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Abstract

The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin 

secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for 

patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function 

of newly transplanted tissues. Functional vasculature around an implant is not only necessary for 

the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal 

of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. 

Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body 

reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in 

the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells 

are crucial for successful islet transplantation or other cellular therapies. In this paper, we review 

various strategies to engineer vasculature for islet transplantation. We consider properties of 

materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic 

factors, and co-transplantation of vascular cells that have all been harnessed to increase 

vasculature. We then discuss the various other challenges in engineering mature, long-term 

functional and clinically viable vasculature as well as some emerging technologies developed to 

address them. The benefits of physiological glucose control for patients and the healthcare system 

demand vigorous pursuit of solutions to cell transplant challenges.
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1. Introduction

The vascular system perfuses nearly every tissue to deliver nutrients and remove waste 

products. Endothelial cells (ECs) are the blood-contacting cells of the vascular system, 

which mediate many vascular adaptations [1]. Following initial development, establishment 

of new vascular sections during adulthood occurs through angiogenesis, vasculogenesis, or 

arteriogenesis [2]. New endothelial lumen structures are formed in angiogenesis by 

proliferation of existing ECs, while vasculogenesis is mediated by progenitors that 

differentiate into ECs [3]. By contrast, arteriogenesis can form a vessel network by 

maturation of an endothelial tube primarily through increases in diameter, addition of 

support cells, and participation of monocytes [4]. These processes ensure that most cells are 

no more than ~100 μm away from a blood vessel [5]; however, this essential network is not 

available in tissues that are harvested from a donor or derived from stem cells for transplant, 

such as pancreatic islets.

Vascularization is not a problem unique to islet tissue engineering [6] but is under 

investigation for a wide range of tissue types including muscle [7, 8], cardiac tissue [9–11], 

hepatic tissue [12], bone [13, 14], neural tissue [15], skin [16–18], thyroid tissue [19], and 

kidney tissue [20], as well as multi-tissue materials [21]. This review evaluates strategies to 

induce vascularization with a focus on those that have been used in islet transplantation. 

Physical properties of synthetic scaffolding or encapsulation materials and the benefits of 

using natural extracellular matrix materials to induce vascularization are reviewed first. We 

then consider prevascularization, factor delivery, and angiogenic cell co-transplantation. The 

discussion concludes with perspectives on challenges and consideration of future 

approaches. First, we present a brief consideration of islet vascular biology.
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1.1. Islet Vascular Biology

Islets have been described as micro-organs [22] with unique microvasculature characteristics 

compared to many other tissue microvasculatures. Qualities include high density, high 

fenestration [23], and sensitive glucose responsiveness [24]. Combined with the spatial 

arrangement and flow patterns of vessels and endocrine cells [25], the islet vasculature 

promotes a rapid physiological response to maintain glycemia. One spatial arrangement is 

that mouse insulin-producing β-cells are usually adjacent to ECs and attach to the vascular 

basement membrane [26]. Observations about the direction of blood flow through the islet 

also contribute to our understanding of islet function. The intra-islet blood flow has been 

characterized to be one of the three patterns: (1) flowing first to the islet core and then to the 

islet shell, (2) the islet shell and then the islet core, or (3) simply from one side of the islet to 

the other, perfusing core and peripheral islet endocrine cells equally depending on which 

hemisphere the cells reside [27]. The blood flow pattern, with the specific cell arrangement, 

is important given that paracrine effects between the islet cell types are affected by blood 

and interstitial flow that is dictated by capillary network architecture [28, 29]. However, the 

effects of capillary and endocrine cell layout in human islets are not yet fully known due in 

part to the differential arrangement of cell types [30, 31].

In further studies of the microvascular architecture, an intra-pancreatic and intra-islet portal 

system has been observed. Vascular portal systems describe locations where a capillary bed 

supplies two types of tissues before returning to the heart (sometimes converging into a vein 

between two capillary beds) such as in the liver and kidney [32]. In the case of the intra-

pancreatic portal system, capillaries flow from within the islet to the surrounding exocrine 

pancreatic tissue before converging into a vein [33]. The intra-islet portal system describes a 

flow pattern where β-cells are perfused before other cell types within the islets [29]. Thus, 

the intra-islet portal system provides a method for β-cell secretions to affect non-β-cell islet 

cells, and the intra-pancreatic portal capillary pattern extends the effect of the endocrine islet 

secretions to the exocrine pancreas. Overall, it is clear that the intra-islet vascular structure is 

tightly linked to islet function.

The function of the vasculature also adapts to the diabetic state. Nyman et al. quantified islet 

perfusion using confocal imaging of in situ islets to show that islet perfusion increases in 

hyperglycemia while the exocrine pancreatic tissue surrounding the islets is not affected 

[24]. Canzano et al. examined the islet microvasculature in human islets histologically to 

reveal that the blood vessels inside the islet of diabetic pancreas were smaller and greater in 

number than those in the non-diabetic pancreas. By contrast, the exocrine tissue vessels 

remained the same in the diabetic state [34]. This may be a contrasting effect observed in 

mouse islets. It would not be the first case where mouse islets are different from human 

islets, or an individual islet is different from another, depending on the location in the 

pancreas [30, 35, 36]. Canzano et al. further showed that islets in a diabetic pancreas 

containing residual β-cell mass (insulin positive β-cells) had a normal intra-islet 

microvasculature compared to insulin negative β-cells in the islets [34]. Indeed, measuring 

perfusion of native islets may be predictive of type 1 diabetes (T1D) autoimmune disease 

onset [37]. While it is not yet clear whether the vascular changes contribute to the β-cell 
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damage or the β-cell damage causes vasculature changes, it nonetheless underscores the 

close connection between the vasculature and islet function.

Ideally, the vascular structure of transplanted islets could become re-perfused, ensuring that 

a healthy network is formed. Sometimes intra-islet capillaries remain as channels without an 

endothelial lining for many months post-transplantation [38]. These acellular channels may 

still be useful, as freely transplanted islets are capable of re-growing an intra-islet portal 

system [29]. The population of ECs remaining in the islets likely participates in islet 

revascularization [39]. This population is capable of anastomosing to vasculature in the 

recipient [39, 40], possibly even when there is a species mismatch [41, 42]. Harnessing the 

ability of donor ECs or intra-islet vascular channels to participate in re-vascularization may 

be important for islet transplant success.

1.2. Importance of Vascularization in Islet Transplantation

Following transplantation, several factors reduce the ability of an islet to re-vascularize after 

separation from the native pancreatic environment and vasculature [43]. Aside from 

collagenase digestion, the cell source can sometimes mandate safety requirements that also 

decrease the ability of an islet to become vascularized.

Non-human- or stem cell-derived islet transplantation is a solution to the shortage of 

cadaveric transplantable quality tissue. However, xenogeneic islets can stimulate a more 

aggressive immune response [44], and stem-cell derived islets present a risk of undesired 

differentiation [45]. Cell encapsulation can reduce immunologic toxicity to the transplanted 

tissue by preventing contact of immune cells [46] and undifferentiated cell escape. However, 

cell encapsulation also prevents intra-islet vessel development. Upon un-encapsulated 

transplantation, avascular islets experience insufficient mass transfer of nutrients and waste 

as well as function of specific molecules (e.g., glucose and hormones) (Figure 1 a,b) [47], 

which is worsened by encapsulation (Figure 1 c).

An ideal encapsulation barrier would be able to prevent all immunological access to the graft 

while simultaneously allowing all necessary nutrients to enter and products to leave the graft 

[48], requiring precise control over diffusional properties. Membrane diffusional 

characterization is not a primary subject in this review; however, there is exciting work on 

this topic, which we will not be able to give full attention [49, 50]. Briefly, materials can be 

characterized by their permeability to molecules. Hydrogels, for instance, can be 

characterized by their permeability across a range of molecular weights. Materials can also 

be characterized by their permselectivity to certain molecules or groups of molecules with 

similar properties (i.e., charge). Tightly controlled pore sizes in solid materials can be 

utilized to impart permselectivity by imposing a molecular weight cutoff or by excluding 

depending on other molecular properties. Much of the pore size discussion in this review 

occurs on the scale of tens to hundreds of micrometers for vascularization. Molecular 

diffusional characterization is less relevant at those scales but is nonetheless an important 

topic.

