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Abstract

Case-controls studies are popular epidemiological designs for detecting gene–environment 

interactions in the etiology of complex diseases, where the genetic susceptibility and 

environmental exposures may often be reasonably assumed independent in the source population. 

Various papers have presented analytical methods exploiting gene–environment independence to 

achieve better efficiency, all of which require either a rare disease assumption or a distributional 

assumption on the genetic variables. We relax both assumptions. We construct a semiparametric 

estimator in case-control studies exploiting gene–environment independence, while the 

distributions of genetic susceptibility and environmental exposures are both unspecified and the 

disease rate is assumed unknown and is not required to be close to zero. The resulting estimator is 

semiparametric efficient and its superiority over prospective logistic regression, the usual analysis 

in case-control studies, is demonstrated in various numerical illustrations.
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1. Introduction

The etiology of most complex diseases, such as cancers and cardiovascular diseases, is the 

joint effect of genetic susceptibility and environmental or non-genetic exposures, as well as 

their interactions. Even subtle differences in genetic factors between people, when exposed 

to the same environmental factors, can lead to dramatically different responses. In other 

words, people with certain genes may have a low risk of developing a disease whereas others 
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may be more vulnerable when exposed to an identical environmental agent. One common 

example is that sunlight exposure results in higher risk of developing skin cancer among 

fair-skinned individuals than people with dark skin [17,22]. Studying gene–environment 

interactions is thus of great importance to understand disease mechanisms and develop new 

treatments and prevention strategies.

The case-control study design is commonly used to investigate the intricate interplay of 

genetic susceptibility and environment effects. It is cost-efficient and convenient to 

implement compared to a cohort study, especially when dealing with relatively rare diseases 

[6]. Instead of taking a random sample from the underlying source population, the case-

control design randomly draws a fixed number of cases (diseased subjects) and a comparable 

number of controls (non-diseased subjects) from the respective case and control 

subpopulations. Genetic and environmental factors are measured and recorded for these 

sampled subjects. The standard approach for the analysis of such a case-control study is 

prospective logistic regression, which ignores the underlying retrospective nature of the 

case-control design. Cornfield [10] showed the equivalence of prospective and retrospective 

odds ratios, which validates the prospective approach. Prentice and Pyke [24] further showed 

that prospective logistic regression analysis gives an efficient estimator, in the sense that it 

yields the maximum likelihood estimates of the odds ratio parameters under a 

semiparametric model that allows an arbitrary covariate distribution.

Despite this, prospective logistic regression treatment in a case control study can still require 

a large sample size to obtain adequate statistical power for detecting gene–environment 

interactions or testing other hypotheses of interest. As a consequence, epidemiological 

researchers often exploit the potential efficiency gain from further assuming certain 

parametric or semiparametric structures for the covariate distribution. For example, in 

practice, a common assumption is that genetic susceptibility and environmental exposure are 

independent in the underlying source population [23], possibly given strata. Under such a 

model, prospective logistic regression analysis is still valid but may not be efficient because 

it ignores gene–environment independence.

A growing number of articles have been published in the last two decades, proposing 

analytical methods that exploit gene–environment independence assumption 

[5,14,15,20,21,23]. Piegorsch et al. [23] showed that under gene–environment independence 

and a rare disease assumption, the multiplicative interaction odds-ratio parameter can be 

estimated by cases alone and the resulting estimator is more precise than the estimator from 

traditional prospective logistic regression analysis using both cases and controls. However, 

the misuse of a rare disease assumption in analyzing diseases with moderate prevalence or 

diseases with small marginal probability in the source population but high risk for certain 

combination of genetic and environmental exposures can lead to considerable bias in the 

estimation. Noting this fact, Chatterjee and Carroll [5] developed a semiparametric 

maximum likelihood estimator employing the gene–environment independence assumption 

but not requiring any rare-disease assumption. Their approach leaves the distribution of the 

environmental exposures totally unspecified but restricts genetic susceptibility to have a 

discrete distribution that takes values in a finite and fixed set. Ma [20] proposed a 

semiparametric efficient estimator in the same setting as Chatterjee and Carroll [5] except 
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the distribution of genetic susceptibility is allowed to be either discrete or continuous with a 

finite-dimensional parameter. The key ingredient of this approach is to construct a 

hypothetical population with infinite population size and a disease to non-disease ratio of 

n1/n0, where n1 and n0 are the numbers of cases and controls in the case-control sample. 

Section 2 of Ma [20] showed that the case-control sample can be viewed as a size n = n0+n1 

random sample of independent and identically distributed observations from this 

hypothetical population, and hence classical semiparametric analysis is applicable. The 

validity and usefulness of such a hypothetical population was established in Ma [20]. Instead 

of assuming independence of gene and environment, there is a literature based on parametric 

modeling of the relationship between them [8,9,18,19]: we make no such parametric 

assumptions.

In this paper, we consider a more general setting which keeps the gene–environment 

independence assumption, while further allowing an unknown disease rate and completely 

nonparametric distributions for both the genetic susceptibility and the environmental 

exposure. Under such a model setting, we adopt the hypothetical population framework of 

Ma [20] and derive the semiparametric efficient estimator by employing a semiparametric 

approach, which links the efficient estimator with the efficient score function. Throughout 

our work, the underlying source population is referred to as the true population to emphasize 

the difference between the underlying source population and the hypothetical population. 

The inherent connection between the two populations allows us to transport parameter 

estimation and inference results derived in the hypothetical population directly to those in 

the true population, see Theorem 1. Although general semiparametric theory applies in the 

hypothetical population framework, computing the efficient estimator in this context is 

technically challenging because the efficient score does not have an explicit form and must 

be solved from an integral equation. We adopt a simple numerical approach to solve the 

integral equation by discretizing the distribution of the genetic susceptibility when it is 

continuous. The resulting estimator, when properly implemented, is asymptotically linear 

with optimal efficiency.

The rest of the paper is organized as follows. The specific model and the hypothetical 

population framework are presented in Section 2, with the corresponding identifiability 

conditions provided in Appendix A.1. In Section 3, we formulate the problem by using a 

conventional semiparametric approach. The analytic expression of our semiparametric 

efficient estimator as well as its detailed implementation are discussed in this section. 

Section 4 illustrates the asymptotic properties of the resulting estimator. Several simulation 

studies are conducted in Section 5 to demonstrate the numerical performance of our 

semiparametric efficient estimator compared with prospective logistic regression. A real data 

analysis is provided in Section 6, followed with a brief discussion in Section 7. Technical 

details and proofs are given in an Appendix and in the Online Supplement.

