Skip to main content
. 2019 Nov 1;14(11):e0224426. doi: 10.1371/journal.pone.0224426

Table 1. The values of the parameters in the deep learning layers.

Layers Input Size Output Size Stride Size Kernel Size
1: Input 720 × 731 × 1 720 × 731 × 1
2: Conv 720 × 731 × 1 720 × 731 × 64 1 × 1 3 × 3
3: Conv 720 × 731 × 64 720 × 731 × 64 1 × 1 3 × 3
4: Conv 720 × 731 × 64 720 × 731 × 64 1 × 1 3 × 3
5: Conv 720 × 731 × 64 360 × 366 × 128 2 × 2 2 × 2
6: Conv 360 × 366 × 128 360 × 366 × 128 1 × 1 3 × 3
7: Conv 360 × 366 × 128 180 × 183 × 256 2 × 2 2 × 2
8: Conv 180 × 183 × 256 180 × 183 × 256 1 × 1 3 × 3
9: Conv 180 × 183 × 256 90 × 92 × 512 2 × 2 2 × 2
10: Conv 90 × 92 × 512 90 × 92 × 512 1 × 1 3 × 3
11: Conv 90 × 92 × 512 45 × 46 × 1024 2 × 2 2 × 2
12: Conv 45 × 46 × 1024 45 × 46 × 1024 1 × 1 3 × 3
13: ConvTranspose 45 × 46 × 1024 90 × 92 × 512 2 × 2 3 × 3
14: Conv 90 × 92 × (512 + 512) 90 × 92 × 512 1 × 1 3 × 3
15: Conv 90 × 92 × 512 90 × 92 × 512 1 × 1 3 × 3
16: ConvTranspose 90 × 92 × 512 180 × 183 × 256 2 × 2 3 × 3
17: Conv 180 × 183 × (256 + 256) 180 × 183 × 256 1 × 1 3 × 3
18: Conv 180 × 183 × 256 180 × 183 × 256 1 × 1 3 × 3
19: ConvTranspose 180 × 183 × 256 360 × 366 × 128 2 × 2 3 × 3
20: Conv 360 × 366 × (128 + 128) 360 × 366 × 128 1 × 1 3 × 3
21: Conv 360 × 366 × 128 360 × 366 × 128 1 × 1 3 × 3
22: ConvTranspose 360 × 366 × 128 720 × 731 × 64 2 × 2 3 × 3
23: Conv 720 × 731 × (64 + 64) 720 × 731 × 64 1 × 1 3 × 3
24: Conv 720 × 731 × 64 720 × 731 × 64 1 × 1 3 × 3
25: Conv 720 × 731 × 64 720 × 731 × 1 1 × 1 3 × 3
26: Add 720 × 731 × (1 + 1) 720 × 731 × 1
27: Norm 720 × 731 × 1 720 × 731 × 1