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Abstract

As a powerful imaging tool, X-ray computed tomography (CT) allows us to investigate the

inner structures of specimens in a quantitative and nondestructive way. Limited by the

implementation conditions, CT with incomplete projections happens quite often. Conven-

tional reconstruction algorithms are not easy to deal with incomplete data. They are usually

involved with complicated parameter selection operations, also sensitive to noise and time-

consuming. In this paper, we reported a deep learning reconstruction framework for incom-

plete data CT. It is the tight coupling of the deep learning U-net and CT reconstruction algo-

rithm in the domain of the projection sinograms. The U-net estimated results are not the

artifacts caused by the incomplete data, but the complete projection sinograms. After train-

ing, this framework is determined and can reconstruct the final high quality CT image from a

given incomplete projection sinogram. Taking the sparse-view and limited-angle CT as

examples, this framework has been validated and demonstrated with synthetic and experi-

mental data sets. Embedded with CT reconstruction, this framework naturally encapsulates

the physical imaging model of CT systems and is easy to be extended to deal with other

challenges. This work is helpful to push the application of the state-of-the-art deep learning

techniques in the field of CT.

Introduction

The invention of X-ray computed tomography (CT) has led to a revolution in many fields

such as medical imaging, nondestructive testing and materials science. It can overcome the

limit from radiographic imaging, namely that three-dimensional objects are projected on a

two-dimensional plane and the depth information becomes invisible. Employing a set of two-

dimensional projections to reconstruct the three-dimensional objects, CT allows us to investi-

gate the inner structures in a quantitative and nondestructive way.

Image reconstruction plays an important role during the development of CT and many

reconstruction algorithms have been proposed over the last decades. Filtered back projection
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(FBP) is generally preferred since it keeps a good balance between reconstruction speed and

image quality when applied to complete data. However, limited by implementation conditions,

CT with incomplete projections happens quite frequently. For example, the projections in the

well-known sparse-view and limited-angle CT are incomplete [1–5]. The corresponding FBP

reconstruction will have quite visible artifacts and noise.

Reconstruction with incomplete projections has attracted more and more interests. Using

the Kaczmarz method in numerical linear algebra, Gordon et al gave out an algebraic recon-

struction technique (ART) [6] for the direct CT reconstruction from a few projections. Good

results could be obtained by updating each image pixel with the deviation between the mea-

sured projections and the simulated forward projections. However, it works in a ray by ray

mode and is hard to suppress noise. Anderson et al proposed simultaneous ART (SART) [7] in

which the updating is executed after the deviations of all rays are calculated out. The recon-

structed image becomes smooth and the stripe-shaped artifacts are better suppressed. The

maximum likelihood expectation maximization (MLEM) [8] algorithm proposed by Shepp

and Vardi was also applied to image reconstruction. Involved with the statistical properties of

X-ray photons, it is effective to reduce the imaging dose. Another popular algorithm is penal-

ized likelihood reconstruction [9]. With prior knowledge, it performs well to improve the low

dose resolution. Based on the compressed sensing theory, Sidky et al developed total variation

(TV) techniques [10] to deal with incomplete projections. Wang et al introduced a new TV

minimization method for limited-angle CT reconstruction [1]. Their method needs less time

to obtain better results than other TV methods. Hu et al presented an improved statistical iter-

ative algorithm for sparse-view and limited-angle CT [2]. Using penalized weighted least-

squares criteria for TV minimization and including a feature refinement step to recover fea-

tures lost in the TV minimization, their results show significant improvement over other itera-

tive algorithms in terms of the preservation of structural details and the suppression of

undesired patchy artifacts. Luo et al proposed an image reconstruction method based on TV

and wavelet tight frame for limited-angle CT problem [11]. They used SART and TV to get the

initial result. Then a hard thresholding method was utilized to cut the smaller wavelet coeffi-

cients. Lastly, the Lagrange multiplier method was used to update the dual variable. It further

improves the quality of reconstructed images. These reconstruction techniques could be better

than FBP, but they still have some limits such as expensive time consumption for the succes-

sive iterative steps and the complicated parameter selection.

A more recent trend is the application of deep learning (DL). It has led to a series of break-

throughs for image classification [12, 13] and segmentation [14] and also demonstrated

impressive results on signal denoising [15] and artifacts reduction [16, 17]. DL naturally takes

into account low, middle and high level features [18] and the “levels” of features can be

enriched by increasing the number of stacked layers (depth). Driven by the significance of

depth, an notorious obstacle, vanishing/exploding gradients [19, 20], has arisen. It hampers

the network to converge. This problem has been addressed by normalized initialization [21–

23] and intermediate normalization layers [24]. However, with the network’s depth increasing,

accuracy gets saturated and then degrades rapidly as reported in [25, 26]. He et al has intro-

duced a deep residual learning theory [27] to address this problem, with which it would be eas-

ier to push the residual to be zero than to fit an identity mapping by a stack of nonlinear layers.