2. Model and framework

2.1. Background

It is useful to describe how the methods, referenced in Section 1, for exploiting a genetic-

environmental relationship in an underlying source population have evolved from the earlier 
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work, a relatively simple case in Chatterjee and Carroll [5], which includes the following 

key ingredients:

a. An underlying logistic regression for disease D as a function of genetic variables 

G and environmental exposures X.

b. A parametric distribution assumption for G in the source population when G and 

X are independent.

c. Writing out the retrospective likelihood of the observed case-control data.

d. A profile likelihood argument that estimates the distribution of X in the source 

population using a Lagrange multiplier argument that places probability mass at 

each observed value of X. This leads to a pseudolikelihood that involves the 

distribution of G but not the distribution of X.

e. The main technical difficulty is carrying out the algebra of the Lagrange 

multiplier argument and getting an explicit pseudolikelihood, where by explicit 

we mean that the resulting formula requires no numerical solutions to nonlinear 

equations.

In our case, however, we are not making the assumption of a parametric distribution for G in 

the source population. A profile likelihood method to remove the distribution of G and get a 

new, explicit, profile likelihood based on a Lagrange multiple argument does not appear to 

be possible, or at least it seems to be very difficult, because of the form of the 

pseudolikelihood.

To overcome these difficulties, there have been two main alternatives, and they are both 

based on the idea of relating the case-control study to some version of a prospective random 

sampling framework to derive a methodology, and to then show that this methodology is 

valid in the case-control study. Recall that n0 is the number of controls in the sample and n1 

the number of cases. Define πd = Pr D = d .

i. I. In Section 2.3.3 of [9], Chen et al. treat the case-control study as if it were a 

random sample from the source population but with data missing at random. 

They propose a prospective sampling scenario where each subject from the 

source population is observed with probability 1/ 1 + n1 − dπd / ndπ1 − d , 

where d = 1 for cases and d = 0 for controls, respectively. They show that 

performing a missing data analysis for the distribution of (D, G) given X and the 

probability that the subject is observed yields the same pseudolikelihood as other 

papers have computed, but without having to do the Lagrange argument, and in a 

much easier way.

ii. II. Ma [20] takes an entirely different approach, also without having to do the 

Lagrange argument. This approach, which she calls a hypothetical population 

approach, differs from that of Chen et al. [9] in that she aims to create a 

likelihood that (a) is equivalent to that of the case-control sample; and (b) is that 

of a simple random sample of size n = n0 + n1 from a hypothetical population. 

Because it is a random sample, rather than a sample with missing data, when we 
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use it this allows us to rely on the classic machinery of semiparametric methods 

as exemplified by Bickel et al. [4] and Tsiatis [27].

2.2. Basic calculations and likelihood

Assume that the prospective risk given the covariates (G, X) follows a logistic model, viz.

Pr D = d G = g, X = 𝓍 = f D G, X
true d, g, 𝓍 = H d, g, 𝓍, θ

= exp d α + m g, 𝓍, β
1 + exp α + m g, 𝓍, β ,

(1)

where θ = β⊤, α ⊤
 and m is a function known up to the parameter β. Here and throughout 

the text, the superscript “true” is used to emphasize that those quantities are related to the 

true source population. In addition, in the true population, G and X are assumed to be 

independent so that the joint probability density/mass function of G, X can be written as 

f G, X
true g, 𝓍 = f G

true g f X
true 𝓍 = η1 g η2 𝓍 . Here, for notational simplicity, we write 

f G
true g , f X

true 𝓍  as η1 g , η2 𝓍 . The problem stated above is identifiable in the case-

control study under mild conditions, which are given in Appendix A.1, along with the proof 

of identifiability.

The hypothetical population study joint density/mass function of (D, G, X) is

f D, G, X d, g, 𝓍, θ, η1, η2 = nd /n f G, X D d, g, 𝓍 = nd /n f G, X D
true d, g, 𝓍

=
nd
n

f G
true g f X

true 𝓍 f D G, X
true d, g, 𝓍, θ

f G
true g f X

true 𝓍 f D G, X
true d, g, 𝓍, θ dμ 𝓍 dμ g

=
ndη1 g η2 𝓍 H d, g, 𝓍, θ

n η1 g η2 𝓍 H d, g, 𝓍, θ dμ 𝓍 dμ g

=
nd

nπd
η1 g η2 𝓍 H d, g, 𝓍, θ ,

(2)

where

πd = η1 g η2 𝓍 H d, g, 𝓍, θ dμ 𝓍 dμ g . (3)

We consider η = {η1, η2} as the infinite-dimensional nuisance parameter. The approach of 

Ma [20] views this as a semiparametric problem, to be solved using techniques explained in 

Bickel et al. [4] and Tsiatis [27]. Here, the concept of hypothetical population and the 

corresponding distorted likelihood is used as a vehicle to allow us to transport the 

semiparametric tools for direct application. It enables us to construct consistent estimators 

without having to concern about the non-random sample issue in case-control study. 

Because the non-random sampling issue is already taken into account when we formulate 

the distorted likelihood, the resulting estimator is indeed automatically consistent under the 
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original case-control sampling framework, that is, if the case-control sample size grows to 

infinity while retaining the relative sample proportion of n1/n0, the estimator will converge 

to the true parameter value. We formally write out this result in Theorem 1.

Theorem 1. Assume (d1, g1, x1), …, (dn, gn, xn) is a case-control sample with n1 cases, n0 

controls, and with disease model (1) and independence of X and G. Assume 

d1, g1, 𝓍1 , … , dn, gn, 𝓍n  is a random sample of independent and identically distributed 

observations with size n from model (2). Then, if θ d1, g1, 𝓍1 , … , dn, gn, 𝓍n  is a n -

consistent regular asymptotically linear estimator of θ and satisfies 

E[θ d1, g1, 𝓍1), … , dn, gn, 𝓍n)} |D] − θ = op n−1/2), then so is θ{(d1, g1, 𝓍1), … , (dn, gn, 𝓍n)}.

Theorem 1 essentially says that if we can develop a n -consistent estimator based on a 

random sample from model (2), then we can simply apply this estimation procedure to the 

case-control sample and we will still get a n -consistent estimator. The proof of Theorem 1 

is the entire content of Section 2 of Ma [20]. We take advantage of this property to generate 

an estimation procedure, which we will then show consistently estimates the parameters 

when using the case-control data. In particular, the procedure is not dependent on the 

hypothetical population study formalism.

3. Analytic derivations: Efficient score and algorithm

The outline of the semiparametric approach is to first construct a Hilbert space ℋ, consisting 

of all measurable functions with mean zero and finite variance. We next decompose ℋ into 

nuisance tangent space Λ and its orthogonal complement Λ⊥. The efficient estimator can 

then be obtained by solving

i = 1

n
Seff Di, Gi, Xi; θ = 0,

where Seff is the projection of the score function Sθ onto Λ⊥, and thus Seff is called efficient 

score function.

