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Abstract

Background

Atrial fibrillation (AF) is the most common sustained heart arrhythmia. However, as many

cases are asymptomatic, a large proportion of patients remain undiagnosed until serious

complications arise. Efficient, cost-effective detection of the undiagnosed may be supported

by risk-prediction models relating patient factors to AF risk. However, there exists a need for

an implementable risk model that is contemporaneous and informed by routinely collected

patient data, reflecting the real-world pathology of AF.

Methods

This study sought to develop and evaluate novel and conventional statistical and machine

learning models for risk-predication of AF. This was a retrospective, cohort study of adults

(aged�30 years) without a history of AF, listed on the Clinical Practice Research Datalink,

from January 2006 to December 2016. Models evaluated included published risk models

(Framingham, ARIC, CHARGE-AF), machine learning models, which evaluated baseline

and time-updated information (neural network, LASSO, random forests, support vector

machines), and Cox regression.

Results

Analysis of 2,994,837 individuals (3.2% AF) identified time-varying neural networks as the

optimal model achieving an AUROC of 0.827 vs. 0.725, with number needed to screen of 9

vs. 13 patients at 75% sensitivity, when compared with the best existing model CHARGE-

AF. The optimal model confirmed known baseline risk factors (age, previous cardiovascular

disease, antihypertensive medication usage) and identified additional time-varying predic-

tors (proximity of cardiovascular events, body mass index (both levels and changes), pulse

pressure, and the frequency of blood pressure measurements).
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Conclusion

The optimal time-varying machine learning model exhibited greater predictive performance

than existing AF risk models and reflected known and new patient risk factors for AF.

Introduction

Atrial fibrillation (AF), the most common sustained heart arrhythmia[1], is associated with an

approximately five-fold increase in stroke[2] and an increase in stroke severity compared to

non-AF patients, resulting in higher morbidity and mortality[3, 4]. Prevalence of AF is esti-

mated globally at 46.3 million, with 3.8 million new diagnoses annually[5]. However, true

prevalence of the condition is likely to be higher, as paroxysmal, minimally symptomatic and

asymptomatic AF can be difficult to diagnose, and consequently AF is often diagnosed inci-

dentally. In England alone, 425,000 people are estimated to be living with undiagnosed AF[6].

Given that these patients are at increased risk of stroke-related death or disability,[3, 4] early

detection and effective management of AF have the potential to improve patient outcomes and

alleviate the economic burden of AF and its sequelae.

Both European and US guidelines recommend diagnosing AF based on a 12-lead electro-

cardiogram (ECG) or rhythm strip[7, 8]; however, 12-lead ECG use for AF detection in pri-

mary care has been reported not to be cost-effective, regardless of whether used in a systematic

(e.g. patients >65 years) or targeted (including high-risk patients only) approach[9]. At pres-

ent, European guidelines recommend opportunistic identification by pulse check in patients

aged>65 years, reserving 12-lead ECG or rhythm strip for confirmatory examination[7].

However, pulse-checking lacks diagnostic precision, so many patients undergo further testing

unnecessarily[10]. There is therefore an interest in narrowing the patient population that

should undergo detailed testing for AF to ensure maximum detection of AF cases while main-

taining cost-effectiveness.

One approach to improve the precision of patient identification is by applying published

risk models that use baseline clinical variables and biomarkers for future AF risk prediction

[11–13] or computerised tools designed to predict AF based on data routinely collected in the

clinic[14]. However, several of these models depend on ECG-derived data[12, 13] and none

are automated therefore requiring input by healthcare providers[11–13].

Machine learning is a data-driven approach that can identify nonlinear associations and

complex interactions between variables without the need to pre-specify these relationships a
priori. The use of machine learning for predicting disease may enable physicians to speed-up

decision making and improve efficiency, reliability, and accuracy. In line with published appli-

cations of machine learning in various aspects of healthcare[15], we utilised machine learning

techniques to develop a risk model, that is contemporaneous and informed by routinely col-

lected patient data, and that has the potential to be used as a predictive tool in primary care to

identify people at high risk of AF that have not yet been diagnosed.

Methods

Study design

This was a retrospective, observational cohort study using primary care data obtained from

the UK Clinical Practice Research Datalink (CPRD)[16]. The study population included

adults registered at practices included within the CPRD who were �30 years and with no
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history of AF in five-years prior to the study period (January 2006 to December 2016).