DL has recently been applied to X-ray CT reconstruction. Cierniak combined a back-pro-

jection operation with a hopfield neural network to reconstruct CT image from projections

[28]. It fixed parameters in the back-projection and used neural network to recover informa-

tion that was blurred during the back-projection. Würfl et al directly mapped FBP onto a deep

neural network architecture and demonstrated that image reconstruction can be expressed in

terms of neural networks [29]. Based on a persistent homology analysis, Han et al developed a
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deep learning residual architecture [30] for sparse-view CT reconstruction. The input of this

architecture is the initial corrupted CT image from FBP or other algorithm. It firstly estimates

topologically simpler streaking artifacts from the input image and then subtracts the estimated

result from the input image to get artifact-free image. Obviously this method is independent

on X-CT reconstruction and works in an indirect mode. Using multi-scale wavelet, they

extended their work to limited angle CT reconstruction [31]. Jin et al also proposed a deep

convolutional neural network [32] for inverse problem in imaging. It is similarly independent

on X-CT reconstruction, but the estimated results are the final CT images not the artifacts.

With dilated convolutions, Pelt et al introduced an architecture [33] to capture features at dif-

ferent image scales and densely connect all feature maps with each other. Their method is also

independent on CT reconstruction, but has the ability to achieve accurate results with fewer

parameters. It reduced the risk of overfitting the training data. Yang et al presented a deep con-

volutional neural network (CNN) method that increases the acquired X-ray tomographic sig-

nal during the low-dose fast acquisition by improving the quality of recorded projections.

Short-exposure-time projections enhanced with CNNs show signal-to-noise ratios similar to

long-exposure-time projections. However, it could not suppress the artifacts caused by sparse-

view or limited-angle scanning. The reported results have demonstrated that these approaches

are much faster than the conventional algorithms and also easier to be implemented.

In this paper, we report a new deep learning reconstruction framework for X-CT with

incomplete projections. Different from above mentioned techniques, it is the tight coupling of

the deep learning U-net [14] and FBP algorithm in the domain of the projection sinograms.

The estimated result are not the CT image or the artifacts, but the complete projection sino-

grams. Embedded with CT reconstruction, it naturally encapsulates the physical imaging

model of CT systems and is easy to be extended to deal with other challenges such as beam-

hardening, scattering and noise. When training, this framework firstly obtains the forward

projections from the initial reconstruction by applying FBP to the original incomplete projec-

tion sinograms. Taking the complete projection sinograms as a target, they are then input into

the U-net to obtain the net parameters by doing deep learning. After training, this framework

is determined and can obtain the final CT image from a given incomplete projection sinogram.

Taking the sparse-view and limited-angle CT as examples, this framework has been validated

by using synthetic data sets and experimental data sets. This work is helpful to push the appli-

cation of deep learning in the field of CT.

Methods

Proposed framework

Fig 1 shows the proposed deep learning reconstruction framework for X-CT with incomplete

projections. It is based on FBP and the deep learning U-net and called DLFBP. This framework

consists of four parts. Initial FBP reconstruction of the original incomplete sinogram is the

first part. The second part is the forward projection operator which is applied to the initial

reconstructed image to obtain corrupted sinogram. The convolutional neural network U-net

is the third part and used to execute deep learning. The final FBP reconstruction with the com-

plete sinogram from the third part is the last part of the framework. Obviously, the third part is

the iconic one and works in the domain of sinograms.

Eq (1) is the well-known two-dimensional equi-spaced fan beam FBP algorithm which is

adopted to reconstruct the CT image in this article. It also has many extension versions for dif-

ferent CT scanning configurations. In this equation, β(x, y) represents the CT image in Carte-

sian coordinate system, U the geometrical weight factor, P(w, ϕ) the projection sinogram, h the

inverse Fourier transform of the ramp filter, w the index of the detector channels and ϕ the CT

A deep learning reconstruction framework for X-ray computed tomography with incomplete data
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rotation angle. The symbol “�” means convolution.

b x; yð Þ ¼
1

2

Z 2p

0

U � P w; �ð Þ � h wð Þd� ð1Þ

Eq (2) is the forward projection operator. In this equation, P(w, ϕ) represents the forward

projection recorded by the wth detector channel at the rotation angle ϕ, β(x, y) the initial

reconstructed CT image and l the forward projection path.

Pðw; �Þ ¼
Z þ1

� 1

bðx; yÞdl ð2Þ

Eqs (3) and (4) formulate the U-net. In these two equations, f() represents the extractor to

recognize and characterize the context from input X in the encoding way, Λ[] the nonlinear

mapping function, F{} the constructor to obtain part of output Ŷ , W and bias the parameters

trained and determined in the neural network. One can refer to [14] for more details.