Generating a vasculature similar to the native islet vasculature could improve results in islet 

transplantation; however, different qualities may be required to overcome the encapsulation 
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diffusion barrier. Furthermore, efforts are being made to develop functionalized 

encapsulation materials [51] that can target immune cells, interfere with coagulation, 

mitigate fibrotic reactions, reduce reactive oxygen species, and induce vascularization [52], 

some of which may increase graft survival without being immunoisolating.

Vascular growth around an implant needs time to develop. The time course of vasculature 

growth in nonencapsulated transplanted islets has been studied. Regeneration of vasculature 

in or around transplanted syngeneic islets was observed to take one to two weeks [53]. In 

some intraportally transplanted islets, vascular density appeared to reach native islet levels 

within a few days and was at supernormal levels between days 5 and 30 (the last time point 

recorded) [54]. Similarly, the first vessels were observed in intramuscularly transplanted 

islets at three days [55]. Any delay in microvasculature formation can cause immediate cell 

death and reduction of long-term islet engraftment [56, 57]. Thus, the rest of this review is 

devoted to understanding various methods to bring sustained vasculature to the transplanted 

cells as quickly as possible.

2. Vascularization Strategies

2.1. Porosity, Surface Roughness, and Stiffness Modulate Vascularization

Physical characteristics of a material can drive increases in angiogenic activity. In this 

section, we review studies that are conducted for the purpose of islet transplantation 

alongside studies that are conducted for the reconstruction of other tissues to suggest 

possible new strategies for transplanted islet vascularization. In one of the most influential 

papers surrounding this topic, Brauker et al. quantified membrane pore size and positively 

correlated pore sizes of 0.8-8 μm to both cell infiltration and an altered foreign body reaction 

that allowed vascular structures to be close to the membrane [58]. By examining a large 

number of membranes made from various materials and with varied pore sizes, a conclusion 

was drawn that cell infiltration permissive membranes reduce the thickness of a fibrotic 

capsule when implanted subcutaneously (Figure 2 a). In a more recent study, vessels were 

found in the large pore outer mesh and immediately adjacent to the immunoisolation 

membrane [59], which should improve mass transfer.

The time course of microarchitecture-driven vascularization was studied by Padera and 

Colton, which demonstrated a temporal pattern similar to a normal wound healing cascade. 

A combination of neutrophils and macrophages was present within the pores of the 

membrane, followed by macrophages that peaked between 7 and 21 days but then decreased 

by day 329 [60]. The number of close vascular structures, on the other hand, reached a 

plateau at day 21 and remained the same until day 329, differing from a normal wound 

healing cascade where the number of vessels is expected to decrease due to regression of a 

fraction of vessels in a newly formed network [61, 62].

Pore size has also been examined in beta-tricalcium phosphate scaffolds where all pore sizes 

(~337, 415, 557, and 632 μm) supported vascular ingrowth from surrounding tissues; 

however, the diameter and extent of vessel ingrowth were modestly decreased by the 337 μm 

scaffolds [63]. Choi et al. examined the pore size of poly(lactic-co-glycolic acid) (PLGA) 

scaffolds formed around sacrificial microsphere templates of diameter 79, 147, 224, and 312 
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μm to evaluate the effect of pore diameter on subcutaneous vascularization [64]. While all 

scaffolds in that study supported vascularization to some degree, scaffolds constructed with 

microspheres of 200 μm or greater supported vessels that penetrated deeper into the scaffold. 

The 200 μm sphere size threshold correlated to a 35-40 μm window size (the size of 

openings between spherical pores, i.e., the limiting hole size for intrapore vessel formation).

Pore size can also be controlled in hydrogels to modulate vascularization. Three 

polyethylene glycol (PEG) hydrogels with pore sizes 134 ± 28, 82 ± 6, and 41 ± 0.1 μm 

were tested for their ability to support cells and vascularization. The authors found that the 

41 μm pore group did not support vascular ingrowth into the pores until after the second 

week of implantation, while the larger pore sizes (82 and 134 μm) contained vessels at the 

one week time point (Figure 2 b) [65]. The dorsal skinfold window chamber was used to 

study the dynamics of vascularization surrounding three scaffolds presenting pores of 

diameters 20-75, 75-212, and 250-300 μm over the course of 20 days following 

implantation. Results showed that the large-pore size scaffolds supported consistent vessel 

growth at 8, 12, 16, and 20 days compared to the medium- and small-pore size scaffolds in 

the area of the scaffold, while the trend was not significant at the border or outside the 

scaffold [66].

The minimum pore size required to obtain noteworthy vascular in-growth depends on the 

particular scaffold material properties. However, according to the reviewed studies, a pore 

size greater than 200 μm may be required to facilitate vascularization into scaffolds, while a 

smaller pore size (greater than 100 μm) may be sufficient for hydrogel scaffolds. There is no 

substitute for testing the scaffold under question [67, 68]. Awareness of pore quantification 

methods such as porogen size and the resulting window size mentioned above are also 

important to consider. Furthermore, some materials may be able to circumvent pore size 

requirements while still initiating vascularization [69, 70].

Changes in pore size can also affect surface roughness, although surface roughness is an 

independent material property. Interestingly, Rosengren et al. studied subcutaneous 

implantation of smooth and textured low-density polyethylene disks and observed that the 

smoother disk was surrounded by a larger fibrotic capsule. More necrotic tissue was noted at 

the interface, especially near the edges where shear forces with surrounding tissue would be 

greater [71]. Following this hypothesis, smaller pore sizes not only would prevent vascular 

in-growth but may also present a smoother surface that induces a greater amount of cell 

necrosis at the tissue interface. This would help to explain the observation by Brauker et al. 
[58] that larger pore sizes stimulated closer vessels, as the fibrotic capsule was thinner. 

Khosravi et al. showed that during in vivo implantation, a nanotopographical surface 

significantly increased peri-implant blood vessel density on days 7, 11, and 28 compared to 

the smooth surface of the same titanium (Figure 2 c) [72]. The pore size of 3D collagen 

scaffolds was used to select cell types that were able to invade, giving the possibility that a 

scaffold may be able to select out for a population of desired cells [73], perhaps someday 

providing a new kind of immunoisolation material. It is clear that the scale of pores and 

surface roughness affect the biological response to implanted materials, and hence, they 

should be considered carefully when designing implants for cell encapsulation.
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Material stiffness varies with material characteristics and formulations [74, 75] and can 

affect the vascularizing potential of a material. Similarly, tissue stiffness correlates with islet 

biology in addition to EC functionality. Islet stiffness is known to affect insulin expression 

[76], vary with islet inflammation [77], and provide a method to distinguish acinar versus 

islet tissue [78]. Stiffness plays a complex role in vascularization processes, primarily 

through ECs. Substrate stiffness downregulates EC network formation in 2D, while in 3D, 

the converse may be true [79]. Other material properties such as matrix density often vary 

with stiffness; however, Mason et al. demonstrated an effect of stiffness independent of 

density [80]. Stiffness responses are cell type dependent [81], including the EC source 

location in the vascular tree [82]. Matrix stiffness can also affect the ability of cells to 

interact with their neighbors, potentially affecting tissue formation [83] and lymphatic 

sprouting [84]. In vivo, angiogenic activity can degrade or secrete new matrix, dynamically 

affecting stiffness at different stages of vessel growth [85, 86].

2.2. Natural Extracellular Matrix-Based Scaffolding

Physiologically, the native matrix to which vascular cells attach is tightly regulated, 

including material properties such as stiffness and porosity. The native extracellular matrix 

(ECM) is composed of the basement membrane and the interstitial matrix. This matrix 

provides structural support for tissue-specific cells and vasculature, as well as transport 

regulation [87]. ECM-based materials and synthetic materials designed to mimic the ECM 

offer great potential in regenerating and engineering the pancreas as well as islets [88–92]. 

To be clear, direct regeneration of islets would be complicated by the original autoimmune 

attack and is not yet clinically viable but would be a considerable advance. Engineering an 

environment suitable for transplanted insulin-producing cells can be improved by 

considering those that increase vascularization.