Diagnoses of AF (or atrial flutter, to account for mis-recording) and other comorbidities

were identified using Read codes (S1 Table in the supporting information). All data pro-

vided by CPRD was fully deanonymized. The study protocol was reviewed and approved

by the Independent Scientific Advisory Committee for MHRA database research (reference

17_151).

The primary aim of this study was to develop a clinically applicable risk prediction model

to identify associations between baseline and time-varying factors and the identification of AF.

Development and evaluation of the optimum risk model for prediction of AF was a three-stage

process. In the first stage of model building, we evaluated different baseline models including

logistic least absolute shrinkage and selector operator (LASSO)[17], random forests[18], sup-

port vector machines[19], neural networks (NN)[20], Cox regression and published AF risk

models (Framingham[13], ARIC[12] and CHARGE-AF[11]). At this stage, index date was

defined as time at which patients could be adequately characterised, i.e., when a complete set

of key clinical measurements (height, weight, body mass index (BMI), systolic blood pressure

[SBP], and diastolic blood pressure [DBP]) was recorded within a rolling 12-month window

ending during the study period. Patients were followed up until the earliest of: AF diagnosis;

death; loss to follow-up; or end of study (S1 Fig).

Stage 1 confirmed that machine learning techniques identified similar associations to other

baseline models evaluated. Given this, the second stage of model building focused upon the

use of machine learning to identify time-varying associations not uncovered by the baseline

models. The NN was the optimum approach identified at stage 1 (S2 Table) and was taken for-

ward to stage 2 whereby time-varying covariates were considered (S3 Table), to reflect the evo-

lution of AF risk factors prior to an AF diagnosis. A case-control sample was used by sub-

setting the stage 1 population to patients with AF during follow-up and an age- and sex-

matched control group. The index date for the time-varying model was date of AF diagnosis,

or equivalent for matched non-AF controls (S1 Fig).

The third stage of model building combined the two models (baseline and time-varying

NN) into a single risk model to create a clinically relevant and applicable risk prediction

algorithm.

All analyses were conducted using R v3.3.1[21].

Candidate covariates

The covariates considered in the models were limited to those included in existing AF risk

models[11–13] (S4 Table). In order to facilitate implementation of the resulting model, all

covariates were derived from Read codes, thereby utilising data that are routinely collected in

clinical practice.

Covariates in the Cox models and logistic models were selected using p-values of the esti-

mated coefficients, with p<0.05 as the selection criterion. Covariates in the machine learning

approaches at both stages 1 and 2 were selected by recursive feature elimination, with hyper-

parameters being optimised through five-fold cross-validation (S5 Table)[22].

For the baseline model, covariates were taken to be the latest value recorded in the one year

(365.25 days) prior to study entry. For the time-varying model, extracted data was structured

in 91-day quarters working backwards over a one-year period from AF diagnosis (index) date

to reflect evolution of risk factors in the year prior to AF diagnosis (three years of data were

considered, but no substantial increase in performance was observed when using data beyond

the first year). Last-observation-carried-forward was used to impute clinical measurements in

quarters with no data.
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Assessment of model performance

The performance of the final risk model (stage 3) was evaluated on the stage 2 population, to

reflect the evolution of the risk factors in the model’s predictions. Inverse-probability weights

were applied to ensure the resulting performance metrics were representative of the full study

population observed at stage 1, rather than the artificially balanced case-control sample at

stage 2. The weights were equal to 1 for patients with AF over follow-up (as all these patients

were included in the sample), and calculated as the inverse selection probability for patients

without AF, ensuring the original age and sex distributions were recovered.

To aid generalizability of the results beyond the sample to which the risk models were fitted,

patients were randomly assigned to training and holdout datasets in a 2:1 ratio; these datasets

were used to fit and independently assess each risk model, respectively.

To aid interpretability of the fitted NN, each covariate’s “relative strength” in predicting AF

risk was quantified[23] and expressed as a percentage of the most important covariate within

the model. Partial dependence plots[24] were used to assess the size and direction of each

covariate’s association with AF incidence, whereby AF probabilities were generated by varying

each covariate of interest and holding all other covariates fixed at their observed patient-level

values.