Careful calculation shows that the score function under the hypothetical population (2) takes 

the form Sθ d, g, 𝓍 = S d, g, 𝓍 − E S |d  where S = d − H 1, g, 𝓍, θ mβ′ g, 𝓍, β ⊤, 1 ⊤
 and 

mβ′ g, 𝓍, θ ≡ ∂m g, 𝓍, θ / ∂β. Let p denote the dimension of θ. The final form of the spaces Λ 

and Λ is listed below with the detailed derivation provided in Appendix A.2. Specifically,

Λ = a1 G + a2 X − E a1 G + a2 X D for all a1 G , a2 X ,

Λ⊤ = f D, G, X :E f G = E E f D G , E f X = E E f D X , E f = 0 .
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Define S𝓍 𝓍 = E Sθ |𝓍 = E S |𝓍 − E E S |D |𝓍  and 

Sg g = E Sθ |g = E S |g − E E S |D |g . Projecting the score function onto Λ⊥ shows that

Seff d, g, 𝓍 = S d, g, 𝓍 − a g − b 𝓍 − E S d, G, X d + E a G + b X d ,

where

E a G 𝓍 + b 𝓍 − E E a + b D 𝓍 = S𝓍 𝓍 , (4)

a g + E b X g − E E a + b D g = Sg g . (5)

It is easy to check that E Seff d, Gi, Xi |d = 0.

In order to obtain the efficient score function, we need to solve a and b from the integral 

equations (4) and (5). The existence of the solution is automatically guaranteed by the 

identifiability of the problem, whereas the uniqueness is not. However, it is shown in 

Appendix A.3 that a and b are unique up to constant shifts. Thus, (4) and (5) have a unique 

solution under the constraints E a = E b = 0. It is further proved in Appendix A.4 that, 

under the mean zero constraint, (4) and (5) have an equivalent expression, which is given by 

Eqs. (A.1)–(A.3), in the Appendix. Such an equivalent expression allows us to separate a 
and b by introducing an intermediate variable u0 = E a + b |D = 0 . However, there is no 

explicit expression for a and b. We still need to solve the integral equation (A.1). In 

Appendix A.5, we propose an approximation to its solution in the spirit of Tsiatis and Ma 

[28], by discretizing X if X is continuous.

The detailed algorithm for constructing the efficient score function and computing the 

efficient estimator for θ is given in Algorithm 1, where the disease rate is estimated during 

the procedure. Usually, the disease prevalence is not identifiable from a case-control sample 

[24]. However, the additional assumption we make on the relationship between G and X in 

the source population, i.e., gene–environment independence, leads to the technical 

identifiability [5,20].

Algorithm 1

1. Estimate f X |D = d the conditional density/mass function of X given disease status 

D = d, by nonparametric kernel density estimation among the data with Di = d 
for d ϵ {0, 1}.

f X D = d 𝓍 = 1
ndh i, Di = d

K Xi − 𝓍 /h ,

for continuous X, and
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f X D = d 𝓍 = 1
nd i, Di = d

1 Xi = 𝓍 ,

for discrete X, where K is a univariate kernel function.

2. Estimate f G |D = d the conditional density/mass function of G given disease status 

D = d, by nonparametric kernel density estimation among the data with Di = d 
for d ∈ {0, 1}. similarly as for X. Denote the result by f G |D.

3. Define η1 g, π0 = π0 f G |D = 0 g + 1 − π0 f G |D = 1 g , 

η2 𝓍, π0 = π0 f X |D = 0 𝓍 + 1 − π0 f X |D = 1 𝓍 , what we call a weighted 

nonparametric density/mass function estimate, being weighted by the (estimated) 

population probabilities.

4. When (π0, π1) is unknown, estimate them by solving the integral equation

π0 = H 0, g, 𝓍 η1 g, π0 η2 𝓍, π0 dμ g dμ 𝓍 ,

and setting π1 = 1 − π0, η1 g = η1 g, π0 , η2 𝓍 = η2 𝓍, π0 .

5. Follow the method described in Appendix A.5 to obtain the solution of the 

integral equations (4) and (5), with result a, b, and approximate E a + b |D  using 

nonparametric density estimates f X |D and f G |D with result E a + b |D .

6. From Seff Di, Gi, Xi, θ = Sθ Di, Gi, Xi − a Gi − b Xi + E a Gi + b Xi |Di , and 

estimate θ by solving the estimating equation

i = 1

n
Seff Di, Gi, Xi, θ = 0 . (6)

It is critical that we estimate E a Gi + b Xi |Di  and E S |Di  involved in Steps 5 and 6 using 

f X |D and f G |D described in Steps 1 and 2 of the above algorithm, instead of simply taking a 

sample version of the expectations. This ensures that all the conditional expectations are 

computed using the same kind of approximation and the gene–environment independence 

assumption is fully employed.

4. Distribution theory

It is not surprising that the semiparametric estimator described in Algorithm 1 is 

asymptotically normal with a parametric convergence rate and optimal efficiency as it is 

formed by estimating all conditional expectations in the efficient score nonparametrically. 

The asymptotic properties of our estimator are described in Theorem 2 under regularity 

conditions C1–C2 listed below. The proof is provided in the Online Supplement.

Liang et al. Page 8

J Multivar Anal. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C1 The univariate kernel function K has support (–1, 1) and satisfies K u udu = 0, 

K u u2du < ∞. The bandwidth h satisfies nh2 ∞ and nh8 0.

C2 Any discrete covariate has finitely many levels. Any continuous covariate has compact 

support and its density function is twice continuously differentiable.

Theorem 2. Under the regularity conditions C1 and C2, the estimator θ obtained from 
solving the estimating Eq. (6) is asymptotically normal with optimal efficiency, i.e., 

n θ − θ 𝒩 0, var Seff
−1 , and is semiparametric efficient.

5. Simulation study

We performed simulations to understand the finite sample performance of the 

semiparametric efficient estimator described in Section 3 and demonstrate its superiority to 

prospective logistic regression method under the gene–environment independent model. Two 

scenarios are considered: (a) Pr D = 1 = 0.045 and (b) Pr D = 1 = 0.10, corresponding to 

cases with a relatively rare disease rate and a common disease rate, respectively. In each 

scenario, we generated X from the standard normal distribution 𝒩 0, 1  or the Gamma 

distribution with mean 20 and variance 20, 𝒢 20, 1 , while the distribution of G is one of the 

following: (i) Bernoulli with success probability 0.6 ℬ 0.6 , where for example G = 1 or G = 
0 corresponds to the presence or absence of a genetic mutation, and (ii) 𝒩 0, 1 , which can 

be used to model gene expression levels or continuous traits, such as height and skin color, 

that are controlled by several genes. Given G and X, we generated disease status D from the 

logistic regression model

Pr D = 1 G, X = 1/ 1 + exp − α + β1G + β2X + β3GX ,

where β = β1, β2, β3
⊤ = 0.76, 0.36, − 0.63  for both settings with normal X, and 