Fibrin is commonly used for islet vascularization and transplantation. Fibrin is a fibrous 

protein polymerized by the protease thrombin on fibrinogen, and it is known to participate in 

vascularization during wound healing [93]. Individual fibrinogen molecules have two pairs 

of arginine-glycine-aspartic acid (RGD) ligands [94] for integrins expressed on pancreatic 

cells (i.e., αvβ3, α5β1, and αvβ1) [95], Therefore, attachment to integrin recognition sites 

in fibrin gels can prevent cell anoikis (apoptosis resulting from lack of integrin engagement) 

and facilitate islet cell survival [96, 97]. Interactions between fibrin-binding sites and 

integrins (i.e., αvβ3 and α5β1) are involved in controlling EC behavior and vessel formation 

during angiogenesis [93]. As fibrin enhances islet cell survival and is cell cleavable, thereby 

supporting angiogenesis, it is an attractive natural scaffold for islet vascularization.

Fibrin, being a component of US Food and Drug Administration (FDA)-approved clinical 

products (e.g., FIBRIN SEALANT, TachoSil, EVARREST, and EVICEL), is a suitable 

material for translational studies. Ricordi and Pileggi groups developed an approach where 

plasma was polymerized by recombinant thrombin (Figure 3 a). Islets were embedded in the 

fibrinogen pregel and transplanted onto the diabetic rat recipient’s omentum, followed by the 

application of recombinant thrombin to polymerize the fibrinogen in situ with omental 

closure to contain and protect the graft. Promising pre-clinical results demonstrated a 

potential to vascularize, to function similarly to intrahepatically transplanted islets, and to 
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reduce circulating levels of leptin and α-2 macroglobin [98]. Safety of the approach was 

demonstrated in a non-human primate [98]. In a recent phase I/II clinical trial, human islets 

were embedded in a patient’s autologous plasma gel. Glucose levels were in the upper 

nondiabetic range at a six-month follow-up, while at 12 months, insulin independence had 

deteriorated, perhaps complicated by a change in the immunosuppressive agent used [99].

Fibrin can be tailored by modulating formulations to obtain desirable properties. For 

example, compared to a higher concentration of fibrinogen and thrombin (10 mg/mL and 10 

U/mL, respectively), islets in a fibrin scaffold made with lower concentrations (5 mg/mL and 

1 U/mL, respectively) reached normoglycemia quicker and supported vascularization inside 

and around the islets [100]. In addition to the effects on the density of the gel [101], 

adjusting the thrombin concentration may affect islets in other ways. For instance, thrombin 

can cleave protease-activated receptor-3 (PAR3), which can, in turn, stimulate insulin 

secretion, perhaps leading to hyperstimulation of insulin secretion [102]. In addition, given 

the integral role of thrombin in the Instant Blood-Mediated Inflammatory Reaction (IBMIR) 

[103] and positive results that have been found with counteracting thrombin activation [104–

106], caution is warranted in the selection of a site where a fibrin gel is used to facilitate islet 

transplantation [107]. To further reduce these concerns, fibrinogen formulations that are free 

of complement may avoid a loss of viability from thrombin-activated compliment [98, 103, 

108]. Nevertheless, the proclivity of a fibrin gel to promote angiogenesis is a beneficial 

property for the improvement of islet transplantation.

Vascularization can be enhanced by conjugating pro-angiogenic factors (i.e., vascular 

endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF)) into fibrin 

gels. Improved islet function in a VEGF/PDGF-conjugated fibrin gel was associated with 

enhanced and earlier vascularization (<7 days) [109]. Factor release will be further discussed 

in Section 2.4. Other than fibrin, commercial Matrigel and collagen have also been used as 

biological scaffolds for islet vascularization.

Matrigel is a gelatinous mixture primarily composed of structural proteins, proteases, growth 

factors, and related proteins secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma 

cells (formulations available from manufacturers (e.g., Coming) or from literature [110]) 

(Figure 3 a). It is used to study differentiation and tumor growth [111], as well as evaluation 

of angiogenesis both in vitro and in vivo [112, 113], partially because of the inclusion of 

growth factors in the standard formulation. For the application of transplantation, mouse 

islets were embedded in growth factor-reduced Matrigel specifically supplemented with 

VEGF and hepatocyte growth factor (HGF). Restored normoglycemia in diabetic severe 

combined immunodeficient (SCID) mice in the subcutaneous space [114] demonstrated the 

suitability of Matrigel for islet transplantation. Although very useful in preclinical studies, 

clinically viable alternatives need to be identified that are not animal derived and can be 

chemically defined.

Collagen, a major component of Matrigel and the main protein in the islet niche [115], may 

be critical for maintaining islet function (Figure 3 a) [26, 116]. During angiogenesis, 

sprouting vascular ECs are exposed to an interstitial ECM rich in type I collagen [117]. 

Similarly, the integrins expressed on ECs (i.e., α1β1 and α2β1) are known to bind to 
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collagen [118]. To apply this knowledge, a recent study used porous collagen scaffolds to 

support vessel growth [119]. Re-vascularization of implanted islets was clearly observed, 

and the engraftment and blood glucose correction was achieved at a low islet number (250 

islets) [119]. In another report, freshly isolated rat islets in type I collagen (3 mg/mL) were 

sandwiched by two layers of precultured and prevascularized type I collagen containing rat 

microvascular fragments. After subcutaneous implantation into SCID mice, the vascularized 

construct enhanced islet survival by supporting islet viability and maintaining structures of 

intra-islet ECs [120].

To stimulate the growth of islet supporting vasculature, it may be useful to provide ECM 

components that mimic the ECM composition of the natural islet perivascular space in 

addition to collagen. Naba et al. studied the ECM composition of healthy islets as well as 

insulinomas. Murine islets undergoing metastatic transformation become highly 

vascularized at a predictable age and rate, allowing for study of ECM changes. While these 

highly angiogenic islets may be of some interest, it may not be desirable to create an 

insulinoma-like environment therapeutically. Normal islet characterizations are, for that 

reason, perhaps the most interesting source of ECM information. Naba et al. found a group 

of 120 ECM or ECM-associated components in the healthy islet. Several abundant 

components included collagen I, III, and V; fibronectin and fibrillin I; and laminins and 

nidogens [121]. The increased functionality of such an ECM mimic, compared to 

alternatives with fewer components, could provide enough advantages to be worth 

considering despite increased cost and barriers to regulatory approval.

Another method to mimic the ECM of the natural pancreas and support vascularization is to 

remove all cellular materials from the pancreatic tissue in a decellularization process. Cells 

are then reintroduced into the remaining material (Figure 3 b) [122]. Preservation of the 

vascular structure of the pancreas was a benefit noted by Napierala et al. during recent 

development of a rat pancreas-specific decellularization and islet repopulation procedure 

[123], as well as Yu et al. working on a pancreas tail-specific protocol [124]. Mirmalek-Sani 

et al. also showed that porcine pancreas vasculature was patent after decellularization, 

increasing metabolic rate at seven days of culture and glucose responsiveness at three days 

[125]. Islets have also been supported on decellularized rat pericardium with a layer of 

collagen derived from tendon implanted syngeneically in the epididymal fat pad in mice. 

Histology showed well-vascularized islets at approximately 11 months post-transplantation 

[119]. Working toward the goal of being able to use decellularized pancreatic proteins in 

tissue engineering or transplant procedures, Sackett et al. developed a procedure to create a 

hydrogel from donated human pancreas with a high fat content that was not used for 

transplantation [126]. Continued development of procedures to isolate and process 

decellularized matrices is key to realizing the benefits of a tissue-specific matrix for 

vascularized islet transplantation.