Ŷ ¼ FfL½f ðXÞ�g þ X ð3Þ

f ðXÞ ¼WT � X þ bias ð4Þ

The parameter W is a vector and trained with the following steps. Firstly, it is initialized

with a Gaussian distribution with standard deviation
ffiffiffiffiffiffiffiffiffiffiffi

2

ninþnout

q
in which nin and nout indicate

the number of input and output units in each layer. Then, for each pair of training data which

consists of original input X and its corresponding ground truth Y, the mean square error E
between Ŷ and Y is calculated out with Eq (5), where m represents the number of samples in

Fig 1. The architecture of the proposed deep learning reconstruction framework for X-CT with incomplete projections. For each three-

dimensional block, the height and width represent the feature map’s size and the depth corresponds to the number of channels in this feature map.

https://doi.org/10.1371/journal.pone.0224426.g001
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one batch used for training. Finally E is used to update W via backward propagation expressed

in Eq (6). t represents the number of the iteration training, j the parameter index in the vector

W and η the learning rate. When the learning rate η is big, the parameters in the network are

updated a lot. It is helpful to reach convergence fast. However, learning oscillation may happen

if it is too big. In implementation, gradually reducing the learning rate is a good idea.

E ¼
1

2m
ðY � Ŷ Þ2 ð5Þ

wtþ1
j ¼ wt

j � Z �
@E
@wt

j
ð6Þ

The parameter bias is also trained and determined by using the above method. When the

mean square error E reaches the convergence condition, the training stops and a determined

network is available for work.

Convolutional filter for down-sampling

Down-sampling is one of the fundamental operations within U-net and implemented by the

so-called max-pooling operator. It is mainly used to reduce the dimensions of the feature maps

and increase the size of the receptive field. The pooling size should keep balance between these

two factors. The determination relies on experience and the size usually set to be 2. The stride

is correspondingly set to be 2 to obtain the same dimension reduction. As an example, the

max-pooling with a 2 × 2 window and a stride 2 is depicted in Fig 2. At each window, max-

pooling extracts the maximum value and removes others. It runs fast, but some details may be

lost in this processing. We adopt a convolution filter with a 2 × 2 window and a stride 2,

Fig 2. The working principles of the max-pooling operator and the convolutional filter.

https://doi.org/10.1371/journal.pone.0224426.g002
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shown in Fig 2, to replace the max-pooling. All values in the window will make their contribu-

tions to the down-sampling according to the four window coefficients C11, C12, C21 and C22.

This new operation will improve the down-sampling accuracy since these four window coeffi-

cients are updated iteratively during the training.

Normalization

This framework involves complicated calculations such as image reconstruction, forward pro-

jection and convolution. They may lead to unignored computation errors and degrade the

training efficiency and accuracy. So we apply normalization operation to input X, output Ŷ
and ground truth Y to avoid this problem. This normalization operation is expressed in Eq (7)

in which In represents the normalized image, I the raw image, mean() an operator to obtain

mean value and std() an operator to obtain standard deviation value.

In ¼
I � meanðIÞ

stdðIÞ
ð7Þ

Running modes

This framework has two running modes. One is training mode and the other is working

mode. Training mode has following steps: i) A set of incomplete sinograms is firstly

matched with the corresponding complete sinograms into many pairs of training data. Each

pair consists of an incomplete sinogram and a complete sinogram. ii) These data is input

into the framework depicted in Fig 1 one pair by one pair and the network parameters such

as W, bias, C11, C12, C21 and C22 are updated iteratively. iii)When all pairs are used once,

an outer learning iteration is completed. iv) Repeat steps ii) and iii) until the learning

converges.

The procedure for working mode is much simpler. When an incomplete sinogram is fed

into the framework determined by the training mode, the output of the framework will be a

high quality CT image.

Layer parameters

For the following experiments, the learning framework in Fig 1 has totally 27 lays. Table 1 lists

the corresponding parameters of these layers. In this table, layer indexes start with the input

layer indicated by the light green block in Fig 1.

Experiments

Sparse-view CT and limited-angle CT are two typical cases with incomplete data. Taking them

as examples, this section validates the proposed reconstruction framework. Two experiments

were executed. The first one is based on synthetic data set. Some of the synthetic data was used

to train the framework and others to test. The second is based on real data set. Some of the real

data was used to train the framework and others to test.

Data preparation

For synthetic data sets, 300 phantoms are used to obtain the fan beam sinograms with different

sampling factors. Each phantom consists of tens of ellipses with random attenuation coeffi-

cients, sizes, and locations. In sparse-view CT experiments, the sampling factors are set to be 1,

8 and 12. They correspond to 720, 90 and 60 views respectively. The size of each phantom is

512 × 512 pixels. Fan beam sinograms are generated by using the embedded MATLAB

A deep learning reconstruction framework for X-ray computed tomography with incomplete data
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function fanbeam(). The width of all the sinograms are 731 pixels. The sinogram with sampling

factor 1 has a size 720 × 731 pixels and is treated as a complete one. Other sinograms are

incomplete. Sinograms of 200 phantoms are used to train the framework and those from

another 100 phantoms are used to test the framework.