β = β1, β2, β3
⊤ = 3.577, 0.080, − 0.141  for both settings with Gamma X. We varied the 

intercept β0 in different simulations to get the desired disease rate. Specifically speaking, in 

the case of X = 𝒩 0, 1 , we set α = −3.61 and −3.465 for binary G and normal G 
respectively to achieve a disease rate of 4.5%, and we set α = −2.74 and −2.538 for binary G 
and normal G respectively to achieve a disease rate of 10%. In the case of X = 𝒢 20, 1 , we 

set α = −5.220 and −5.086 for binary G and normal G respectively to achieve a disease rate 

of 4.5%, and we set α = −4.352 and −4.158 for binary G and normal G respectively to 

achieve a disease rate of 10%. For each setting, we simulated 1000 data sets, each with n1 = 

1000 cases and n0 = 1000 controls. The details of simulating the case-control data are 

provided in the Online Supplement. In the computation of the weighted nonparametric 

density/mass function estimates defined in Algorithm 1, we used the asymptotically justified 

bandwidth h = cn−1/5, where c ∈ 0.4, 1.2 , and the results were insensitive to the choice of c.

The results are summarized in Tables 1–4. For 4.5% disease prevalence and normally 

distributed X (Table 1), it is clear that prospective logistic regression and our semiparametric 
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efficient estimator are both consistent, while the semiparametric estimator has smaller 

variance. Specifically, the semiparametric efficient estimator has a mean squared error 

efficiency gain as large as 57% (the interaction term between G and X) for binary G, and 

46% (the interaction term between G and X) for normal G. For 4.5% disease prevalence and 

Gamma X (Table 3), when G follows a Bernoulli distribution, our semiparametric efficient 

estimator has a mean squared error efficiency gain between 31% (the main effect of X) and 

56% (the interaction term between G and X); when G is normal, the corresponding 

efficiency gain of the interaction term is 44%.

The results for the 10% disease rate case (Tables 2 and 4) are similar. Both approaches are 

asymptotically valid, with our approach being superior to prospective logistic regression in 

the sense that our semiparametric efficient estimator has smaller mean squared error.

6. Example

Prostate cancer is a heterogeneous disease resulting from the complex interplay of genetic 

susceptibility and environmental exposures. It is the second leading cause of cancer death 

among men in the USA [1]. Prostate cells (both primary and cancer cells) were 

demonstrated to have 1α-OHase activity, whereas 1α-OHase is the enzyme responsible for 

converting [25(OH)D], the major circulating form of vitamin D that reflects both dietary and 

sunlight exposures, into 1,25-dihydroxy-vitamin D [1,25(OH)2D], the most active form of 

this vitamin that can induce cell-cycle regulation, apoptosis and differentiation in prostate 

cancer cells via the vitamin D receptor (VDR). Thus, (a) [25(OH)D] is hypothesized to have 

an anticancer effect, and (b) an important question is whether its relationship with the risk of 

developing prostate cancer is modified by genetic polymorphisms in the VDR gene.

In this section, we implemented our methodology in a case-control study of prostate cancer, 

using the same data set analyzed but in a different context by Chen et al. [9], see that 

reference for details about the study. Specifically, our analysis is based on a polygenic risk 

score, a single risk factor incorporating information from susceptibility SNPs, whereas Chen 

et al. [9] focused on haplotypes. The data consist of n1 = 690 cases and n0 = 717 controls 

randomly selected from the screening arm of a large population-based cohort study, the 

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) at the National 

Cancer Institute. The PLCO cohort study recruited a total of 76,685 men aged 55–74 at 10 

screening centers between November 1993 and July 2001, then randomly assigned 38,340 of 

them to the screening arm and the rest to the non-screening arm. In a 10-year follow-up 

period, in the study population, the cumulative incidence rate for prostate cancer in the 

screening arm was 108.4 per 10,000 person-years [3]. Apart from case-control status, 

[25(OH)D] level (nmol/L) and genotype data on 19 single-nucleotide polymorphisms 

(SNPS) are available for each subject involved in the case-control study. According to Chen 

et al. [9], these polymorphisms, our G, are unlikely to affect the [25(OH)D] level, our X, as 

the VDR gene plays a “downstream” role in the vitamin-D pathway. In other words, the 

gene–environment independence assumption is likely to be valid in this application. Detailed 

information about the design can be found in Andriole et al. [3],Hayes et al. [16],Prorok et 

al. [25].
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One difficulty in investigating the genetic modification of the VDR gene to [25(OH)D] on 

the risk of prostate cancer is that the VDR gene contains multiple underlying susceptibility 

SNPs, where each individual SNP may only confer a small component of overall risk. In 

fact, running a logistic regression of case-control status on each of the 19 SNPs shows only 

three SNPs have p-values ≤ 0.10. Recently, it has been recognized that the polygenic risk 

score has the potential of improving risk prediction for some common diseases [2,7,11–

13,26]. Therefore, we created a polygenic risk score for the prostate cancer data by 

weighting those 19 SNPs, where the weights are the effect sizes of separate logistic 

regressions applied to each SNP.

The results of prospective logistic regression and our semiparametric approach based on 

1000 bootstrap samples are given in Table 5. The two sets of estimates are fairly consistent 

as expected. However, our semiparametric efficient estimator has smaller standard errors 

than does the prospective logistic regression, in accordance with theory and our simulations. 

This leads to a substantial difference in inference for the interaction between the polygenic 

risk score and the [25(OH)D] level. Specifically, both prospective logistic regression and our 

semiparametric efficient method show that the main effects of both the polygenic risk score 

and the [25(OH)D] level are statistically significant and positive. That is, if ignoring the 

interaction, men with higher polygenic risk scores or/and higher [25(OH)D] levels tend to 

have higher risk of developing prostate cancer.

Importantly, the estimates of the interaction parameter from the prospective logistic 

regression is not significant at the 5% level. However, our approach shows significant 

evidence of interaction, i.e., the effects of [25(OH)D] level on prostate cancer risk differ 

depending on the polygenic risk score.

In addition, our approach provides an estimated disease rate in the population of 10.6%, 

whereas the disease rate in the PLCO cohort study is 10.8% per person-year. This validation 

of our methodology suggests an additional use to which it can be applied.

7. Discussion

We have developed a semiparametric efficient estimator in case-control studies for the gene–

environment independent model, where the distributions of genetic susceptibility and 

environmental exposure are allowed to be arbitrary and the disease rate is assumed 

completely unknown. We showed that in spite of these weak assumptions, the problem is 

identifiable in most cases. The proposed estimator is derived under the so-called 

hypothetical population framework, which enables us to view the case-control sample as a 

random sample from a hypothetical distribution and thus facilitates the application of a 

conventional semiparametric approach. Such an estimator is semiparametric efficient and its 

superiority over the prospective logistic regression was demonstrated in various simulations. 