2.3. Prevascularization of sites for islet transplantation

Prevascularizing a site can reduce the time required to achieve an appropriate vessel supply 

at the prospective site. One method to prevascularize a transplantation site is to implant a 

vascularization-promoting device before islet loading (Figure 4 a). One of the most well-
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studied device concepts in this area is the TheraCyte device, currently under continued 

development and adaptation by ViaCyte. In a small rodent study, three months of 

subcutaneous implantation was used to induce vascularization, followed by islet 

transplantation into the TheraCyte device to cure diabetes faster than with simultaneous 

device and islet implantation (6 of 6 vs. 1 of 6 cured) (Figure 4 b) [127]. Other 

prevascularizing devices are also under intensive development. For example, a cylindrical 

stainless steel mesh tubing (pore size: 450 μm, diameter: 6 mm) was implanted in the 

subcutaneous space [128] and omentum [129] before islet transplantation. After connective 

tissue rich in vascular structures formed in the pores of the mesh, a solid 

polytetrafluoroethylene (PTFE) plunger was removed, and islets were implanted into the 

lumen. Implanted islets in the prevascularized tubular tissue space restored normoglycemia, 

sustained long-term function (>100 days), and showed intense vascular regeneration. On the 

other hand, the return to normoglycemia was slightly better, with blood glucoses and body 

weight being slightly worse, in intra-portally transplanted control recipients from the study 

by Pileggi et al. [128, 130]. In another approach, Smink et al. restored normoglycemia to 

animals with islets transplanted into a subcutaneous device that was prevascularized in vivo 
for four weeks, at a rate comparable to that of kidney capsule controls at 45 days post 

transplant [130].

A different set of approaches do not leave foreign materials behind following the 

prevascularization period. The Shapiro group inserted a nylon vascular access catheter under 

the mouse subcutaneous tissue for one month to induce vascularization around the catheter. 

After removing the catheter, a prevascularized pouch was formed for mouse and human 

islets. Normoglycemia was achieved and maintained over 100 days in diabetic mice, while 

the nonpreconditioned subcutaneous site did not restore normoglycemia at any timepoint 

(Figure 4 c) [131, 132]. A prevascularized pouch can also be created by angiogenic-

promoting cells. For example, adipose tissue-derived stromal cells (ADSCs) and minced 

adipose tissue were co-implanted in mouse subcutaneous tissue. Vascularized pockets were 

formed after four weeks to prepare for islet transplantation. The blood glucose level reached 

a normal range within a week after islet transplantation, was sustained for eight weeks, and 

was significantly lower than that in the three control groups of ADSCs only, minced fat 

tissue only, or nothing pre-implanted [133].

In addition, pro-angiogenic factors can be incorporated into devices to reduce the time 

required to achieve a more robust vascular network. For example, silicone tubing (length 5 

mm, inner diameter 3.35 mm) was filled with Matrigel supplemented with fibroblast growth 

factor (FGF)-2 (1 μg/mL), The prepared tubing was split and placed around the epigastric 

vascular pedicle. After three weeks of prevascularization, ~500 islet equivalents were loaded 

into the pre-vascularized tubing, thereby resulting in lower nonfasting blood glucose than 

that in the implants without a delay for prevascularization [134].

Another approach to increase subcutaneous vasculature used agarose rods with basic FGF 

(bFGF) and heparin preimplanted in the rat dorsal subcutaneous space. After rod removal at 

one week, 1,500 islets were transplanted into the prevascularized pockets that rapidly 

reversed hyperglycemia in diabetic rats compared to unprepared subcutaneous spaces [135]. 

In another system, a bFGF-releasing device was transplanted into rat subcutaneous tissue for 
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one week to induce vessel growth around the device. Rat islets were loaded into the 

vascularized pocket after device removal or into the device without removal. 

Normoglycemia was maintained for at least one [136, 137] if not three [138] months and 

was better than the control no-device animals [136], control devices without collagen 

sponges [137], and control devices without bFGF or no device preconditioning [138] (Figure 

4). Pre-vascularization is an effective method to prepare the transplant site for the 

therapeutic cells, so that an islet incompatible environment is avoided [139]. Despite needing 

multiple surgical procedures, the advantages may outweigh the disadvantages of 

prevascularization.

2.4. Release of Proangiogenic Factors

Factor delivery is a powerful approach to induce vascularization [140] and can include single 

factor, multiple factors, and multiple sequential factor delivery (Figure 5). Several methods 

exist for sequential delivery from materials including layered materials in planar, spherical, 

and cylindrical configurations [141] and light-triggered release [142–145]. In this section, 

examples of proangiogenic factor delivery will be considered within several delivery 

systems focusing on the functional outcome. Some of these methods can be categorized by 

their ability to cause angiogenesis, arteriogenesis, or a combination of both blood vessel 

network growth modes (Figure 5 a).

2.4.1. Single Factor Release—VEGF is one of the most well-studied angiogenic 

factors and has indeed already shown up in earlier discussions. Focusing on just VEGF as a 

model to consider methods of factor release, two categories can be found: (1) those where 

the VEGF is free to diffuse out of the material and (2) those where VEGF has been 

conjugated to the material to provide a sustained release. An example of the conjugated 

release method is 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide 

(EDC/NHS) conjugation to alginate. Yin et al. were able to show prolonged release of 

VEGF and an increase of approximately 36 days of encapsulated islet effectiveness using 

subcutaneous implantation [146]. Marchioli et al. evaluated the ability of a 3D-printed 

heparin-conjugated scaffold to bind VEGF and therefore induce vascularization of an 

alginate hydrogel. Using a chicken chorioallantoic membrane assay, the authors showed that 

heparin modulated the activity of VEGF [147]. Presenting only heparin can also increase 

vascularization [148], likely due to natural growth factor depot and local concentration 

functions. Complimentary results support the use of VEGF when it is released from the cells 

themselves (produced by gene transfection [149] or by stimulation of VEGF production 

pharmacologically [150]) or supplemented with rotational culture [151].

PEG hydrogels are a versatile synthetic system that allows tuning of mechanical properties 

[152], addition of cleavable sites [153, 154], antifouling functionality [152], and delivery of 

drugs through bulk release or a number of other methods [155]. Marchioli et al. established 

two fully hydrogel-based models for transplantation where a vascularizing layer had 

conformally coated islets or cell clusters embedded into it, or the vascularizing layer was 

attached to an islet containing hydrogel layer with natural ECM proteins [156]. A PEG-

maleimide-based hydrogel, loaded with VEGF, was then cross-linked with a degradable 

linker to be used as a tissue-adhesive pro-angiogenic vehicle for islet transplant on the 
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mesentery by Phelps et al. [157]. This approach offered surgical feasibility in addition to the 

adhesive properties. Carefully combining these functionalities, Weaver et al. assembled a 4-

arm PEG degradable hydrogel that presented cell adhesive RGD and VEGF with islets. At 

the epididymal fat pad site, cure rates were best with the VEGF included in the PEG 

hydrogel [158]. Thus, adding degradability into synthetic hydrogels can improve the in vivo 
functionality.

Overcoming the diffusion barrier presented by a fibrotic layer is one of the goals of 

angiogenic factor release. For instance, Hunter et al. studied the release of EC growth factor 

(ECGF) from an alginate hydrogel encased inside a semipermeable membrane tube made of 

either polyvinylidene difluoride (PVDF) or polyethersulfone. Marked neovascularization 

occurred in the fibrotic layer for subcutaneous implants when ECGF was included [159]. 

Both ECGF [160, 161] and VEGF [162] are chemotactic for ECs as one of their functions in 

angiogenesis. Attention should be paid to the vascularization response within the fibrotic 

layer, as this could address fibrotic diffusion hindrances in the long term.

2.4.2. Multiple and Sequential Factor Release—Single factor delivery is more 

straightforward to understand scientifically and may have a comparatively simple path to the 

clinic. Yet, delivering multiple factors may introduce some significant benefits to the growth 

of sustainable vascular systems. An EC growth supplement (ECGS) was delivered by an 

alginate hydrogel inside a semi-permeable tubing to study the effects of sequential release of 

a variety of factors (MW range: 10-250 kDa) based on diffusion release. Tilakaratne et al. 
demonstrated increased blood vessel structures near the membranes when the growth factor 

supplement was delivered [163]. Alginate hydrogels have also been used as a vehicle for 

combination pre-treatment of an intra-muscular space for islet transplant by delivery of 

VEGF and platelet-derived growth factor (PDGF). The drug containing groups were the only 

ones that fully restored blood glucose control [164]. In a study of modified dextran PEG 

hydrogels, Sun et al. found that delivery of 4 angiogenic growth factors induced a greater 

number and diameter of blood vessels within the hydrogel than any combination of fewer 

factors tested [165]. Thus, multiple factor delivery is advantageous with sequential delivery 

possibly playing an important role.