Discrimination between AF and non-AF cases was assessed using area under the receiver

operating characteristic curve (AUROC): value in the range 0–1, where 1 indicates perfect sep-

aration of AF and non-AF cases. Positive predictive value (PPV) and potential number-

needed-to-screen (NNS)[25] (potential due to the diagnostic accuracy of the arrhythmia detec-

tion device and the paroxysmal nature of the disease) were computed at sensitivities of 25%,

50%, and 75%. Sensitivity analyses excluded time-varying comorbidities (S4 Table) as candi-

date predictors of AF diagnosis.

The performance of the optimum NN model was evaluated by comparison with the current

best-performing of the pre-existing models to predict risk at baseline namely the CHARGE-AF

risk equation, which uses classical statistical methods.

Results

Study population patient characteristics

A total of 2,994,837 patients were included in the baseline model (S2 Fig), with 162,672

included in the time-varying model (AF patients >1 year of follow-up and matched non-AF

sample). Over the 11-year study period, 95,607 patients (3.19%) were diagnosed with AF,

median follow-up time was 7.09 years, and a total of 19.63 million patient-years were accrued.

Mean age at baseline for patients diagnosed with AF was 70.2 years, compared to 55.5 years

for non-AF (Table 1). AF patients were more likely to be male and former smokers than non-

AF patients, and a greater proportion of AF patients had a history of each evaluated comorbid-

ity at baseline compared to non-AF patients. AF patients had a mean baseline BMI and SBP of

28.6 kg/m2 and 141.0 mmHg, respectively, compared to 27.6 kg/m2 and 133.3 mmHg for non-

AF patients. There was no clinically meaningful difference in mean baseline DBP between AF

and non-AF patients (79.1 mmHg and 79.4 mmHg, respectively), but mean pulse pressure was

notably greater for AF patients, at 61.9 mmHg compared to 53.9 mmHg for non-AF patients.

Differences in baseline characteristics between AF and non-AF patients were statistically sig-

nificant for all variables considered, reflecting the large analysed sample. However, only age

was observed to have a ‘large’ effect size (Cohen’s d� 0.8) according to Cohen (1988)[26],

while only history of hypertension met the d� 0.5 threshold defined by Cohen (1988)[26] as

being indicative of a ‘medium’ effect size.
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Inferences from machine learning models

A total of 24 and 100 predictors of AF were used in the fitted baseline (stage 1) and time-vary-

ing (stage 2) NNs, respectively; key risk factors elicited from these models are summarised in

Table 2. When ranked by importance, top predictors in the baseline model were age, history of

cardiovascular diseases and events, and prescriptions for antihypertensive medications (Fig 1).

In the time-varying NN, the presence of heart failure in the most recent 91-day quarter con-

tributed most to the prediction of AF diagnoses (Fig 1); other adverse cardiovascular events

(coronary heart disease, myocardial infarction, and left ventricular hypertrophy) in the past

year were also important predictors. Values of BMI observed across the previous four quarters

were important predictors of AF, as was the change in BMI between the two most recent quar-

ters. The number of SBP measurements recorded in the latest quarter made a greater contribu-

tion to the model than the SBP value itself, and the frequency of recording was non-linearly

associated with AF diagnosis, with similar association patterns also being observed for the fre-

quency of DBP and BMI recording in the latest quarter (S3 Fig). A substantial fall in DBP or

Table 1. Patient disposition at study entry.

Variable Category Full population

(n = 2,994,837)

AF cohort

(n = 95,607)

Non-AF cohort

(n = 2,899,230)

P-value Cohen’s d

Demographic characteristics

Age (years), mean (SD) 55.98 (14.46) 70.23 (11.07) 55.51 (14.32) <0.001 1.0343

Sex, n (%) Male 1,395,397 (46.6) 51,738 (54.1) 1,343,659 (46.3) <0.001 0.1558

Smoking status, n (%) Current 555,074 (18.5) 10,571 (11.1) 544,503 (18.8) <0.001 -0.1989

Former 701,966 (23.4) 32,198 (33.7) 669,768 (23.1) 0.2499

Non-smoker 1,269,538 (42.4) 37,384 (39.1) 1,232,154 (42.5) -0.0688

Passive 7,876 (0.3) 279 (0.3) 7,597 (0.3) 0.0058

Unknown 460,383 (15.4) 15,175 (15.9) 445,208 (15.4) 0.0143

Race, n (%) Black 29,380 (1.0) 207 (0.2) 29,173 (1.0) <0.001 -0.0801

White 729,507 (24.4) 25,459 (26.6) 704,048 (24.3) 0.0546

Other 75,142 (2.5) 1,031 (1.1) 74,111 (2.6) -0.0945

Unknown 2,160,808 (72.2) 68,910 (72.1) 2,091,898 (72.2) -0.0017

Clinical histories�, n (%)

