Table 1. The values of the parameters in the deep learning layers.
Layers | Input Size | Output Size | Stride Size | Kernel Size |
---|---|---|---|---|
1: Input | 720 × 731 × 1 | 720 × 731 × 1 | — | — |
2: Conv | 720 × 731 × 1 | 720 × 731 × 64 | 1 × 1 | 3 × 3 |
3: Conv | 720 × 731 × 64 | 720 × 731 × 64 | 1 × 1 | 3 × 3 |
4: Conv | 720 × 731 × 64 | 720 × 731 × 64 | 1 × 1 | 3 × 3 |
5: Conv | 720 × 731 × 64 | 360 × 366 × 128 | 2 × 2 | 2 × 2 |
6: Conv | 360 × 366 × 128 | 360 × 366 × 128 | 1 × 1 | 3 × 3 |
7: Conv | 360 × 366 × 128 | 180 × 183 × 256 | 2 × 2 | 2 × 2 |
8: Conv | 180 × 183 × 256 | 180 × 183 × 256 | 1 × 1 | 3 × 3 |
9: Conv | 180 × 183 × 256 | 90 × 92 × 512 | 2 × 2 | 2 × 2 |
10: Conv | 90 × 92 × 512 | 90 × 92 × 512 | 1 × 1 | 3 × 3 |
11: Conv | 90 × 92 × 512 | 45 × 46 × 1024 | 2 × 2 | 2 × 2 |
12: Conv | 45 × 46 × 1024 | 45 × 46 × 1024 | 1 × 1 | 3 × 3 |
13: ConvTranspose | 45 × 46 × 1024 | 90 × 92 × 512 | 2 × 2 | 3 × 3 |
14: Conv | 90 × 92 × (512 + 512) | 90 × 92 × 512 | 1 × 1 | 3 × 3 |
15: Conv | 90 × 92 × 512 | 90 × 92 × 512 | 1 × 1 | 3 × 3 |
16: ConvTranspose | 90 × 92 × 512 | 180 × 183 × 256 | 2 × 2 | 3 × 3 |
17: Conv | 180 × 183 × (256 + 256) | 180 × 183 × 256 | 1 × 1 | 3 × 3 |
18: Conv | 180 × 183 × 256 | 180 × 183 × 256 | 1 × 1 | 3 × 3 |
19: ConvTranspose | 180 × 183 × 256 | 360 × 366 × 128 | 2 × 2 | 3 × 3 |
20: Conv | 360 × 366 × (128 + 128) | 360 × 366 × 128 | 1 × 1 | 3 × 3 |
21: Conv | 360 × 366 × 128 | 360 × 366 × 128 | 1 × 1 | 3 × 3 |
22: ConvTranspose | 360 × 366 × 128 | 720 × 731 × 64 | 2 × 2 | 3 × 3 |
23: Conv | 720 × 731 × (64 + 64) | 720 × 731 × 64 | 1 × 1 | 3 × 3 |
24: Conv | 720 × 731 × 64 | 720 × 731 × 64 | 1 × 1 | 3 × 3 |
25: Conv | 720 × 731 × 64 | 720 × 731 × 1 | 1 × 1 | 3 × 3 |
26: Add | 720 × 731 × (1 + 1) | 720 × 731 × 1 | — | — |
27: Norm | 720 × 731 × 1 | 720 × 731 × 1 | — | — |