The general methodology of our approach can be extended to parametric models other than 

the logistic model, such as the probit model, and it can be used to consider assumptions 

other than gene–environment independence, such as Hardy–Weinberg equilibrium, as long 

as the resulting model is identifiable.
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The method hinges on the assumption of gene–environment independence. When they are in 

fact dependent, blindly applying this method will not lead to a consistent estimator. It is 

possible to further apply the empirical Bayes shrinkage method of [9] to improve robustness 

to the model assumptions. This method effectively uses our method when the assumption 

holds, and effectively uses logistic regression when the model assumption fails.

To handle the nuisance parameters in the estimation procedure, nonparametric density/mass 

function estimation is used. When the dimensions of genetic susceptibility or environmental 

exposures increase, such nonparametric estimation suffers from the curse of dimensionality. 

In such cases, dimension reduction techniques might be needed to maintain model flexibility 

as well as ensure computation feasibility. This will be pursued in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix. Sketch of technical arguments

A.1. Identifiability

A1 There exists cx so that when 𝓍 c𝓍, m g, 𝓍, β ∞ or m g, 𝓍, β − ∞ for any g.

A2 There exists g1 and x1, x2 such that m g1, 𝓍1, β ≠ m g1, 𝓍2, β .

A3 There exists cg so that when g cg, m g, 𝓍, β ∞ or m g, 𝓍, β − ∞ for any x.

A4 There exists x1 and g1, g2 such that m g1, 𝓍1, β ≠ m g2, 𝓍1, β .

Proposition 1. The problem stated in (2) is identifiable

i. (i) If condition A1 holds, and at least one of the conditions A3 and A4 holds;

ii. (ii) or if at least one of the conditions A1 and A2 holds, and condition A3 holds.

Remark 1. In practice, a widely used model is the one including main effects and two-way 

interaction, i.e., α + β1g + β2𝓍 + β3𝓍g. It can be easily verified that if g and x both have the 

support on ℝ then this model satisfies conditions A1 and A3 described above and hence is 

identifiable.

Remark 2. Proposition 1 applies in the case where at most one of G and X is discrete. In the 

case where both G and X are discrete with levels ℓG and ℓX respectively, identifiability 

requires ℓGℓX ≥ 2ℓG + 2ℓX − 2 as a necessary condition. Additional conditions may be 
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needed. Although for a specific model with known ℓG and ℓX, it can be easy to derive the 

sufficient conditions for identifiability, such result is difficult to describe in general.

Proof of Proposition 1. From [24], β is identifiable. Thus, we aim at establishing the 

identifiability of η1, η2 and α. We first prove the result under A1 and A3. Assume there are 

α, η1, η2 and α∗, η1
∗, η2

∗ so that

nd
nπd

η1 g η2 𝓍 H d, g, 𝓍, β, α =
nd

nπd
∗η1

∗ g η2
∗ 𝓍 H d, g, 𝓍, β, α∗ .

This yields

1
π1

η1 g η2 𝓍 H 1, g, 𝓍, β, α = 1
π1

∗η1
∗ g η2

∗ 𝓍 H 1, g, 𝓍, β, α∗ ,

1
π0

η1 g η2 𝓍 H 0, g, 𝓍, β, α = 1
π0

∗η1
∗ g η2

∗ 𝓍 H 0, g, 𝓍, β, α∗ .

Taking the ratio of the above two and solving, we obtain exp α∗ = exp α π0π1
∗/ π1π0

∗ . This 

leads to

η2
∗ 𝓍

η2 𝓍
η1
∗ g

η1 g =
π0

∗/π0 + exp α + m g, 𝓍, β π1
∗/π1

1 + exp α + m g, 𝓍, β .

Under condition A1, letting 𝓍 c𝓍, we obtain η1
∗ g = η1 g . Similarly, under condition A3, 

letting g cg, we obtain η2
∗ 𝓍 = η2 𝓍 . This in turn leads to π0

∗ = π0, π1
∗ = π1. Finally, these 

results lead to α∗ = α.

We now prove the result under A1 and A4. Under condition A1 alone, the same derivation as 

before leads to

η2
∗ 𝓍

η2 𝓍 =
π0

∗/π0 + exp α + m g, 𝓍, β π1
∗/π1

1 + exp α + m g, 𝓍, β .

Thus A4 further implies

π0
∗/π0 + exp α + m g1, 𝓍1, β π1

∗/π1
1 + exp α + m g1, 𝓍1, β

=
π0

∗/π0 + exp α + m g2, 𝓍1, β π1
∗/π1

1 + exp α + m g2, 𝓍1, β
,
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or equivalently, π0
∗/π0 − π1

∗/π1 exp α + m g1, 𝓍1, β − exp α + m g2, 𝓍1, β = 0. Hence, 

πd
∗ = πd for d = 0, 1. As a result, α∗ = α and α∗ = α and η2

∗ 𝓍 = η2 𝓍 .

The result under A2 and A3 is symmetric to the one under A1 and A4 hence is omitted. □

The requirements in A1 and A3 are appropriate in the case where G and X are both 

continuous. The requirements in A1 and A4 are suitable in the case where G is discrete and 

X is continuous. The requirements in A2 and A3 are suitable in the case where X is discrete 

and G is continuous.

A.2. Nuisance tangent space Λ and its orthogonal complement Λ⊥

The nuisance tangent space Λ is computed in two steps. First, replacing the nuisance 

parameter η = η1, η2  with a finite-dimensional parameter, say γ = γ1
⊤, γ2

⊤ ⊤
, and taking the 

derivative of ln f D, G, X d, g, 𝓍; β, γ  with respect to γ to get Sγ = Sγ1
⊤ , Sγ2

⊤ ⊤
. Second, 

finding the mean squared closure that contains all such Sγ, which is Λ.

For any finite-dimensional parameter γ = γ1
⊤, γ2

⊤ ⊤
, we have Sγ = Sγ1

⊤ , Sγ2
⊤ ⊤

, where

Sγ1 = η1 g, γ1
−1∂η1 g, γ1 / ∂γ1 − πd

−1 ∂η1 g, γ1 / ∂γ1η2 𝓍 H d, g, 𝓍, θ dμ 𝓍 dμ g

= η1 g, γ1
−1∂η1 g, γ1 / ∂γ1 − E η1 g, γ1

−1∂η1 G, γ1 / ∂γ1 D ,

Sγ2 = η2 𝓍, γ2
−1∂η2 𝓍, γ2 / ∂γ2 − πd

−1 η1 g ∂η2 𝓍, γ2 / ∂γ2H d, g, 𝓍, θ dμ 𝓍 dμ g

= η2 𝓍, γ2
−1∂η2 𝓍, γ2 / ∂γ2 − E η2 𝓍, γ2

−1∂η2 X, γ2 / ∂γ2 D .