Hypertension 748,849 (25.0) 50,501 (52.8) 698,348 (24.1) <0.001 0.6306

Heart failure 22,054 (0.7) 2,805 (2.9) 19,249 (0.7) <0.001 0.2658

Left ventricular hypertrophy 4,727 (0.2) 502 (0.5) 4,225 (0.1) <0.001 0.0956

Myocardial infarction 42,830 (1.4) 3,009 (3.1) 39,821 (1.4) <0.001 0.1494

Coronary heart disease 154,029 (5.1) 13,703 (14.3) 140,326 (4.8) <0.001 0.4310

Congenital heart disease 501 (<0.1) 58 (0.1) 443 (<0.1) <0.001 0.0351

Type 1 diabetes 19,101 (0.6) 831 (0.9) 18,270 (0.6) <0.001 0.0300

Type 2 diabetes 187,733 (6.3) 10,727 (11.2) 177,006 (6.1) <0.001 0.2111

Clinical measurements, mean (SD)

Height (m) 1.68 (0.10) 1.69 (0.11) 1.68 (0.10) <0.001 0.0508

Weight (kg) 78.32 (18.28) 81.55 (19.45) 78.21 (18.23) <0.001 0.1825

BMI (kg/m2) 27.59 (5.99) 28.56 (6.16) 27.56 (5.99) <0.001 0.1662

SBP (mmHg) 133.58 (18.87) 140.97 (19.29) 133.34 (18.81) <0.001 0.4054

DBP (mmHg) 79.40 (10.92) 79.12 (11.01) 79.41 (10.92) <0.001 -0.0266

Pulse pressure (mmHg) 54.18 (14.93) 61.85 (16.47) 53.93 (14.81) <0.001 0.4917

AF: atrial fibrillation and atrial flutter; BMI: body mass index; DBP: diastolic blood pressure; SBP: systolic blood pressure; SD: standard deviation.

�clinical histories assessed five years prior to index.

https://doi.org/10.1371/journal.pone.0224582.t001
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an increase in SBP, which is indicative of increased pulse pressure, between the two latest quar-

ters was associated with AF diagnosis, as was having high SBP and low-normal DBP in the

most recent quarter (S3 Fig).

Performance

To identify 75% of diagnosed AF cases, the final NN (incorporating predicted probabilities

from the baseline and time-varying NN) achieved a PPV of 11.5%, compared to 7.9% for

CHARGE-AF and 6.5% for logistic regression (Table 3), corresponding to NNS of 9, 13, and

15 patients, respectively. Improved precision of the NN over CHARGE-AF was also observed

at sensitivity thresholds of 25% and 50% (Fig 2).

The blue circles represent the 27,135 patients diagnosed with AF, while the grey circles rep-

resent patients flagged as being at risk of AF by each of the models. The overlap between the

blue and grey circles represents a given level of sensitivity (the percentage of diagnosed AF

cases that are detected by the model, fixed at 75%, 50% or 25%); the resulting PPV (the per-

centage of patients flagged by the model that are diagnosed with AF) is represented by the pro-

portion of the grey circle that lies within the overlapping region. The figure therefore

demonstrates that, for a given level of sensitivity, our risk model achieves a greater PPV than

CHARGE-AF, implying that fewer patients would need to be screened to identify the same

number of AF cases. For example, to identify 75% of patients with AF (20,351 true-positives /

[20,351 true-positives + 6,784 false-negatives]), our risk model would flag 177,726 patients

(157,375 false-positives + 20,351 true-positives) to be screened (panel A). In comparison, to

identify the same proportion of AF cases, CHARGE-AF would flag 257,389 patients (237,037

false-positives + 20,352 true-positives) to be screened (panel D).

The patient numbers displayed relate to the stage 2 holdout dataset after applying post-

stratification weights to reflect the AF, age and sex composition of the full eligible population.

Table 2. Summary of key AF risk factors inferred from the final risk model.