Within the framework, for each incomplete sinogram, the initial FBP reconstruction is

firstly executed with Eq (1) to obtain the initial CT image. Then the forward projection opera-

tor in Eq (2) is applied to the initial CT image to generate the corresponding corrupted sino-

gram with a size 720 pixels × 731 pixels. Next the iterative deep learning runs to update the

network parameters by making comparison between the corrupted sinogram and the complete

sinogram.

For experimental data sets, 300 female and male head slice images are randomly chosen

from Visible Human Project CT Datasets. 200 images are used to train the network and the

left 100 images are used to test the network. All the operations and procedure are the same as

the ones for synthetic data sets.

The experimental data sets are available from https://www.nlm.nih.gov/research/visible/

visible_human.html. A license agreement for this work was approved by the National Library

of Medicine, National Institute of Health, USA.

Table 1. The values of the parameters in the deep learning layers.

Layers Input Size Output Size Stride Size Kernel Size

1: Input 720 × 731 × 1 720 × 731 × 1 — —

2: Conv 720 × 731 × 1 720 × 731 × 64 1 × 1 3 × 3

3: Conv 720 × 731 × 64 720 × 731 × 64 1 × 1 3 × 3

4: Conv 720 × 731 × 64 720 × 731 × 64 1 × 1 3 × 3

5: Conv 720 × 731 × 64 360 × 366 × 128 2 × 2 2 × 2

6: Conv 360 × 366 × 128 360 × 366 × 128 1 × 1 3 × 3

7: Conv 360 × 366 × 128 180 × 183 × 256 2 × 2 2 × 2

8: Conv 180 × 183 × 256 180 × 183 × 256 1 × 1 3 × 3

9: Conv 180 × 183 × 256 90 × 92 × 512 2 × 2 2 × 2

10: Conv 90 × 92 × 512 90 × 92 × 512 1 × 1 3 × 3

11: Conv 90 × 92 × 512 45 × 46 × 1024 2 × 2 2 × 2

12: Conv 45 × 46 × 1024 45 × 46 × 1024 1 × 1 3 × 3

13: ConvTranspose 45 × 46 × 1024 90 × 92 × 512 2 × 2 3 × 3

14: Conv 90 × 92 × (512 + 512) 90 × 92 × 512 1 × 1 3 × 3

15: Conv 90 × 92 × 512 90 × 92 × 512 1 × 1 3 × 3

16: ConvTranspose 90 × 92 × 512 180 × 183 × 256 2 × 2 3 × 3

17: Conv 180 × 183 × (256 + 256) 180 × 183 × 256 1 × 1 3 × 3

18: Conv 180 × 183 × 256 180 × 183 × 256 1 × 1 3 × 3

19: ConvTranspose 180 × 183 × 256 360 × 366 × 128 2 × 2 3 × 3

20: Conv 360 × 366 × (128 + 128) 360 × 366 × 128 1 × 1 3 × 3

21: Conv 360 × 366 × 128 360 × 366 × 128 1 × 1 3 × 3

22: ConvTranspose 360 × 366 × 128 720 × 731 × 64 2 × 2 3 × 3

23: Conv 720 × 731 × (64 + 64) 720 × 731 × 64 1 × 1 3 × 3

24: Conv 720 × 731 × 64 720 × 731 × 64 1 × 1 3 × 3

25: Conv 720 × 731 × 64 720 × 731 × 1 1 × 1 3 × 3

26: Add 720 × 731 × (1 + 1) 720 × 731 × 1 — —

27: Norm 720 × 731 × 1 720 × 731 × 1 — —

https://doi.org/10.1371/journal.pone.0224426.t001
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Implementation

This framework is implemented with Python 3.5.2 and Tensorflow 1.8. It runs in a workstation

Advantech AIMB-785 with a CPU i7 6700 and a Graphics Processing Unit (GPU) nVidia

GTX 1080Ti 11 GBytes.

Nadam optimizer [34] is used for the back propagation of gradients and updating learning

parameters. Batch normalization (BN) [24] is adopted to accelerate the training. Due to the

limit of GPU memory, the batch size set to be 1. It makes the training process unstable. In

order to avoid the fluctuation of gradients that may affect the learning effect, a small learning

rate is preferred to control the update of parameters. The initial learning rate is set to be

1 × 10−4 and gradually reduced with the exponential decay method expressed by Eq (8) from

https://tensorflow.google.cn/versions/r1.10/api_docs/python/tf/train/exponential_decay. The

decay rate is 10% and the decay steps 20. Int() represents the operation to obtain the integer

division.

decayed learning rate ¼ learning rate� decay rateintðglobal step=decay stepsÞ ð8Þ

The training time for synthetic and experimental data sets is about 9 hours for 50 outer iter-

ations. When testing, it takes 1s to obtain the final CT image.