Sequential delivery has been investigated in studies that use the advantage of biological 

understanding to improve outcomes (Figure 5 b). Delivery of sphingosine-1-phosphate (SIP) 

following VEGF delivery largely improved the area of CD31-positive structures, and their 

maturity, over both factors delivered together or in a different sequence [166]. Similarly, 

while delivery of VEGF alone can induce angiogenesis, sequential delivery of VEGF 

followed by PDGF from a poly(lactide-co-glycolide) scaffold resulted in a more mature 

network than at the two week timepoint (Figure 5) [167]. Interestingly, if PDGF or 

angiopoietin-1 (Angl) was delivered at the same time as VEGF or angiopoietin-2 (Ang2), 

the proangiogenic effects of VEGF and Ang2 were blocked. On the other hand, the effect 

was synergistic if PDGF or Angl was delivered subsequently [168]. Ishihara et al. showed 

that by delivering the proangiogenic peptides VEGF-A165 and PDGF-BB from an α-chain 

laminin-type G domain with a heparin-binding domain, diabetic wound healing was 

improved [169], providing insight into ways to improve vascularization in a diabetic 
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environment. Balancing the types of factors delivered is important considering that 

overstimulation with VEGF can be counterproductive to mature vessel formation [170].

Other materials have been used as the vehicle for combination delivery of vascularization-

promoting factors. Fibrin hydrogels have been investigated as a carrier and delivery vehicle 

for transplanted islets as discussed earlier. Najjar et al. studied a VEGF-A165 and PDGF-

BB-loaded hydrogel both in the subcutaneous space and on the epididymal fat pad in mice. 

Results showed that mechanical support from the hydrogel was important for overall 

function of the graft in the subcutaneous site, making the benefits of having the islets in 

direct contact with the fat pad in the intraperitoneal space (covered by the drug-loaded fibrin 

gel) not applicable to the subcutaneous space. Vascularization was associated with graft 

success in this study evidenced by increased CD31-positive area assayed 

immunohistologically [109].

Platelet-rich plasma, known to have multiple healing functions, has been investigated to 

improve vascularization of subcutaneously implanted chambers for cell transplantation [51]. 

Although perhaps more complex, natural collections of factors are useful, as they contain 

already developed ratios of factors that can be quite effective. Similarly, focusing on the 

natural process of wound healing may be informative [171, 172]. Typically, fibrin clot 

matrix is rapidly vascularized to form granulation tissue, which is highly dependent on 

FGF-2 released from cells in the wound bed. Interestingly, FGF-2 peaks almost immediately 

after a cutaneous wound, while VEGF peaks at approximately day 5 [173], perhaps in part 

driven by the fact that FGF-2 can stimulate VEGF secretion [174]. A factor release sequence 

mimicking this pattern could be effective in generating vascularized tissues [175]. Toward 

this idea, a combination of VEGF and FGF-2 has been released from heparin-binding 

peptide nanofibers. The growth factor-loaded hydrogel resulted in a 78% cure rate, while the 

unloaded peptide nanofiber hydrogel produced only a 30% cure rate in isogeneic mouse 

transplants [176]. Interestingly, when similar heparin mimetic peptide amphiphile materials 

were loaded with the same angiogenic factors (VEGF and FGF-2), islets were functional for 

longer in culture (up to seven days), displaying a stimulation index that was not different 

from freshly isolated islets [177]. This raises a possibility that angiogenic molecules have 

effects on the function of islets aside from inducing a vasculature, perhaps including the 

earlier referenced EC–islet cell interactions.

In parallel to the blood vascular network, a system of vessels that drain interstitial fluid 

forms the lymphatic vessel system. Delivery of a fibrin-binding VEGF-C variant to an ear 

cartilage defect model demonstrated an increase in lymphatic vessels, and delivery to a 

diabetic wound increased the rate of healing [178]. A primary function of the lymphatic 

system is immunological surveillance. Interestingly, islets and the central nervous system are 

among the few tissues thought to lack a lymphatic system [179, 180]. Some investigators 

have found a relationship between lymphangiogenesis and modulation of the immune 

response [181, 182]. Lymphangiogenesis has not yet been studied to the extent of 

angiogenesis, although the lymphatics may play an important role in successful tissue 

regeneration. While single or sets of factors may be able to stimulate a pro-angiogenic 

response, and sequential delivery may potentiate these responses, cells can also powerfully 

orchestrate the factors in the tissue milieu.
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2.5. Co-culture and co-transplantation of islets with pro-angiogenic supporting cells

Co-culturing and co-transplanting vascularization supporting cells can promote network 

growth around implanted islets or within islets (sometimes with the participation of residual 

donor ECs). Therefore, co-culturing and co-transplanting can facilitate anastomoses between 

intra-islet vasculatures and the recipient vascular system. Mesenchymal stem cells (MSCs) 

and fibroblasts are the most commonly used cell types for co-culture and co-transplantation 

to support ECs. These cells actively participate in vascularization at the cellular level and 

have a unique role in vascular regeneration. ECs comprise the blood-contacting surface in 

vessels. Moreover, ECs attract other supportive cells to promote the formation of new blood 

vessels through paracrine secretion and signaling [183]. The main functions of MSCs in 

vascularization include the secretion of proteases to degrade ECM for EC migration and 

sprouting [184], enhancement of angiogenesis by up-regulating angiopoietin and VEGF 

expression in ECs [185], stabilization of vasculature by differentiating into pericytes [186] 

and suppression of immune or inflammatory responses [187, 188]. During angiogenesis and 

neovascularization, fibroblasts can generate diverse angiogenic factors such as VEGFs and 

FGFs to facilitate EC tube formation controlling blood vessel development [189]. Co-culture 

and co-transplantation of vessel-forming cells can be realized in different approaches.

First, we consider formation of a simple mixture of islets and supporting cells (Figure 6 a). 

Co-transplantation of porcine islets and MSCs has been performed under the kidney capsule 

and subcutaneous space in diabetic mice and primates [190, 191]. Oh et al. studied a bone 

marrow-derived mononuclear spheroid culture method to generate highly angiogenic cells. 

When co-transplanted with islets, the cure rate and the mean blood glucose were improved 

compared with mononuclear cells that did not spontaneously incorporate into the spheroids 

or islets without support cells [192]. Before co-transplantation, islets and supporting cells 

can also be embedded in ECM scaffolds. MSCs and fibroblasts along with mouse and rat 

islets were loaded together in collagen and fibrin scaffolds for transplantation in the omental 

pouch and subcutaneous space of diabetic mice [193, 194]. Compared to islets alone, overall 

co-transplantation results include increased glucose-stimulated insulin secretion [190], 

higher graft oxygenation [191], enhanced angiogenesis and vascularization [191, 194], better 

glycated hemoglobin correction [191], earlier normoglycemia [190], improved glucose 

tolerance [190, 193], and increased insulin content [190]. The simplicity of mixing cells 

before transplantation is a notable advantage for the translatability of these approaches.

Next, we consider co-aggregation of islets and supporting cells (Figure 6 b). Takebe working 

in the Taniguchi group demonstrated that vascularization of different types of tissue 

fragments can be achieved by co-aggregating with human umbilical vein ECs (HUVECs) 

and human MSCs [195–197]. When seeding on Matrigel or in a U-bottomed conical 96-well 

plate, pancreatic islets, HUVECs, and MSCs self-assembled into a miniaturized organoid in 

which HUVECs and MSCs played key roles in vascularization [198]. The vascularized islets 

showed more intra-islet blood vessels and better blood glucose control. In addition, a 

composite pellet of mouse islets and human bone marrow-derived multipotent adult 

progenitor cells (MAPCs) showed a higher blood vessel area, density, and vessel/islet ratio 

when transplanted under the kidney capsule [199].
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Vascularization supporting cells can also be coated on islets (Figure 6 c). Rat islets were 

coated with rat ECs before transplantation under the kidney capsule in diabetic rats [200]. 