Risk factor

Patient demographics (age, sex, race, smoking status) at baseline

History of antihypertensive medication use at baseline

History of type 1 or type 2 diabetes at baseline

History of cardiovascular comorbidities at baseline

Presence of a cardiovascular event in the past year

BMI in each of the latest four quarters

Change in BMI between the latest two quarters

High pulse pressure in the latest quarter

Negative absolute change in DBP or positive absolute change in SBP between the latest two quarters

Increasing frequency of DBP, SBP and BMI recording in the latest quarter

BMI: body mass index; DBP: diastolic blood pressure; SBP: systolic blood pressure. Risk factors were identified using

model inferences from variable importance plots[23] and partial dependence plots[24] for the fitted baseline and

time-varying neural networks. Smoking status was defined as: current smoker, former smoker, non-smoker, passive

smoker and unknown. Cardiovascular comorbidities/events considered were: hypertension (diagnosed),

hypertension (receiving antihypertensive medication), heart failure, coronary heart disease, congenital heart disease,

myocardial infarction left ventricular hypertrophy, type 1 diabetes, type 2 diabetes. Pulse pressure is the difference

between systolic and diastolic blood pressure, corresponding to the force generated by cardiac contraction. “High”

pulse pressure refers to elevated (>120 mmHg) SBP combined with a low to normal (�80 mmHg) DBP. For details,

see S3 Fig. Frequency with which clinical characteristics were recorded was a continuous variable representing the

number (count) of DBP, SBP, etc. recordings, rather than actual values recorded over a given quarter.

https://doi.org/10.1371/journal.pone.0224582.t002
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A total of 627,768 patients were included in the analysis after weighting; the difference between

this total and the sum of the values shown in the figure constitutes true negative cases (patients

not flagged and not diagnosed with AF).

The NN achieved an AUROC of 0.827, compared to 0.725 for CHARGE-AF and 0.695 for

logistic regression (Table 3). When time-varying cardiovascular comorbidities were excluded

as candidate predictors of AF, the resulting AUROC of the time-varying model fell to 0.812, a

relative decrease of just 0.7%, indicating that the remaining time-varying covariates are them-

selves strong predictors of AF risk.

Discussion

The developed risk model has a high yield and potential to reduce greatly the number of

patients being screened for AF. When compared with the best performing existing model,

CHARGE-AF, our risk model reduced the potential NNS by 31% from 13 to 9, equating to

Fig 1. Most important predictors of AF according to: (A) the CHARGE-AF risk model; (B) the fitted baseline neural network; and (C) the fitted time-

varying neural network. Variable importance was determined on the training dataset according to the absolute size of the published regression coefficients for

the CHARGE-AF risk model[11] and Garson’s algorithm[23] for the fitted neural networks. Importance is expressed as a percentage of the most important

predictor within each model. Importance is shown for all 11 variables in the CHARGE-AF risk model and the top 20 most important variables in each of the

fitted neural network models.

https://doi.org/10.1371/journal.pone.0224582.g001

Table 3. Assessment of model performance at 75% sensitivity.

Model Specificity

(Relative change vs. LR)
PPV

(Relative change vs. LR)
NNS

(Change
vs. LR)

AUROC

(Relative change vs. LR)

Final machine learning risk model 74.9%

(+44.0%)
11.5%

(+76.9%)
9 patients

(-6 patients)
0.827

(+19.0%)
CHARGE-AF risk model 61.0%

(+17.3%)
7.9%

(+21.5%)
13 patients

(-2 patients)
0.725

(+4.3%)
Logistic regression 52.0% 6.5% 15 patients 0.695

AUROC: area under the receiver operating characteristic curve; LR: logistic regression; NNS: number needed to screen (number of patients needed to be screened to

identify one AF case); PPV: positive predictive value (percentage of screened patients diagnosed with AF). Sensitivity: percentage of patients diagnosed with AF that

would be identified for screening; specificity: percentage of patients not diagnosed with AF that would not be identified for screening.

https://doi.org/10.1371/journal.pone.0224582.t003
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79,663 fewer patients in total. The model had an AUROC of 0.827, a 14.1% relative increase in

its ability to discriminate between diagnosed AF and non-AF cases when compared with an

AUROC 0.725 for CHARGE-AF. Notably, the relative increase in AUROC achieved by NN

over traditional approaches when only baseline covariates were considered was far more mod-

est (2.8% versus CHARGE-AF and 2.6% versus Cox regression), indicative of the potential

value of combining machine learning with time-varying covariates. However, even a minor

improvement will have tangible implications for patient outcomes in clinical practice, either

through unnecessarily screening fewer patients or capturing more cases of AF. The final risk

model provided a superior trade-off between sensitivity and precision compared with all the

existing AF risk models, and could therefore refine target populations that warrant further

investigations to diagnose AF. These results add to the growing body of evidence supporting

the use of machine learning techniques across various therapeutic areas[15].

