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Abstract

In human brain MRI studies, it is of great importance to accurately parcellate cortical surfaces into 

anatomically and functionally meaningful regions. In this paper, we propose a novel end-to-end 

deep learning method by formulating surface parcellation as a semantic segmentation task on the 

sphere. To extend the convolutional neural networks (CNNs) to the spherical space, corresponding 

operations of surface convolution, pooling and upsampling are first developed to deal with data 

representation on spherical surface meshes, and then spherical CNNs are constructed accordingly. 

Specifically, the U-Net and SegNet architectures are transformed to the spherical representation 

for neonatal cortical surface parcellation. Experimental results on 90 neonates indicate the 

effectiveness and efficiency of our proposed spherical U-Net, in comparison with the spherical 

SegNet and the previous patch-wise classification method.

Index Terms

Surface parcellation; spherical U-Net

1. INTRODUCTION

In human brain MRI studies, it is of great importance to accurately parcellate the convoluted 

cerebral cortex into anatomically and functionally meaningful regions. Although many 

methods have been proposed [1–8], they require accurate cortical surface registration and 

designing of hand-crafted features. Recently, motivated by the powerful feature learning 

capability of deep learning methods, Wu et al. [9] partially addressed these issues by 

leveraging a conventional CNN architecture. Specifically, they first mapped the convoluted 

cortical surface onto a sphere to project intrinsic surface patches into 2D image patches, and 

then classified these image patches with the conventional CNN. However, this type of patch-

wise classification methods for segmentation is usually criticized for two main reasons: 1) It 

treats each patch independently, thus leading to lots of redundancy due to patch overlapping; 

2) There is a trade-off between localization accuracy and spatial contextual information. 
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That is, larger patches require more pooling layers that reduce the localization accuracy, 

while small patches make the network see only little context [10].

To address these issues, we consider cortical surface parcellation as a vertex-wise labeling 

task, where fully convolutional networks (FCNs) have shown excellent performance [10–

12]. Generally, a FCN is composed of an encoder and a decoder. The encoder is mainly 

composed of convolution and pooling layers to produce high-level low-resolution feature 

representation, while the decoder upsamples and increases the resolution by successive 

layers. This architecture enables an efficient end-to-end training without any pre- or post-

processing. Among FCNs, U-Net [10] has been proved to be an effective architecture for 

biomedical image segmentation [13, 14], due to its superior generalization ability for small 

training datasets. Thus, we are motivated to extend U-Net for cortical surface parcellation of 

infants. We also extend the SegNet [11], another popular FCN architecture, for comparison.

However, these conventional CNNs are not directly applicable to cortical surface meshes, 

since there is no consistent definition of neighborhood on the surface meshes [15–17]. Seong 

et al. [18] have attempted to solve this problem by designing filters on the spherical surface 

for sex classification. Specifically, a rectangular filter samples points in rectangular patches 

and then rearranges the sampled data for convolution operation, referred as Rectangular 

Patch (RePa) convolution (bottom row in Fig. 2). However, both methods [9, 18] require a 

patch extraction step in order to utilize available toolboxes. This patch extraction step has 

two inherent drawbacks: 1) It involves the re-interpolation process and thus complicates the 

network and increases computational burden; 2) It also brings feature distortion into the 

network inevitably.

Inspired by the consistent structure of the standard spherical surface meshes, we first 

developed the spherical surface convolution, pooling and transposed convolution, which are 

free of patch extraction and interpolation, and thus are much faster and more efficient. 

Accordingly, we extend the U-Net from image domains to spherical surface domains. Our 

spherical U-Net architecture (Fig. 1) has been validated on cortical surfaces of 90 infants, 

achieving higher accuracy and faster speed than other comparison methods.

2. METHOD

2.1. Convolution and Pooling on Spherical Surface

As shown in Fig. 2, we define a new convolution filter, termed Direct Neighbor (DiNe) filter 

on the sphere. Since a standard sphere for surface cortical representation is hierarchically 

generated from icosahedron by adding a new vertex to the center of each edge in each 

triangle, the number of vertices on the surface are increased from 12 to 42, 162, 642, 2562, 

10242, and so on. Hence, each sphere is composed of two types of vertices: 1) 12 vertices 

with only 5 direct neighbors and 2) remaining vertices with 6 direct neighbors. For the 

vertices with 6 neighbors, DiNe assigns index 1 to the center vertex and 2–7 to its neighbors 

sequentially according to the angle between the vector of center vertex to neighboring vertex 

and the x-axis in the tangent plane. For the 12 vertices with 5 neighbors, DiNe assigns both 

1 and 2 to the center vertex, and 3–7 to the neighbors in the same way as vertices with 6 

neighbors.