Similarly, human islets were also coated with human dermal microvascular ECs (HDMECs) 

and human bone marrow-derived MSCs [201]. Rat MSC sheets, created with temperature-

responsive cultureware, had rat islets attached before lifting to co-transplant subcutaneously 

into SCID mice. MSC–islet composite sheets displayed greater stimulated insulin secretion 

in vitro. Only when 2,000 islets were combined with MSC sheets glucose was corrected in 
vivo for more than three weeks compared to 1,000 islets with MSC sheets, 2,000 islets with 

MSCs (not in sheet form), or 2,000 islets alone [202]. Anchoring VEGF to a heparinized 

islet surface has been used to increase the attachment of ECs in vitro [203], as a preparation 

for accelerating vascularization. Clearly coating islets with supporting cells can improve 

engraftment.

Recently, the Sefton group created a unique and elegant way to deliver islets with coated 

vascularization supporting cells. In this protocol, type I collagen (3 mg/mL) tubing sections, 

encasing rat islets (~1 islet per module), were seeded with HUVECs on the collagen surface 

(Figure 6 d). Seven hundred fifty islet modules were subcutaneously implanted into SCID-

Beige mice, and a vascularized microenvironment was developed [41, 204]. Coating 

approaches offer the advantage of even distribution of cells across the islets being prepared 

for transplantation. All these results suggest that the addition of vascularizing support cells 

to islets can improve transplantation success, and this should be further investigated.

3. Challenges, Perspectives, and Emerging Approaches

3.1. Selection of Vascularizing Cells

Although promising co-transplantation and co-culture systems have been demonstrated in 

the literature, several challenges remain from a scientific and translational point of view. The 

source and history of supporting cells (such as donor age) can influence cell function [205, 

206]. Compared with younger donors, cell morphology and viability of MSCs from older 

donors can be varied. In addition, proliferation, trophic factor secretion, and angiogenic 

potential of aged MSCs are significantly reduced [207–209]. These variables can affect the 

results of preclinical experiments while also hampering clinical translation. The methods to 

acquire sufficient autologous human vascular or supporting cells are still under development. 

Induced pluripotent stem cells (iPSCs) have tremendous potential for transplantable tissues, 

thereby prompting increasing numbers of investigators to utilize them in vascular 

bioengineering studies [210]. Starting somatic cells (e.g., dermal fibroblasts or fat stromal 

fractions) can be acquired in minimally invasive procedures. After expressing genes Oct-4, 

Sox2, Klf4, and c-Myc to induce pluripotency [211], it is possible to expand the cells in 
vitro [212] for differentiation toward vascular cells [213–217], as well as the endocrine cells 

of the islet [218–224]. There remain concerns about possible uncontrolled differentiation 

and proliferation arising from cells that escaped the intended differentiation program. 

Despite these concerns, as well as further protocol development being required, iPSCs avoid 

the ethical concerns of embryonic stem cells and do not have the same functional decline 

with donor age. It is likely that iPS cells will continue to develop as part of the specific 

tissue engineering solution to vascularization and to general tissue shortages.
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3.2. Determination of Transplantation Site

Selection of the site to test an engineered tissue can affect the outcome and the translatability 

of the results. Transplantation sites vary in the degree to which they are naturally 

vascularized, as well as the potential to vascularize a transplanted tissue or device. As such, 

the site affects what prevascularization treatments may be required to induce a sufficient 

vessel network including interfacing with location-associated inflammatory responses [225]. 

Many transplantation sites used to evaluate vascularization, such as the kidney capsule [226, 

227] or within the central nervous system [228], although conducive to islet engraftment, are 

not applicable to human clinical treatment. Therefore, the methods tested in these sites 

should be evaluated in other practical transplantation sites such as the subcutaneous space or 

peritoneal cavity.

Despite agreement that an extrahepatic site for islet transplantation is needed, there are still 

relatively few studies that compare candidate sites. In a recent well-designed study by 

Weaver et al., an epididymal fat pad site was superior in terms of islet survival, islet 

vascularization and inflammatory reaction when compared to a small bowel mesentery and 

especially when compared to the subcutaneous site [158]. All sites were transplanted with 

unloaded PEG or PEG hydrogels containing proteolytically releasable VEGF to improve the 

vascularity of the encapsulated single donor islets. Thus, the site should be considered in 

light of the preclinical evaluation potential and translatability.

3.3. Expedient vascular regeneration

Understanding how quickly an islet needs to be vascularized to prevent an ischemic loss of 

islets may inform vascularizing strategies. Islets in the native pancreas are integrated with a 

vascular system consisting of different types of cells (i.e., ECs and fibroblasts) [229]. It is 

therefore of great importance to quickly achieve the anastomoses between donor islets and 

recipient blood vessels or regenerate sufficient vasculatures around encapsulation devices. 

Unaided re-vascularization of islets occurs over a period of 7-14 days post-transplantation to 

reach a stable vascular density [53, 230]. A benchmark for studies should be accelerating the 

establishment of a vascular network, ideally within seven days. During the avascular period, 

transplanted islets are solely dependent on diffusion to receive oxygen/nutrients and clear 

metabolic waste [42]. Furthermore, encapsulated islets can, at best, have diffusive processes 

from the surface of the device to regenerated blood vessels.

In addition to in vivo prevascularization strategies discussed earlier in this review, in vitro 
preformed vasculatures might aid islets in the days following transplantation. Previous 

reports have shown that in contrast to the random mixture of ECs in ECM, predefined 

parallel-patterned EC tubes promoted the vascularization and overall function of co-

implanted human hepatocytes [231–234]. Similarly, Hiscox et al. developed a device where 

a layer of hydrogel containing islets was surrounded above and below by layers containing 

vascular segments isolated from the fat pad one week before transplant [120]. These studies 

imply that an “ideal” organization of vascular architectures might exist and could be 

preformed to facilitate the vascularization and anastomoses of islets.
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Even if a preformed vasculature and a preconditioned recipient site are combined, driving 

quick anastomosis, there will still be a period of time that the transplanted tissue is not yet 

perfused and is ischemic. To support islet survival during this period, it may be useful to 

supply oxygen [235]. Following transplantation, oxygen can be supplied in gaseous form 

directly [236–238] or generated by chemical reaction [239], electrochemically [240], or 

photosynthetically [241]. Before transplantation, the oxygen tension can also be controlled 

to reduce anoxia during culture [242]. Even before digestion, the donor pancreas can be 

oxygenated with techniques such as persufflation [243]. Oxygen supplementation techniques 

post-transplant may be useful to support fully encapsulated islets that will never vascularize 

and are therefore an important line of investigation for which the reader may find several 

excellent reviews with more information [235, 244, 245].

3.4. Manipulating the spatial positions of islets and vascular structures

Controlling the spatial positions of islets and adjacent vascular structures in vitro, which 

mimics their interactions and density in the pancreas [246, 247], might be an effective way 

to secure optimal diffusion kinetics in and out of the graft. The spatial density of islets can 

affect survival as a result of increased oxygen consumption with higher densities of cells 

[248–250]. Although production of proangiogenic factors by islets has been shown to 

increase in hypoxic environments [251–253], islet vascularization may still be reduced 

[254]. Three-dimensional (3D) printing is a powerful tool to achieve spatial control of cells 

[255]. Therefore, 3D printing may be a useful tool to accurately control the homogeneous 

spacing of islets, rather than a bulk average that varies spatially.

Over the last decade, various methods have been developed to spatially deposit cells and 

materials in 3D [256–258]. Among different 3D printing techniques, sacrificial molding is 

particularly suitable for generating hollow channels in which ECs are perfused and adhered 

on the channel walls to form an endothelial lining structurally similar to blood vessels 

(Figure 7 a) [259–262]. Other types of cells (such as cardiomyocytes, hepatocytes, MSCs, 

and fibroblasts) can be co-printed or added later into the interspaces between the endothelial 

channels [258–260, 263, 264] (Figure 7 b). ECs deposited between the channels can also 

anastomose to the 3D-printed channels to create perfused capillary structures in vitro [265]. 

A wide range of heterogeneous cellular constructs have been printed, and several reports 

indicated the beneficial effects of endothelial channels as blood vessel-like structures [258, 

264]. Application to islet transplantation and encapsulation has been assessed for a variety of 

structures that can exhibit features unique to 3D printing [266–271]. In a recent study, 

Chen’s group demonstrated that for a rodent model of hindlimb ischemia, parallel 

endothelial channels integrated with the recipient and recreated blood perfusion, whereas 

random endothelial patches did not show any therapeutic effect [100] (Figure 7 c). These 

results indicate that 3D printing of islets and endothelial luminal networks might provide a 

biomimetic vascular-like network that quickens anastomoses and re-vascularization of islets.