Rather than mining the CPRD for new AF risk factors, possibly without clinical rationale,

candidate predictors considered in our machine learning models were derived from three

existing risk models (CHARGE-AF[11], Framingham[13] and ARIC[12]). The risk factors

emerging from our baseline model are therefore already well established, and include patient

demographics[11–13], heart failure[11–13], diabetes[11, 12], left ventricular hypertrophy[11,

12], coronary heart disease[12], myocardial infarction[11], antihypertensive treatment[11–13],

and SBP[11–13]. A history of smoking was more strongly associated with AF risk than current

smoking, possibly reflecting patients with poorer health preferentially giving up smoking.

Fig 2. Illustration of the trade-off between sensitivity and positive predictive value (PPV) for the final machine learning risk model (A–C)

compared with the baseline CHARGE-AF risk model (D–F).

https://doi.org/10.1371/journal.pone.0224582.g002
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Similarly, antihypertensive treatment prescription was more influential than a diagnosis of

hypertension (which may be affected by varying hypertension definitions) or measured SBP

(influenced by short-term intra-patient variability). These factors may also be associated with

more frequent medical contact or pulse characterisation inputs and greater opportunities for

AF diagnosis.

Classical statistical methods, as were applied in the CHARGE-AF[11] risk model, assume

linear relationships between covariates and predicted risk, and interactions between covariates

must be explicitly pre-specified. An advantage of machine learning is its ability to identify

highly non-linear associations between covariates and incidence, and empirically detect inter-

actions between variables from observed data. For example, we observed a non-linear associa-

tion between the frequency of SBP recording in the most recent quarter and risk of AF.

Interestingly, the number of records in the most recent quarter appeared more important than

the absolute measure. This may also be due to patients with comorbidities or underlying ill

health having more frequent contact with the healthcare system, especially prior to disease

diagnosis. There was an interaction between the most recently recorded DBP and SBP values,

whereby high SBP coupled with low-normal DBP was associated with increased risk of AF.

This supports the previously described notion that high pulse pressure is a risk factor for AF

[27]. Our intention was to identify the clinical signature of patients in the run up to an AF

diagnosis and, in the absence of experimental data from a clinical trial, we performed analyses

to identify this signature, working backwards from the time of AF. This approach is not new

and is well established in the field of observational research[28]; it does constitute a novel

aspect of our study when compared to prior predictive modelling exercises.

Considering a broader set of covariates could have improved further predictive perfor-

mance over existing models; indeed, machine learning would be well suited to uncover new,

previously unidentified risk factors from a large, unconstrained dataset. Data mining is not

permissible when using the CPRD; alternative data sources, perhaps based on populations

from outside the UK, could help to identify additional AF risk factors. Although we evaluated

a number of readily implementable machine learning methods, consideration of more com-

plex approaches (e.g., deep learning[29], XGBoost[30]) may yield an even greater improve-

ment in predictive performance. We note that it was beyond the scope of this research to

compare all potential machine learning models (at both baseline and when considering time-

varying information). The choice for the selected models evaluated and reported in this study

was informed by published clinical applications of machine learning techniques [31–34] and

the experience of the study authors in selecting techniques suited to uncovering complex pat-

terns of risk factor profiles from electronic healthcare records. Whilst the current study reports

the relative performance of the final risk model and the next best preforming model evaluated,

this was to illustrate the potential of machine learning techniques–and in particular our novel

final risk score model—to uncover new patterns and associations that may inform the identifi-

cation of patients at risk of or whom are undiagnosed with AF. Thus, the intention of the

developed risk model in this study is to help inform future clinical and medical decision mak-

ing; in this context, we demonstrate our model out-performs existing models, but recognise

that other models may produce better or worse performance metrics. In the same vein, we

considered machine learning techniques which were computationally feasible given the size of

CPRD sample and the practical requirement for the final model to be implementable in rou-

tine clinical practice using available, tested and documented software packages.