It is easy to show the nuisance tangent spaces associated with η1 and η2 are respectively

Λ1 = a g − πd
−1 a g η1 g η2 𝓍 H d, g, 𝓍, θ dμ 𝓍 dμ g :Etrue a G = 0

= a g − E a G d for all a g ,

Λ2 = a 𝓍 − πd
−1 a 𝓍 η1 g η2 𝓍 H d, g, 𝓍, θ dμ 𝓍 dμ g :Etrue a X = 0

= a 𝓍 − E a X d for all a 𝓍 .

Then

Λ = Λ1 + Λ2 = a1 g + a2 𝓍 − E a1 G + a2 X |d for all a1 g , a2 𝓍 .
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Define Λ1
⊥ , conj = f d, g, 𝓍 :E f = 0, E f |G = E E f |D |G . Now consider f ⊥ Λ1. Then 

for any a g − E a G |d ∈ Λ1,

0 = E f⊤ a G − E a G D = E f⊤a G − f⊤E a G D

= E f⊤a G − E f⊤ D E a G D

= E f⊤a G − E f⊤ D a G = E E f⊤ − E f⊤ D G a G .

Hence, E f − E f |D |G = 0 almost surely. Besides, Λ1
⊥ need to be a subspace of the Hilbert 

space ℋ, hence E f = 0. Thus, we have shown Λ1
⊥ ⊂ Λ1

⊥ , conj. Furthermore, for any 

f ∈ Λ1
⊥ , conj,

E f⊤a G − f⊤E a G |D = E f⊤a G − E f⊤|D a G = E E f⊤ − E f⊤|D |G a G = 0,

hence Λ1
⊥ , conj ⊂ Λ1

⊥. Thus, we have obtained Λ1
⊥ = Λ1

⊥ , conj. Similarly, we can prove

Λ2
⊥ = f d, g, 𝓍 :E f = 0, E f X = E E f D X

Hence,

Λ⊥ = f d, g, 𝓍 :E f G = E E f D G , E f X = E E f D X , E f = 0 .

A.3. Uniqueness of a and b up to constants

To prove that a and b defined in Eqs. (4) and (5) are unique up to constant shifts, we 

consider the following. If there exist a1, a2, b1, b2 such that

Seff d, g, 𝓍 = S d, g, 𝓍 − a1 g − b1 𝓍 − E S d, G, X d + E a1 G + b1 X d

= S d, g, 𝓍 − a2 g − b2 𝓍 − E S d, G, X d + E a2 G + b2 X d ,

then

a2 g − a1 g = b1 𝓍 − b2 𝓍 − E a1 G + b1 X d + E a2 G + b2 X d .

The left-hand side is a function of g while the right-hand side is a function of x and d. Hence 

a1 g − a2 g  is a constant. Similarly, b1 𝓍 − b2 𝓍  is also a constant. □
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A.4. Equivalent expression of Eqs. (4) and (5) and the proof under the 

condition E a = E b = 0

We claim under the mean zero constraint E a = E b = 0, (4) and (5) are equivalent to (A.1)–

(A.3), below, namely

Sg g − E S𝓍 X g = a g + u0cg g − E E a X g − u0E c𝓍 X g , (A.1)

S𝓍 𝓍 = E a 𝓍 + b 𝓍 + u0c𝓍 𝓍 , (A.2)

u0 = E a + b D = 0 , (A.3)

where c𝓍 𝓍 = E n0 − nI D = 0 /n1 |𝓍 , cg g = E n0 − nI D = 0 /n1 |g .

Proof. Suppose a and b are the solution of Eqs. (4) and (5). Let E a + b |D = 0 = u0, 

E a + b |D = 1 = u1. Then (A.3) automatically holds. It is easy to verify that 

u0n0 + u1n1 = nE a + b = 0. Hence (4) and (5) become

E a 𝓍 + b 𝓍 + u0 n0/n1 f D X 1, 𝓍 − f D X 0, 𝓍 = S𝓍 𝓍 ,

a g + E b g + u0 n0/n1 f D G 1, g − f D G 0, g = Sg g .

Further write

c𝓍 𝓍 = n0/n1 f D X 1, 𝓍 − f D X 0, 𝓍 = n0 − n f D X 0, 𝓍 /n1
= E n0 − nI D = 0 /n1 𝓍 = E n0/n − I D = 0 / n1/n 𝓍 ,

cg g = n0/n1 f D G 1, g − f D G 0, g = n0 − n f D G 0, g /n1
= E n0 − nI D = 0 /n1 g = E n0/n − I D = 0 / n1/n g .

Then

E a 𝓍 + b 𝓍 + u0c𝓍 𝓍 = S𝓍 𝓍 , (A.4)

a g + E b g + u0cg g = Sg g . (A.5)
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Note that (A.4) above is exactly (A.2) defined in Section 3. Taking conditional expectation 

of (A.4) given G = g, we obtain

E E a X g + E b g +u0E c𝓍 X g = E S𝓍 X g .

Subtracting the above from (A.5), we obtain (A.1), namely

a g + u0cg g − E E a X g − u0E c𝓍 X g = Sg g − E S𝓍 X g .

From the above derivation, it is clear that any mean zero functions a(g), b(x) that solve (4) 

and (5) also satisfy (A.1)–(A.3). We now prove the other way around, that is any mean zero 

functions a(g), b(x) that satisfy (A.1)–(A.3) also satisfy (4) and (5).

Taking the expectation of (A.2) conditionally on G = g and adding the resulting equation to 

(A.1), we obtain exactly (A.5).

Hence Eqs. (A.1) and (A.2) lead to Eqs. (A.2) and (A.5).

For preparation, note also that cg g = n0/n1 f D |G 1, g − f D |G 0, g . Hence under (A.3) and 

the condition n1E a + b |D = 1 + n0E a + b |D = 0 = nE a + b = 0, we can further write

u0cg g = E a + b D = 0 n0/n1 f D G 1, g − f D G 0, g

= E a + b D = 0 n0/n1 f D G 1, g − E a + b D = 0 f D G 0, g

= − E a + b D = 1 f D G 1, g − E a + b D = 0 f D G 0, g

= − E E a + b D g .

Similarly, u0c𝓍 𝓍 = − E E a + b |D |𝓍 . From (A.2), we obtain

S𝓍 𝓍 = E a 𝓍 + b 𝓍 + u0c𝓍 𝓍 = E a 𝓍 + b 𝓍 − E E a + b D 𝓍 ,

which is exactly (4). Similarly, from (A.5), we obtain (5). □

Eq. (A.1) allows us to solve for a(g) as a function of u0 and other known quantities, say 

a g = Fa g, u0 − E Fa G, u0 , where Fa is a function that solves (A.1) which does not need 

to have mean 0. Then we can solve b from (A.2) as a function of u0 to obtain

b 𝓍 = S𝓍 𝓍 − u0c𝓍 𝓍 − E Fa G, u0 𝓍 + E Fa G, u0 .