Zhao et al. Page 2

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We implement the DiNe convolution using a data reshaping method to formulate the 

convolution operation as a simple filter weighting process. For each vertex v, on a standard 

spherical surface with N vertices, at a certain convolution layer with input feature number D 
and output feature number F, feature data Iv (7×D) from the direct neighbors are first 

extracted and reshaped into a row vector I v’ (1×7D). Then, iterating over all vertices, we 

can obtain the full-node filter matrix I (N×7D). By multiplying I with the convolution 

layer’s filter weight W (7D×F), the output surface O (N×F) with F features can be obtained.

The pooling operation on the spherical surface is performed in the reverse order of the 

icosahedron expansion process. As shown in Fig. 3, in a pooling layer, for each center vertex 

v, all feature data Iv (7×D) aggregated from itself and its neighbors are averaged or 

maximized, and then a refined feature Iv’ (1×D) can be obtained. Meanwhile, the number of 

vertices is decreased to (N+6)/4.

2.2. Upsampling on Spherical Surface

We develop three corresponding upsampling methods by analogy with conventional image 

upsampling methods.

Linear-Interpolation: Linear-Interpolation follows the rule of icosahedron expansion, 

which is the exact opposite of mean-pooling operation. For each new vertex generated from 

the edge’s center, its feature is linearly interpolated by the two parent vertices of this edge 

(Fig. 4A).

Max-pooling Indices: Max-pooling Indices, introduced by SegNet [11], uses the 

memorized pooling indices computed in the max-pooling step of the encoder to perform 

nonlinear upsampling at the corresponding decoder. We transform this method to spherical 

surface as shown in Fig. 4B. For example, max-pooling indices 2, 3, and 6 are first stored for 

vertices a, b, and c, respectively. Then at the corresponding upsampling layer, the 2-nd 

neighbor of a, 3-rd neighbor of a, and 6-th neighbor of c are restored with a, b and c’s value, 

respectively, and other vertices are set as 0.

Transposed Convolution: Transposed convolution is also known as fractionally-strided 

convolution, deconvolution or up-convolution in U-Net [10]. From the perspective of image 

transformation, transposed convolution restores pixels around every center pixel by sliding-

window filtering over all original pixels, then sums where output overlaps. Inspired by this 

concept, we restore a spherical surface I (N×D, where N denotes the number of vertices, and 

D denotes the number of features) using DiNe filter to do transposed convolution with every 

vertex on the pooled surface O (N’×F, N’=(N+6)/4)) and then summing overlap vertices, as 

shown in Fig. 4C.

2.3. Spherical U-Net Architecture

The proposed spherical U-Net architecture is illustrated in Fig. 1. It has an encoder path and 

a decoder path each with five resolution steps. Different from the standard U-Net, we replace 

all 3×3 convolutions with our DiNe convolution, 2×2 up-convolution with our surface 

transposed convolution, and 2×2 max pooling with our surface mean-pooling. At the final 
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layer, 1×1 convolution is replaced by simple vertex-wise filter weighting to map 64-

component feature vector to the desired number of classes. Note that we do not need any 

tiling strategy in the original U-Net [10] to allow a seamless output segmentation map, 

because the data flow in our network is on a closed spherical surface.

As RePa convolution is very memory-intensive for a full spherical U-Net experiment, we 

create a smaller variant UNet18-RePa. It is different from our spherical U-Net in three 

points: 1) It only consists of three pooling and three transposed convolution layers, thus 

including only 18 convolution layers; 2) It replaces all DiNe convolution with RePa 

convolution; 3) The feature number is halved at each corresponding layer. Meanwhile, for a 

fair comparison, we create a U-Net18-DiNe by replacing all RePa convolution with DiNe 

convolution in U-Net18-RePa. Moreover, we design a baseline architecture Naive-DiNe 
with 16 DiNe convolution blocks (DiNe (64 convolution filters), BN, ReLU) and without 

any pooling and upsampling layers. In addition to the above variants, we study upsampling 

using Max-pooling Indices (SegNet-Basic) and Linear-Interpolation (SegNet-Inter). Both 

of them require no learning for upsampling and thus are created in a SegNet style. They are 

different from our spherical U-Net in two points: 1) There is no copy and concatenation path 

in both models; 2) For upsampling, SegNet-Basic uses Max-pooling Indices and SegNet-

Inter uses Linear-Interpolation.

3. EXPERIMENTS

3.1. Dataset and Image Processing

In experiments, we used the infant brain MRI dataset in [9, 19], with 90 term-born neonates. 

