

networks having short (red), medium (blue), or long (black) fibers at the lowest level of 

contraction (30°C), corresponding to contractile radial strain of ≈ 0.1 Each cross represents 

a different PNIPAAm particle. Horizontal lines show means; vertical lines show 95% 

confidence intervals of the means.
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