3.5. Avoiding poorly formed vasculature

Growing a vasculature into or around a transplanted tissue does not ensure that it will be 

able to provide all the functions required by the cells for a long period of time. Rather, the 

vasculature needs to transition from a nascent structure to a stable one that is able to adapt to 

Bowers et al. Page 17

Acta Biomater. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the tissue needs [272]. This concept has been assessed in vasculature targeted cancer 

treatments where both blocking angiogenesis and guiding the existing vasculature to a more 

stable state have been investigated to reduce patient mortality [273]. In the case of 

transplanted islets, some studies have compared the developed vasculature to that of the 

native islets [274].

Studies that examine the quality of vessel network formation to correlate with graft success 

are needed. It is possible to measure vessel networks with the dorsal skinfold window 

chamber [275, 276], mesentery windows or exteriorization [277, 278], contrast-enhanced 

MRI [279, 280], contrast-enhanced ultrasound [281], live cell markers [282–284], and 

immunostaining of tissues [285–287]. Quantification of parameters such as perfusion [288–

290], flow dynamics [291–293], tortuosity [294, 295], fractal parameters [296], branching 

[297–299], endothelial permeability [300–303], and length and diameter [304, 305] can all 

be measured to determine the status of a vessel network. In some cases, automated analysis 

is possible [290, 295–297, 299, 304–307]. Buitinga et al. developed a smart analysis method 

where the vessels (and cell arrangement) were quantified in islets. Capillary structures were 

binned based on their radial location in the islet [247], adding value to the comparison of 

treatment groups. While the target for bare islets is a native vasculature, it is mostly 

unknown what is required for encapsulated islets, except an increase over basal vessel 

network density in tissues such as skin. Quantitative vascular metrics are, therefore, 

important to set requirements for vasculature in all types of islet grafts.

Some efforts aim to avoid needing to induce a vascularization at all. Interesting techniques 

are being investigated to address the diffusion challenge using convective rather than 

diffusive flux. Using an intravascular device would reduce the need for microvascular 

networks around the device because transport could be driven by ultrafiltrate convection 

through the islet-containing chamber [308]. Another promising approach to circumvent the 

diffusion barrier is to use a nanocoating that permits vascularization while camouflaging 

surface antigens [309, 310]. Successful β-cell replacement is a challenging goal that may not 

be feasibly addressed with a single technique. These emerging techniques, coupled to 

growing a robust vasculature, have various surmountable challenges to be addressed before 

clinical viability.

3.6. Biological Challenges – Immune–Vascular Cooperation and Hyperglycemia

Throughout this review, it has been implied that more vasculature will benefit the 

transplanted tissue or device. It is important to keep in mind, however, that the benefit of 

increased vasculature has limits. It is key to consider not only short term but also long-term 

effects. If a treatment shortens the time to normoglycemia, while hindering the long-term 

cure, it might be necessary to add another treatment that will improve long-term graft 

stability [311]. The vascular system is constantly adapting to needs in tissues as diverse as 

islets, muscles, and the brain. During inflammation, the vasculature grows to support tissue 

regeneration and facilitates access from the systemic immune system. Unfortunately, this 

may also increase exposure of implanted materials to the immune system.

Immune and vascular contributions to the post-implantation period must be balanced. 

Vascularization of transplanted tissues is known to affect the type of immune response that 
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occurs [312], where an abundance of vasculature can cause inflammation and β-cell death 

[313, 314]. A certain degree of immune system involvement is important to induce healing 

[315–320] and stable vasculature. Anti-inflammatory or pro-regenerative monocytes [321–

324], smooth muscle cells [325], and other pericytes [326, 327] can support blood vessel 

maturation. Furthermore, Christoffersson et al. showed that neutrophils, a less commonly 

identified pro-regenerative cell type, are required for a native-like vascular structure to form 

in islets transplanted on striated muscle [274]. One way to modulate the immune system is 

to prevent protein adsorption with zwitterionic materials [328–335]. Zhang et al. showed 

that compared to a low fouling poly(2-hydroxyethyl methacrylate) hydrogel, the ultra-low-

fouling zwitterionic poly(carboxybetaine methacrylate) hydrogel not only had a reduced 

fibrotic layer but also had greater vasculature density near the hydrogel [336]. This effect 

appeared to be due to macrophage polarization [336].

The innate and adaptive immune systems are known to participate in vascularization. When 

using HUVECs as the source of ECs in preclinical models, it is necessary to use an 

immunocompromised model to prevent rejection. While formation of a functional 

vasculature in these animals suggests that the cells of the adaptive immune system are not 

essential participants in the response, it is quite likely that the response is altered. Subsets of 

T-cells are capable of directly producing VEGFs [337, 338]. Both T- and B-cells exert their 

immune functions and participate in modulating the angiogenic environment partly by 

interacting with effector subsets of the innate immune system (i.e., macrophages and 

neutrophils) [339, 340]. A revascularizing tissue in an immunocompromised mouse may be 

capable of achieving healing and measurable vascularization, but it is in an environment that 

more closely represents an immunosuppressed individual. Thus, we must be careful about 

how far we extrapolate these results without first verifying them in fully immune competent 

models.

EC is a key mediator of both immunity and blood vessel growth. ECs form sprouts that 

become new blood vessels as well as participating in vascularization signaling pathways. 

ECs also participate in immunity during extravasation of cells from the blood to the tissue. 

During this process, not only inflammatory cells can be hindered or allowed through by ECs 

but the expression of stimulatory molecules may also modulate the activation state of cells as 

a result of contact with the endothelium. Furthermore, functional differences are known to 

exist between primary ECs and immortalized EC lines [341].

The inter-communication of the vascular and immune system has another level of 

complexity when sites and species differences are considered. Some immunosuppression 

drugs such as rapamycin [342, 343] are known to interfere with vascularization. However, 

even with immunosuppression (i.e., daclizumab, tacrolimus, and sirolimus), allogenic islets 

intraportally transplanted into rhesus macaques were able to vascularize by 30 days post-

transplantation [344]. Furthermore, other immunosuppressive drugs (including cyclosporine, 

RS-61443, and prednisolone) have been shown to delay or reduce but not prevent intra-islet 

capillary formation [345–348]. Toxicity of immune suppression drugs to islets has also been 

shown [349–353] and should be taken into consideration in transplant schemes [354, 355]. 

Interestingly, sirolimus has been associated with decreased VEGF release from β-cells, 

perhaps forming the link between sirolimus and reduced transplanted islet viability [356].
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In some cases, xenotransplantation can last for a period of time without needing 

immunosuppression while still gaining access to nutrients, such as arteriovenous shunt 

devices [357]. Similarly, in some reports of planar or tubular encapsulation systems made of 

PTFE [238, 358, 359], acrylic copolymer [360], alginate [361], and polyethersulfone [362], 

as well as spherical capsules made of alginate [359, 363–367], survival has been observed 

without immunosuppression or using an immune compromised recipient. Preclinical 

investigations have shown that prevascularization of subcutaneous sites can create spaces 

where allogeneic islets can survive without immunosuppression [135]. Subcutaneously 

transplanted islets without preconditioning did not survive in this study, perhaps due to a 

combination of allo-immunity (which may have been ameliorated by FGF-2-dependent 

MSC recruitment [368]) and a lack of vascularization [135]. In a different material-based 

prevascularizing scheme without delivered factors during the preconditioning, 

immunosuppression was required to prevent islet rejection in an allogenic model [132]. 

Relevant to the goal of allowing vascularization for xenogenic transplants, some glucose 

correction has been noted without pharmacologic immunosuppression or polymer 

encapsulation in a human trial, with Sertoli cell co-transplantation [369]. Endothelialized 

collagen modules have been able to increase the vascularity surrounding transplanted islets 

into syngeneic or immuno-suppressed allogenic rat recipients compared to collagen modules 

without ECs or free islets, respectively [370], supporting an idea that some vascularizing 

strategies can function with or without immunosuppressive drugs present.