Image evaluation

Peak signal-to-noise ratio (PSNR) is a term for the ratio between the maximum possible power

of a signal and the power of corrupting noise that affects the fidelity of its representation.

Expressed in Eqs (9) and (10), it is commonly used to measure the quality of reconstruction of

lossy compression codecs. In this article it is adopted to evaluate the quality of the sinograms

and CT images. Here, MAX() is an operator to obtain the maximum value, m and n the height

and width of the image, G the ground truth image and K the image to be evaluated. The bigger

PSNR, the better the image quality.

The averaged PSNR (aPSNR) value is also used to evaluate the performance of the proposed

framework. It is the mean value of a group of PSNR values and calculated by Eq (11) in which

num is the number of PSNR values.

PSNR ¼ 20 � log 10ð
MAXðGÞ
ffiffiffiffiffiffiffiffiffiffi
MSE
p Þ ð9Þ

MSE ¼
1

mn

Xm� 1

i¼0

Xn� 1

j¼0

kGði; jÞ � Kði; jÞk2
ð10Þ

aPSNR ¼
1

num

Xnum

i¼1

PSNRi ð11Þ

Comparison with methods based on CT images

As mentioned in the Introduction section, most of the existing X-CT image deep learning pro-

cessing techniques are independent on CT reconstruction algorithms. The input is the cor-

rupted CT image, and the output is the corrected CT image or artifact. In contrast, the

proposed method is the combination of CT reconstruction algorithms and deep learning

techniques, and works in the domain of the projection sinograms. The estimated results are

the complete sinograms. It has the potential to provide much better image quality.

A deep learning reconstruction framework for X-ray computed tomography with incomplete data
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A comparison between the proposed method and a typical deep convolution neural net-

work(DCNN) [32] was conducted to demonstrate its performance. During the implementa-

tion of DCNN, all the procedures and the parameters which are set manually and not

determined by the training, kept the same as those published in the reference [32].

Results

Figs 3 and 4 present the sparse-view results of one of the 100 synthetic phantoms for testing.

Figs 5 and 6 present the sparse-view results of one of the 100 head slices for testing. They corre-

spond to the cases with sampling factors of 8 and 12, respectively. Their incomplete singorams

have sizes of 90 × 731 pixels and 60 × 731 pixels, respectively. All the corrupted sinograms gen-

erated by the forward projection have a size of 720 × 731 pixels. All the reconstructed CT

images have a size of 512 × 512 pixels after cutting off the surrounding blank region. In order

to show the most obvious difference among each group of images, some regions of interest

(ROIs) in these images, indicated by the yellow boxes, are enlarged for better visualization. In

these four figures, it is noticeable that, after training, the artifacts caused by the sparse sampling

are suppressed drastically both in the sinograms and CT images. The PSNR values also signifi-

cantly increase. They demonstrate the validity of the proposed framework.

Fig 7 shows the radar maps of the PSNR values of all the 100 synthetic and experimental

images for sparse-view CT testing. Table 2 lists the corresponding aPSNR values. They also

confirm the validity of the proposed framework.

It should be pointed that although DCNN significantly reduces the sparse sampling arti-

facts, some of them remain in the images. Moreover, the bigger the sampling factor is, the

more blurry the edges of the object are. These may be caused by the fact that its learning

Fig 3. The sparse-view results of one synthetic phantom with an incomplete sinogram with 90 views by using DCNN [32], FBP and DLFBP. The

incomplete singoram has a size of 90 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731 pixels. All CT

images have a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the yellow box, are

enlarged for better visualization.

https://doi.org/10.1371/journal.pone.0224426.g003
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Fig 4. The sparse-view results of one synthetic phantom with an incomplete sinogram with 60 views by using DCNN [32], FBP and DLFBP. The

incomplete singoram has a size of 60 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731 pixels. All CT

images have a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the yellow box, are

enlarged for better visualization.

https://doi.org/10.1371/journal.pone.0224426.g004

Fig 5. The sparse-view results of one head slice with an incomplete sinogram with 90 views by using DCNN [32], FBP and DLFBP. The incomplete

singoram has a size of 90 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731 pixels. All CT images have

a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the yellow box, are enlarged for

better visualization.

https://doi.org/10.1371/journal.pone.0224426.g005
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Fig 6. The sparse-view results of one head slice with an incomplete sinogram with 60 views by using DCNN [32], FBP and DLFBP. The incomplete

singoram has a size of 60 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731 pixels. All CT images have

a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the yellow box, are enlarged for

better visualization.

https://doi.org/10.1371/journal.pone.0224426.g006

Fig 7. The PSNR values of the sparse-view CT images. The blue points with circle masks present the PSNR values of the CT images reconstructed by

FBP. The orange points with rhombus masks present the PSNR values of the results by DLFBP. The gray points with square masks present the PSNR

values of the results by DCNN [32].

https://doi.org/10.1371/journal.pone.0224426.g007

Table 2. aPSNR values of sparse-view results.