All images were processed using a standard infant-specific pipeline [20]. Each vertex on the 

cortical surface was coded with 3 shape attributes, i.e., the mean curvature, sulcal depth, and 

average convexity. Our aim is to parcellate these vertices into 36 regions for each 

hemisphere. To utilize the proposed method, each inner cortical surface was mapped onto a 

standard sphere [21]. To have a uniform spherical representation, we resampled each 

spherical surface using 10,242 vertices without any surface registration [22]. Each cortical 

shape attribute was normalized between −1 and 1. Same as in Wu et al. [9], a 3-fold cross-

validation was adopted and Dice ratio was used to measure the overlap between the manual 

parcellation and the automatic parcellation.

3.2. Training

We trained all the variants using mini-batch (1 surface per batch) stochastic gradient descent 

(SGD) with initial learning rate 0.1 and momentum 0.99 with weight decay 0.0001. Given 

different network architectures, we used a self-adaption strategy for updating learning rate, 

which reduces the learning rate by a factor of 5 once training Dice stagnates for 2 epochs. 

This strategy allowed us to achieve a gain in Dice ratio around 3% for most architectures. 

We used the cross-entropy loss as the objective function for training. The other hyper-

parameters were empirically set by babysitting the training process at the first-fold cross-

validation and the optimal parameters were reused for other two-fold cross-validation. We 

also augmented the training data by randomly rotating each sphere to generate more training 

surfaces.
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3.3 Results

We report the means and standard deviations of Dice ratios, as well as the number of 

parameters, memory storage and time for one inference on a NVIDIA Geforce GTX1060 

GPU, in Table 1. Fig. 5 further provides a quantitative comparison of Dice ratios for each of 

the 36 cortical ROIs.

Table 1 shows the three spherical U-Net architectures consistently achieve better results than 

other methods, indicating that the spherical U-Net has strong ability to capture fine-grained 

features from the concatenation path and learnable upsampling method. On the contrary, 

without pooling and upsampling layers, Naive-DiNe can only see maximum 16 hops from 

the center vertex, of which the receptive filed is too small to capture key information for 

vertex’s labeling. RePa convolution is obviously more time-consuming and memory-

intensive, while our proposed DiNe convolution is 7 times faster than RePa, 5 times smaller 

on memory storage and 3 times lighter on model size. When comparing U-Net with SegNet, 

the Dice difference is likely caused by the different information passed from the encoder 

path to the decoder path, which means feature map concatenation may be more important in 

spherical surface data than Max-pooling Indices.

Fig. 6 provides a visual comparison between parcellation results using different models. We 

can see that the results of the spherical U-Net show high consistency with the manual 

parcellations without isolated noisy labels. As in [9], we also incorporate the graph cuts 

method for post-processing the output of our spherical U-Net, but this step has no 

improvement in quantitative results. This may indicate that our spherical U-Net is capable of 

learning spatially-consistent information in an end-to-end way without postprocessing.

4. CONCLUSION

In this paper, we transformed the conventional CNNs into the spherical CNNs by developing 

respective methods for surface convolution, pooling, and upsampling. We designed a 

spherical U-Net architecture using DiNe convolution and transposed convolution based on 

the spherical cortical representation and successfully applied it to infant cortical surface 

parcellation. Comparisons with several architecture variants have validated the accuracy and 

speed of the proposed method. We will release the PyTorch [23] implementation of our 

spherical U-Net soon.
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Fig. 1. 
Spherical U-Net architecture for infant cortical surface parcellation. Blue boxes represent 

feature maps. The number of features is denoted above the box, while the number of vertices 

is provided at the lower left edge of the box.
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Fig. 2. 
Up: Our proposed DiNe convolution. Down: the RePa convolution in [18]. Both 

convolutions transfer the input feature map with D channels to the output feature map with F 
channels.
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Fig. 3. 
Illustration of the spherical surface pooling operation.
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Fig. 4. 
Illustration of three upsampling methods.
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Fig. 5. 
Quantitative comparison of different models for each cortical ROI.
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Fig. 6. 
Visual comparison of cortical parcellation results using different methods. (a) Manual 

parcellation; (b) SegNet-Basic; (c) Naive-DiNe; (d) Spherical U-Net.
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Table 1.

Comparison of different network architectures.

Architectures Params (MB) Storage (MB) Infer time (ms) Dice
(%)

Learning for upsampling

U-Net 26.9 1635 18.3 88.87+2.43

U-Netl8-DiNe 1.7 955 8.9 88.05+2.46

U-Netl8-RePa 5.2 5047 64.5 88.28+2.50

No learning for upsampling

Naive-DiNe 0.4 1499 15.8 81.74+4.96

SegNet-Basic 14.5 1341 113.5 78.31+4.62

SegNet-Inter 22.0 1533 20.1 75.12+8.39

Results reported in Wu et al. [9]

Multi-atlas with majority voting 84.54+0.08

DCNN without graph cuts 86.18+0.06

DCNN with graph cuts 87.06+0.06
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