Now

u0 = E a G + b X D = 0
= E Fa G, u0 + S𝓍 X − u0c𝓍 X − E Fa G, u0 X D = 0 ,
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which allows us to solve for u0. Having obtained u0, we can then solve for all other 

quantities easily. Unfortunately, the integral equation (A.1) does not have an explicit 

solution. We propose an approximation to its solution in the spirit of Tsiatis and Ma [28], 

which is provided in Appendix A.5, by discretizing X if X is continuous.

The efficient score Seff, especially the procedure of solving for a and b, contains several 

expectations conditional on D, G, or X. To get estimations of these conditional expectations, 

we need density estimators of the nuisance parameter η = (η1, η2).

If the disease rate π1 or the non-disease rate π0 = 1 − π1 is known, then η can be 

approximated by

η1 = π0 f G D = 0 + 1 − π0 f G D = 1, η2 = π0 f X D = 0 + 1 − π0 f X D = 1,

where f G |D = d and f X |D = d are the nonparametric estimators of the conditional density/

mass function f G |D = d and f X |D = d respectively for d ∈ {0, 1}. Of course, in practice, π0 is 

typically unknown. However, we can get an estimate of π0 through (3).

A.5. Solving the integral equation (A.1)

Define Z = S − E S |D − u0 n0 − n1 D = 0 /n1. An equivalent expression of (A.1) is

a G − E E a G X G = E Z G − E E Z X G . (A.6)

For fixed u0, all the quantities in Z are known or have explicit form except E(S | D). With 

the weighted kernel density η1, η2, estimated non-disease rate π0 and disease rate π1, we can 

estimate it by

E S D = d = πd
−1 S d, g, 𝓍 η1 g η2 𝓍 dμ g dμ 𝓍 .

A.5.1. Discrete G with finite number of levels

Assume G is discrete with mass at mg points g1, …, gmg. We computed each term in (A.6) 

under the weighted nonparametric densities η1, η2

E a G 𝓍 =
∑ j = 1

mg a g j k g j, 𝓍 η1 g j

∑ j = 1
mg k g j, 𝓍 η1 g j

,

E E a G X gk =
∑ j = 1

mg a g j k g j, 𝓍 η1 g j

∑ j = 1
mg k g j, 𝓍 η1 g j

k gk, 𝓍 η2 𝓍

k gk, 𝓍 η2 𝓍 dμ 𝓍
dμ 𝓍 .

Similarly, we have
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E Z D, G, X X =
∑ j = 1

mg ∑d = 0
1 nd / nπd Z d, g j, 𝓍 H d, g j, 𝓍 η1 g j

∑ j = 1
mg k g j, 𝓍 η1 g j

,

E E Z D, G, X X gk =

∑ j = 1
mg ∑d = 0

1 nd / nπd Z d, g j, 𝓍 H d, g j, 𝓍 η1 g j

∑ j = 1
mg k g j, 𝓍 η1 g j

×
k gk, 𝓍 η2 𝓍
k gk, 𝓍 η2dμ 𝓍 dμ 𝓍 ,

(A.7)

and

E Z D, G, X gk =
d = 0

1
Z d, gk, 𝓍

nd / nπd H d, gk, 𝓍 η2 𝓍
k gk, 𝓍 η2 𝓍 dμ 𝓍 dμ 𝓍 . (A.8)

Consequently, the integral equation (A.6) reduces to the linear equations I − B A⊤ = C⊤, 

where A is the (p+1) × mg matrix a(g1), …, a(gmg), corresponding to the solution of the 

integral equation, I is an mg mg identity matrix, B is an mg mg matrix whose (i, j)th element 

is given by

Bi j =
k g j, 𝓍 η1 g j

∑ j = 1
mg k g j, 𝓍 η1 g j

k gi, 𝓍 η2 𝓍

k gi, 𝓍 η2 𝓍 dμ 𝓍
dμ 𝓍 ,

and C is a (p + 1) × mg matrix whose kth column is E Z D, G, X |gk − E E Z D, G, X | X |gk

defined in (A.7) and (A.8). After obtaining a, we set

b 𝓍 = E Z − a 𝓍

=
∑ j = 1

mg ∑d = 0
1 nd / nπd Z d, g j, 𝓍 H d, g j, 𝓍 η1 g j

∑ j = 1
mg k g j, 𝓍 η1 g j

−
∑ j = 1

mg a g j k g j, 𝓍 η1 g j

∑ j = 1
mg k g j, 𝓍 η1 g j

.

Then we compute u0 = E a + b |D = 0 , where
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E a D = 0 =
∑ j = 1

mg a g j η1 g j H 0, g j, 𝓍 η2 𝓍 dμ 𝓍

∑ j = 1
mg H 0, g j, 𝓍 η1 g j η2 𝓍 dμ 𝓍

,

E b D = 0 = b 𝓍
∑ j = 1

mg H 0, g j, 𝓍 η1 g j η2 𝓍

∑ j = 1
mg H 0, g j, 𝓍 η1 g j η2 𝓍 dμ 𝓍

dμ 𝓍 .

A.5.1. Continuous G or discrete G with infinite number of levels

When G is a continuous variable, we discretize it at a finite number of equally distributed 

points, say, g1 ≤ ··· ≤ gmg with gi + 1 − gi ≡ Δg for all i ∈ {1, …, mg − 1}, such that

i = 1

mg
f G D gi Δg ≈ 1 .

Similarly, when G is discrete with infinite number of levels, we simply choose a sufficient 

number of points from its support to get an overall probability close to 1. Then the 

sequential procedures are exactly the same as that described in the case where G is discrete 

with finite number of levels.
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Table 1

Simulation results from 1000 simulated case-control samples taken from a population with a disease rate of 

approximately 4.5%, and independent genetic and environmental variables, under the logistic model with 

gene–environment interaction. The results for G ∼ ℬ (0.6) and X ∼ N(0, 1) is displayed on the left whereas the 

results for G ~ 𝒩 N(0, 1) and X ~ N(0, 1) is on the right. Each replicate contains N1 = 1000 cases and N0 = 

1000 controls, and is analyzed through two approaches, (1) “Logistic” is ordinary logistic regression, and (2) 

“Semi” is our semiparametric efficient estimator. Here, we list the sample mean (“mean”), the sample standard 

error (“se”), the mean estimated standard error (“est se”) and the coverage for the nominal 95% confidence 

intervals (“95%”) for both methods. In addition, we computed the mean squared error efficiency of the “Semi” 

method compared to the “Logistic” approach.