Cases Corrupted Sinogram DLFBP Sinogram FBP CT Image DCNN CT Image DLFBP CT Image

Synthetic aPSNR(dB) 90 views 38.17 53.29 28.42 33.28 39.01

60 views 33.99 46.47 25.25 30.81 35.52

Experimental aPSNR(dB) 90 views 38.25 53.15 28.22 36.75 40.22

60 views 33.49 49.30 24.43 32.68 37.21

https://doi.org/10.1371/journal.pone.0224426.t002
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mechanism is based on CT images. Once an imprecise value is estimated by the DCNN, it will

directly distort the object in the final CT image. In contrast, DLFBP is based on sinograms. An

estimation error in sinograms will be compensated by the following CT reconstruction since

the final CT is a weighted sum of the values in sinograms. As such, DLFBP is tolerant to learn-

ing bias and provides better image quality.

Figs 8 and 9 present the limited-angle results of one of the 100 synthetic phantoms for test-

ing. Figs 10 and 11 present the sparse-view results of one of the 100 head slices for testing.

They correspond to the cases with the projections within the angular range [0 120˚] and [0

90˚], respectively. Their incomplete singorams have sizes of 240 × 731 pixels and 180 × 731

pixels, respectively. All the corrupted sinograms generated by the forward projection have a

size of 720 × 731 pixels. All the reconstructed CT images have a size of 512 × 512 pixels after

cutting off the surrounding blank region. In order to show the most obvious difference among

each group of images, some regions of interest (ROIs) in these images, indicated by the yellow

boxes, are enlarged for better visualization. Fig 12 shows the radar maps of the PSNR values of

all the 100 synthetic and experimental images for limited-angle CT testing. Table 3 lists the

corresponding aPSNR values.

The images in Figs 8–11 and the values in Fig 12 and Table 3 show that DLFBP is effective

to suppress the artifacts in limited-angle CT. Moreover, DLFBP recovers more inner structure

details and the edge is much more sharper than DCNN.

Discussion

Down-sampling with convolution filters plays an important role for the improvement of the

image quality in the proposed framework. In conventional neural networks, max-pooling are

Fig 8. The limited-angle results of one synthetic phantom with the projections within the angular range [0 120˚] by using DCNN [32], FBP and

DLFBP. The incomplete singoram has a size of 240 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731

pixels. All CT images have a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the

yellow box, are enlarged for better visualization.

https://doi.org/10.1371/journal.pone.0224426.g008
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Fig 9. The limited-angle results of one synthetic phantom with the projections within the angular range [0 90˚] by using DCNN [32], FBP and

DLFBP. The incomplete singoram has a size of 180 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731

pixels. All CT images have a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the

yellow box, are enlarged for better visualization.

https://doi.org/10.1371/journal.pone.0224426.g009

Fig 10. The limited-angle results of one head slice with the projections within the angular range [0 120˚] by using DCNN [32], FBP and DLFBP.

The incomplete singoram has a size of 240 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731 pixels.

All CT images have a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the yellow box,

are enlarged for better visualization.

https://doi.org/10.1371/journal.pone.0224426.g010
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Fig 11. The limited-angle results of one head slice with the projections within the angular range [0 90˚] by using DCNN [32], FBP and DLFBP.

The incomplete singoram has a size of 180 × 731 pixels. The corrupted sinograms generated by the forward projection have a size of 720 × 731 pixels.

All CT images have a size of 512 × 512 pixels after cutting off the surrounding blank region. Some regions of these images, indicated by the yellow box,

are enlarged for better visualization.

https://doi.org/10.1371/journal.pone.0224426.g011

Fig 12. The PSNR values of the limited-angle CT images. The blue points with circle masks present the PSNR values of the CT images reconstructed

by FBP. The orange points with rhombus masks present the PSNR values of the results by DLFBP. The gray points with square masks present the PSNR

values of the results by DCNN [32].

https://doi.org/10.1371/journal.pone.0224426.g012

Table 3. aPSNR values of limited-view results.

Cases Corrupted Sinogram DLFBP Sinogram FBP CT Image DCNN CT Image DLFBP CT Image

Synthetic aPSNR(dB) [0 120˚] 16.27 39.74 16.99 24.12 33.78

[0 90˚] 13.52 38.99 14.60 21.97 32.38

Experimental aPSNR(dB) [0 120˚] 15.56 47.03 22.55 40.25 46.93

[0 90˚] 12.68 44.50 19.83 37.88 43.69

https://doi.org/10.1371/journal.pone.0224426.t003
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usually adopted to implement down-sampling. They run fast, but the generated maximum

value may not match the true one. In contrary, the coefficients in the convolution filters are

determined by training the network with the training data set and better results can be pro-

vided by this operation.

In order to investigate the effect on learning accuracy from the down-sampling methods,

the above experiments are repeated with max-pooling. Table 4 lists the corresponding aPSNR

values. In any case, the aPSNR value of the convolution filter down-sampling is always larger

than that of max-pooling. Obviously, the former performs better.