A key limitation of this study is the CPRD, and therefore primary care records, as the single

data source[35]. We likely underestimated AF incidence, as the condition is known to be

underdiagnosed in the general population[6] and a high proportion of AF diagnoses are made

incidentally in secondary care; although most secondary care diagnoses do appear in primary
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care, there may be a delay or some omissions[36]. While estimating AF incidence was not the

aim of this study, it is unclear whether a single data source was sufficient to produce unbiased

estimates of associations between risk factors and AF diagnoses. As may be expected, AF

patient populations have been reported to differ between the CPRD and a secondary care

source, Hospital Episodes Statistics (HES), given patients in secondary care may more fre-

quently present with serious comorbidities[35].

CPRD does not provide suitable detailed information on ECG data and their coding—

whether AF was a single episode or multiple episodes or persistent—this data is often left

incomplete. In principle, sole use of the CPRD could introduce bias regarding the choice of AF

predictors and the magnitude of their estimated effect sizes. However, similar associations

between key cardiovascular risk factors and AF incidence across the CPRD, HES and the pop-

ulation-based Framingham Heart Study have been reported[36], implying a substantial bias

may not apply to these covariates. A further limitation is that we were only able to analyse

events chronologically in the order that they were recorded on the CPRD, which could impact

the finding that a recent adverse cardiovascular event, such as heart failure, was a strong pre-

dictor of an upcoming AF diagnosis or that paroxysmal AF may have triggered the heart fail-

ure. It is possible that time lags exist in the recording of events, so that for some patients the

AF diagnosis could have been made on the same day, or even prior to, the adverse cardiovascu-

lar event. Finally, our study is limited by its retrospective design, as we developed the model

based on already diagnosed AF cases and without detailed information surrounding the diag-

nosis (for example, if patients presented with symptomatic AF or if the diagnosis was inciden-

tal) and real-world model performance would be likely to have reduced performance

depending on the degree to which associations between risk factors and AF incidence are simi-

lar between ‘previously diagnosed’ and ‘yet undiagnosed’ AF cases.

The potential risks and benefits must be weighed against each other when considering

implementation in clinical practice. If the model predicts a patient to be at risk of AF, that

patient may be subjected to increased monitoring and either equipped with a novel device

such as a watch, belt, patch or smartphone to provide ECG-based AF detection[25], or referred

directly for a 12-lead ECG. Emerging technologies may make AF detection widely available

and simple, at present they cannot be implemented en masse in budget-constrained healthcare

systems or systems where data volumes could overwhelm the personnel available to interpret

the data, hence the need for improved methods to accurately identify patients at risk of AF.

Additionally, the natural history of symptomless and undiagnosed AF compared with those

with underlying comorbidities and symptomatic AF is unknown. Longitudinal studies to fol-

low up on patients identified as potentially having undiagnosed AF would be required to deter-

mine the potential benefit to patients such as the use of anticoagulation therapy to reduce the

risk of stroke in this patient group. The NN exhibited greater predictive performance than

existing AF risk models and is a significant first step towards improving the detection of undi-

agnosed AF. We acknowledge that the real-world performance of our model is not certain,

and it is unclear how well our findings from the time-varying NN will generalise to clinical

practice. The next stage of the research is therefore to conduct a clinical trial to investigate

model performance in practice, to assess how well the risk factors identified translate into pre-

dicting and diagnosing AF in a real-world setting in a bid to optimise the prevention of AF

related stroke, heart failure and premature mortality.
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without a five-year history of AF at the start of the study period, and had a complete set of key

clinical measurements (height, weight, body mass index, diastolic blood pressure, systolic

blood pressure) recorded over a one-year period. These patients were randomly assigned to

training and holdout sets (2:1) to develop and assess the baseline neural network, respectively.

The time-varying neural network was trained on all AF cases with at least one year of history

at the time of AF and an age- and sex-matched sample of non-AF controls, and was evaluated

after applying post-stratification weights to reflect the AF, age and sex composition of the full
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(TIF)

S3 Fig. Predicted probabilities of AF for selected covariates in the time-varying neural net-

work. (A) presence of heart failure in the latest quarter; (B) number of BMI, DBP and SBP

measurements in the latest quarter; (C) maximum change in diastolic blood pressure and sys-

tolic blood pressure between the last two quarters; (D) most recent diastolic blood pressure
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Predicted probabilities were estimated by the method of partial dependence, whereby each

predictor of interest was varied, and all other predictors were fixed at their patient-level

observed values. Predicted probabilities were calculated on the unweighted training dataset for

the time-varying neural network.
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