It is also important not to overlook the existing conditions of the recipient of a treatment. In 

the case of islet transplant, microvascular complications are common in those with 

longstanding hyperglycemia [371, 372]. Hyperglycemia can cause dysregulated 

microvascular remodeling (increased or decreased, depending on the tissue) [373, 374]. A 

high glucose environment, or the effect of previous hyperglycemia, is likely to be 

encountered by islets following transplantation that may cause anti-angiogenic factors to be 

secreted [375]. Vascular pericytes have been shown to initiate apoptosis through PKC-delta 

SHP-1- or NF-kappaB-dependent pathways when exposed to hyperglycemia [376]. The 

diabetic environment adds an additional challenge to finding the appropriate level of 

immune-regulated therapeutic vascularization.

Some challenges with islet transplant, or cell transplant in general, may interfere with a clear 

understanding of experiments intended to elucidate vascular contributions to graft success. 

Differences in success in rodents versus larger animals may be related to many factors 

including difficulty of completely digesting the pancreas to harvest pure islets [377]. On a 

related note, although an argument can be made for larger islets recruiting intra-islet 

vasculature due to a greater hypoxic response from the center of a larger islet [378], when 

islets are to be encapsulated and will never be vascularized, smaller islets may be more 

viable [379, 380]. While delivering islets in a growth factor-supplemented matrix usually 

supports islet transplant, the site and the recipient species may be a factor to consider. For 

instance, islets transplanted into the porcine gastric submucosa were not improved by the 

inclusion of Matrigel [381].

Finally, it may also be important to acknowledge here that interpretation of results in 

literature is not always the same in retrospect. For instance, some early experiments that 
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utilized alginate as the encapsulating material may have been conducted before the 

knowledge that highly purified alginates are necessary [382]. Moving forward, some 

experiments may need to be repeated for input into the immunoisolation membrane design 

process.

4. Conclusions

Rapid advancements have been made in the closed-loop artificial pancreas [383–385], oral 

insulin formulations [386], and smart insulin [387–390]; yet, none so far have achieved the 

physiological control over an extended period of time that a pancreatic islet can provide 

[391]. The promise of higher patient quality of life and reduced healthcare costs motivate 

progress toward the ideal curative treatment. Our understanding of islet biology includes an 

intricate connection between the endocrine cells of the islets and the unique intra-islet 

capillary network. The quicker this can be developed in a transplanted islet, the greater is the 

probability of graft success through exchange of oxygen, nutrients, and wastes for islets, 

ensuring an adequate dispersal of secreted insulin.

Accelerated vascularization can be accomplished by tuning material physical properties, 

delivering factors, and delivering support cells. When a vessel network is developed before 

implantation of the therapeutic cells, anastomosis with the host vasculature can further 

reduce the time to function. The choice of implant site is important for the evaluation of 

therapeutic vascularization strategies. Cell sources for vascularized tissue-engineered 

constructs are an area of continued development.

Inadequate transplantable tissue supply from organ donation encourages consideration of 

alternate sources of cells including xenogeneic or stem cell-derived cells. These cell sources 

benefit from a robust encapsulation membrane to control immune responses and control the 

location of the foreign cells. Stem cell-derived islet-like clusters do not contain ECs unless 

the protocol specifically adds them. Therefore, in a stem cell-derived immunoprotected 

transplantation scheme, it is imperative that the host vasculature be as developed as possible 

to provide nutrient supply and waste removal from the encapsulated cells. If the 

immunoprotection provided is robust, any increase in inflammatory activity enabled by a 

richer vasculature should be tolerable. A possible solution to this immunoprotection–

vascularization paradox is conformal coatings, which can camouflage surface antigens to 

reduce immunological recognition, while not necessarily preventing vessel penetration. An 

example of this is a study by Rengifo et al., where a three-layered conformal coating 

prevented complete graft rejection in a fully MHC mismatched murine model, while 

allowing vessel infiltration [392]. Although it was not clear from the results whether the 

islets that were integrated with blood vessels had complete and robust coatings [392], it 

nonetheless provides for the possibility that camouflaging surface antigens could prevent 

rejection even if cell infiltration is still permitted.

In conclusion, we have summarized strategies to accelerate, shape, or develop vasculature 

for supporting the survival of transplanted islets. These strategies are also applicable to other 

microtissues, therefore being useful for a collection of tissue engineering problems including 

modular bio-printed tissues and organs [393]. A successful strategy for islet vascularization 
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is likely to inform the field of regenerative medicine as we move toward being able to create 

functional transplantable tissues.
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Statement of Significance

Insulin-dependent diabetes affects more than 1.25 million people in the United States 

alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose 

to normal levels. During preparation for transplantation, the specialized islet blood vessel 

supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a 

device, further limiting delivery of nutrients and absorption of hormones. To overcome 

these issues, this review considers methods to rapidly vascularize sites and implants 

through material properties, prevascularization, delivery of growth factors, or co-

transplantation of vessel supporting cells. Other challenges and emerging technologies 

are also discussed. Proper vascular growth is a significant component of successful islet 

transplantation, a treatment that can provide life-changing benefits to patients.
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Figure 1. Mass transfer to islets is limited by isolation and encapsulation.
Compared to the native pancreas (a), islets experience reduced diffusion to the majority of 

cells (especially in the core of the cell mass) as a result of loss of blood perfusion following 

isolation from the acinar tissue (b). Furthermore, encapsulation of any kind 

(microencapsulation shown here) increases the distance of islet cells to the surrounding fluid 

or blood vessels (c). Dark blue represents greater mass transport. Drawings not to scale.
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Figure 2. Material properties that influence vascularization.
The thickness of the avascular fibrotic layer (shown in light red) can be reduced by 

constructing an implant that allows cell migration into the membrane (a). Larger pores can 

facilitate more blood vessel investment than pores that are only sufficiently large enough to 

allow blood vessels to form (b). Increases in nanotopographical roughness can increase 

vascularization compared to smooth substrates (c).

Bowers et al. Page 47

Acta Biomater. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. ECM materials that can be used to scaffold and vascularize transplanted islets.
Fibrin scaffolds are polymerized from fibrinogen present in the blood plasma (a). Matrigel is 

isolated from a murine sarcoma (a). Collagen can be isolated from many sources, with skin 

shown here as an example (a). Decellularized pancreatic tissue may be a natural scaffold for 

islet transplant (b). Matrix materials can be selected and combined to promote islet 

vascularization and health.
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Figure 4. Preparing a site by prevascularization to improve engraftment.
Preimplantation of a material stimulates vascular enrichment (a). The islets can then be 

introduced into the preimplanted device (b) or the device can be removed to create a space 

left by the device that the islets can be introduced into (c). All of these approaches result in a 

space for the islets that has a greater vascular supply at the time of transplantation than an 

unprepared site.
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Figure 5. Release of angiogenic factors to drive implant angio- or arteriogenesis.
Angiogenesis is the formation of new capillary sprouts from existing vessels and can be 

driven by factors such as VEGF (a). Arteriogenesis is the maturation of blood vessels, often 

characterized by the addition of support cells to an endothelial tube and the increase in 

lumen diameter. Arteriogenesis can be driven by factors such as PDGF-BB (a). Multiple 

factors can also be sequentially released (e.g., VEGF then S1P, VEGF then PDGF) to push 

both of these vessel network expansion paradigms (a,b).
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Figure 6. Co-transplantation of vascularization supporting cells to improve engraftment.
Vascularization supporting cells can be mixed with islets or cell aggregates before 

transplantation (a). Vascularization supporting cells can be included with hormone-

producing cells during aggregation (b). Vascularization supporting cells can be coated on 

islets or cell aggregates before transplantation (c). It is also possible to coat vascularization 

supporting cells on or in islet-matrix modules (d).
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Figure 7. Organization of vascular structures in engineered environments.
Engineering of vascular regeneration can be accomplished utilizing some emerging 

approaches. Tubular voids in constructs can be formed and then endothelialized (a). Three-

dimensional printing can be used to arrange vascular tissues and the islets or cell clusters in 

logical patterns (b). Endothelialized modules can be formed in vitro using microfabricated 

molds.
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