Conclusion

In this paper, we reported a deep learning reconstruction framework for incomplete data CT.

It is based on the deep learning technique and classical FBP reconstruction algorithms. All net-

work parameters are not determined manually but by training in the domain of sinograms. It

has been validated by the sparse-view and limited-view CT reconstruction with synthetic and

experimental data sets. It provides a possible image reconstruction resolution for X-CT with

incomplete data.

In the proposed framework, U-net neural network is adopted to train the incomplete sino-

grams. The learning accuracy and efficiency is limited by the characteristics of U-net. In the

future, this framework could be improved further by replacing U-net with more advanced

learning models.

Acknowledgments

We acknowledge support from the National Library of Medicine, National Institute of Health,

USA for permitting us to use the data sets of Visual Human Project.

Author Contributions

Conceptualization: Jian Fu.

Funding acquisition: Jian Fu.

Investigation: Jianbing Dong.

Methodology: Jianbing Dong, Jian Fu.

Project administration: Jian Fu.

Resources: Jianbing Dong.

Table 4. aPSNR values of different down-sampling methods.

Cases DLFBP Sinogram DLFBP CT Image

Max-pooling Mean-pooling Strided-Conv. Max-pooling Mean-pooling Strided-Conv.

Sparse-view Synthetic aPSNR(dB) 90 views 52.57 52.86 53.29 38.50 37.42 39.01

60 views 46.40 45.87 46.47 34.97 35.21 35.52

Experimental aPSNR(dB) 90 views 52.54 51.21 53.15 39.67 39.10 40.22

60 views 48.33 48.62 49.30 36.54 35.44 37.21

Limited-view Synthetic aPSNR(dB) [0 − 120˚] 38.49 38.35 39.74 33.01 33.65 33.78

[0 − 90˚] 38.23 38.54 38.99 31.98 32.14 32.38

Experimental aPSNR(dB) [0 − 120˚] 46.54 46.87 47.03 45.32 45.11 46.93

[0 − 90˚] 43.21 44.43 44.50 42.88 43.20 43.69

https://doi.org/10.1371/journal.pone.0224426.t004

A deep learning reconstruction framework for X-ray computed tomography with incomplete data

PLOS ONE | https://doi.org/10.1371/journal.pone.0224426 November 1, 2019 15 / 17

https://doi.org/10.1371/journal.pone.0224426.t004
https://doi.org/10.1371/journal.pone.0224426


Software: Jianbing Dong, Zhao He.

Supervision: Jian Fu.

Validation: Jianbing Dong, Jian Fu, Zhao He.

Visualization: Jianbing Dong.

Writing – original draft: Jian Fu.

Writing – review & editing: Jianbing Dong, Jian Fu, Zhao He.

References
1. Wang T, Nakamoto K, Zhang H, Liu H. Reweighted anisotropic total variation minimization for limited-

angle CT reconstruction. IEEE Trans Nucl Sci. 2017; 64(10):2742–2760. https://doi.org/10.1109/TNS.

2017.2750199

2. Hu Z, Gao J, Zhang N, Yang Y, Liu X, Zheng H, Liang D. An improved statistical iterative algorithm for

sparse-view and limited-angle CT image reconstruction. Sci Rep. 2017; 7:10747. https://doi.org/10.

1038/s41598-017-11222-z PMID: 28878293

3. Sidky EY, Kao CM, Pan X. Accurate image reconstruction from few-views and limited-angle data in

divergent-beam CT. J Xray Sci Technol. 2009; 14(2):119–139.

4. Chen G, Tang J, leng S. Prior image constrained compressed sensing (PICCS): a method to accurately

reconstruct dynamic CT images from highly undersampled projection data sets. Med Phy. 2008;

35(2):660–663.

5. Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained,

total-variation minimization. Phy Med Biol. 2008; 53(17):4777–4807. https://doi.org/10.1088/0031-

9155/53/17/021

6. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional

electron microscopy and X-ray photography. J theor Biol. 1970; 29(3):471–481. https://doi.org/10.1016/

0022-5193(70)90109-8 PMID: 5492997

7. Andersen AH, Kak A. Simultaneous algebraic reconstruction technique (SART): a superior implementa-

tion of the art algorithm. Ultrason Imaging. 1984; 6(1):81–94. https://doi.org/10.1177/

016173468400600107 PMID: 6548059

8. Vardi Y, Shepp LA, Kaufman L. A statistical model for positron emission tomography. J Am Stat Assoc.

1985; 80(389):8–20. https://doi.org/10.2307/2288037

9. Fessler JA, Rogers WL. Spatial resolution properties of penalized-likelihood image reconstruction:

space-invariant tomographs. IEEE Tran Image Process. 1996; 5(9):1346–1358. https://doi.org/10.