Binary G, Normal X Normal G, Normal X

β 0.76 0.36 −0.63 0.76 0.36 −0.63

Logistic Mean 0.761 0.363 −0.635 0.762 0.363 −0.634

se 0.101 0.088  0.103 0.055 0.053  0.056

est se 0.101 0.084  0.101 0.056 0.054  0.055

95% 0.952 0.939  0.942 0.950 0.954  0.942

Semi Mean 0.761 0.360 −0.630 0.761 0.362 −0.627

se 0.101 0.077  0.082 0.054 0.051  0.046

est se 0.100 0.073  0.079 0.053 0.051  0.041

95% 0.953 0.939  0.941 0.949 0.953  0.921

MSE Eff 1.003 1.325  1.566 1.068 1.112  1.457
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Table 2

Simulation results from 1000 simulated case-control samples taken from a population with a disease rate of 

approximately 10%, and independent genetic and environmental variables, under the logistic model with 

gene–environment interaction. The results for G ∼ ℬ (0.6) and X ∼ N(0, 1) is displayed on the left whereas the 

results for G ~ 𝒩 N(0, 1) and X ~ N(0, 1) is on the right. Each replicate contains N1 = 1000 cases and N0 = 

1000 controls, and is analyzed through two approaches, (1) “Logistic” is ordinary logistic regression, and (2) 

“Semi” is our semiparametric efficient estimator. Here, we list the sample mean (“mean”), the sample standard 

error (“se”), the mean estimated standard error (“est se”) and the coverage for the nominal 95% confidence 

intervals (“95%”) for both methods. In addition, we computed the mean squared error efficiency of the “Semi” 

method compared to the “Logistic” approach.

Binary G, Normal X Normal G, Normal X

β 0.76 0.36 −0.63 0.76 0.36 −0.63

Logistic Mean 0.762 0.363 −0.638 0.762 0.363 −0.633

Se 0.102 0.084  0.100 0.056 0.051  0.057

est se 0.100 0.083  0.100 0.056 0.053  0.057

95% 0.943 0.952  0.955 0.957 0.960  0.952

Semi Mean 0.762 0.359 −0.628 0.761 0.363 −0.629

se 0.102 0.077  0.087 0.055 0.050  0.053

est se 0.100 0.074  0.081 0.055 0.052  0.050

95% 0.944 0.932  0.936 0.953 0.960  0.934

MSE Eff 1.004 1.180  1.325 1.032 1.065  1.145
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Table 3

Simulation results from 1000 simulated case-control samples taken from a population with a disease rate of 

approximately 4.5%, and independent genetic and environmental variables, under the logistic model with 

gene–environment interaction. The results for G ∼ ℬ (0.6) and X ∼ 𝒢 (20, 1) is displayed on the left whereas 

the results for G ~ 𝒩 N(0, 1) and X ~ 𝒢 (20, 1) is on the right. Each replicate contains N1 = 1000 cases and N0 

= 1000 controls, and is analyzed through two approaches, (1) “Logistic” is ordinary logistic regression, and (2) 

“Semi” is our semiparametric efficient estimator. Here, we list the sample mean (“mean”), the sample standard 

error (“se”), the mean estimated standard error (“est se”) and the coverage for the nominal 95% confidence 

intervals (“95%”) for both methods. In addition, we computed the mean squared error efficiency of the “Semi” 

method compared to the “Logistic” approach.

Binary G, Gamma X Normal G, Gamma X

β 3.577 0.080 −0.141 3.577 0.080 −0.141

Logistic Mean 3.599 0.081 −0.142 3.592 0.080 −0.141

se 0.456 0.018  0.022 0.269 0.012  0.012

est se 0.462 0.018  0.022 0.259 0.012  0.012

95% 0.957 0.953  0.949 0.937 0.950  0.942

Semi Mean 3.586 0.080 −0.141 3.569 0.080 −0.140

se 0.375 0.016  0.018 0.230 0.011  0.010

est se 0.369 0.016  0.017 0.202 0.011  0.009

95% 0.950 0.949  0.942 0.914 0.940  0.919

MSE Eff 1.484 1.305  1.559 1.372 1.059  1.437
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Table 4

Simulation results from 1000 simulated case-control samples taken from a population with a disease rate of 

approximately 10%, and independent genetic and environmental variables, under the logistic model with 

gene–environment interaction. The results for G ∼ ℬ (0.6) and X ∼ 𝒢 (20, 1) is displayed on the left whereas 

the results for G ~ 𝒩 N(0, 1) and X ~ 𝒢 (20, 1) is on the right. Each replicate contains N1 = 1000 cases and N0 

= 1000 controls, and is analyzed through two approaches, (1) “Logistic” is ordinary logistic regression, and (2) 

“Semi” is our semiparametric efficient estimator. Here, we list the sample mean (“mean”), the sample standard 

error (“se”), the mean estimated standard error (“est se”) and the coverage for the nominal 95% confidence 

intervals (“95%”) for both methods. In addition, we computed the mean squared error efficiency of the “Semi” 

method compared to the “Logistic” approach.

Binary G, Gamma X Normal G, Gamma X

β 3.577 0.080 −0.141 3.577 0.080 −0.141

Logistic Mean 3.589 0.081 −0.141 3.600 0.081 −0.142

se 0.459 0.018  0.022 0.274 0.012  0.013

est se 0.460 0.018  0.022 0.269 0.012  0.012

95% 0.949 0.950  0.947 0.950 0.934  0.944

Semi Mean 3.565 0.080 −0.140 3.590 0.081 −0.142

se 0.394 0.016  0.019 0.268 0.012  0.012

est se 0.381 0.016  0.018 0.247 0.011  0.011

95% 0.945 0.953  0.938 0.934 0.937  0.930

MSE Eff 1.360 1.240  1.406 1.048 1.031  1.061
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Table 5

Analysis of the case-control study on prostate cancer, containing n1 = 690 cases and n0 = 717 controls. Two 

approaches were implemented, (1) “Logistic” is ordinary logistic regression, and (2) “Semi” is our 

semiparametric efficient estimator. Displayed are the estimates, bootstrap standard error (“se, bootstrap”), 

mean estimated asymptotic standard error (“est se, asymptotic”), bootstrap p-value (“ p-value, bootstrap”), and 

asymptotic p-value (“ p-value, asymptotic”) of the coefficients for the standardized polygenic risk score (G), 

[25(OH)D] level (X), and the interaction between them (GX).

βG βX βGX

Logistic Estimates 0.169 0.123 −0.101

se, bootstrap 0.056 0.056  0.054

est se, asymptotic 0.055 0.055  0.055

p-value, bootstrap 0.002 0.028  0.064

p-value, asymptotic 0.002 0.024  0.066

Semi Estimates 0.168 0.124 −0.110

se, bootstrap 0.056 0.056  0.049

est se, asymptotic 0.055 0.054  0.042

p-value, bootstrap 0.003 0.027  0.026

p-value, asymptotic 0.002 0.021  0.009
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