1109/83.535846

10. Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained,

total-variation minimization. Phys Med Biol. 2008; 53(17):4777. https://doi.org/10.1088/0031-9155/53/

17/021 PMID: 18701771

11. Luo X, Yu W, Wang C. An image reconstruction method based on total variation and wavelet tight frame

for limited-angle CT. IEEE Access. 2018; 6:1461–1470.

12. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks.

In: NIPS; 2012. p. 1097-1105.

13. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R. OverFeat: integrated recognition, localization

and detection using convolutional networks. 2013. arXiv:1312.6229v4.

14. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation.

In: MICCAI 2015; 2015. p. 234-241.

15. Burger HC, Schuler CJ, Harmeling S. Image denoising: can plain neural networks compete with

BM3D?. In: CVPR 2012; 2012. p. 2392-2399.

16. Dong C, Deng Y, Loy CC, Tang X. Compression artifacts reduction by a deep convolutional network. In:

ICCV 2015; 2015. p. 576-584.

17. Guo J, Chao H. Building dual-domain representations for compression artifacts reduction. In: ECCV

2016; 2016. p. 628-644.

18. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: ECCV 2014; 2014.

p. 818-833.

A deep learning reconstruction framework for X-ray computed tomography with incomplete data

PLOS ONE | https://doi.org/10.1371/journal.pone.0224426 November 1, 2019 16 / 17

https://doi.org/10.1109/TNS.2017.2750199
https://doi.org/10.1109/TNS.2017.2750199
https://doi.org/10.1038/s41598-017-11222-z
https://doi.org/10.1038/s41598-017-11222-z
http://www.ncbi.nlm.nih.gov/pubmed/28878293
https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1016/0022-5193(70)90109-8
http://www.ncbi.nlm.nih.gov/pubmed/5492997
https://doi.org/10.1177/016173468400600107
https://doi.org/10.1177/016173468400600107
http://www.ncbi.nlm.nih.gov/pubmed/6548059
https://doi.org/10.2307/2288037
https://doi.org/10.1109/83.535846
https://doi.org/10.1109/83.535846
https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1088/0031-9155/53/17/021
http://www.ncbi.nlm.nih.gov/pubmed/18701771
https://doi.org/10.1371/journal.pone.0224426


19. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult.

IEEE Trans Neural Netw. 1994; 5(2):157–166. https://doi.org/10.1109/72.279181

20. Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. J Mach

Learn Res. 2010; 9:249–256.

21. Saxe AM, McClelland JL, Ganguli S. Exact solutions to the nonlinear dynamics of learning in deep linear

neural networks. In: ICLR; 2014. p. 1-22.

22. LeCun Y, Bottou L, Orr GB, Muller KR. Efficient backProp. Neural Networks Tricks of the Trade. 1998;

1524(1):9–50. https://doi.org/10.1007/3-540-49430-8_2

23. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ima-

geNet classification. ICCV 2015. 2015; p. 1026-1034.

24. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covari-

ate shift. 2015. arXiv:1502.03167v3.

25. He K, Sun J. Convolutional neural networks at constrained time cost. In: CVPR 2015; 2015. p. 5353-

5360.

26. Gregor K, LeCun Y. Learning fast approximations of sparse coding. In: ICML 2010; 2010. p. 399-406.

27. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: CVPR 2016; 2016.

p. 770-778.

28. Cierniak R. A new approach to image reconstruction from projections using a recurrent neural network.

Int J Appl Math Comput Sci. 2008; 18(2):147–157. https://doi.org/10.2478/v10006-008-0014-y

29. Wurfl T, Ghesu FC, Christlein V, Maier A. Deep learning computed tomography. In: MICCAI 2016;

2016.432-440.

30. Han Y, Yoo J, Ye JC. Deep residual learning for compressed sensing CT reconstruction via persistent

homology analysis. 2016. arXiv:1611.06391v2.

31. Gu J, Ye JC. Multi-scale wavelet domain residual learning for limited-angle CT reconstruction. 2017.

arXiv:1703.01382v1.

32. Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in

imaging. IEEE Tran Image Process. 2016; 26(9):4509–4522. https://doi.org/10.1109/TIP.2017.

2713099

33. Pelt DM, Sethian JA. A mixed-scale dense convolutional neural network for image analysis. PNAS.

2018; 115(2):254–259j. https://doi.org/10.1073/pnas.1715832114 PMID: 29279403

34. Dozat T. Incorporating nesterov momentum into adam. In: ICLR 2016; 2016.

A deep learning reconstruction framework for X-ray computed tomography with incomplete data

PLOS ONE | https://doi.org/10.1371/journal.pone.0224426 November 1, 2019 17 / 17

https://doi.org/10.1109/72.279181
https://doi.org/10.1007/3-540-49430-8_2
https://doi.org/10.2478/v10006-008-0014-y
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1073/pnas.1715832114
http://www.ncbi.nlm.nih.gov/pubmed/29279403
https://doi.org/10.1371/journal.pone.0224426

