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Abstract

As computational capabilities have advanced, radiologists and their collaborators have looked for 

novel ways to analyze diagnostic images. This has resulted in the development of radiomics and 

radiogenomics as new fields in medical imaging. Radiomics and radiogenomics may change the 

practice of medicine, particularly for patients with colorectal cancer. Radiomics corresponds to the 

extraction and analysis of numerous quantitative imaging features from conventional imaging 

modalities in correlation with several endpoints, including the prediction of pathology, genomics, 

therapeutic response, and clinical outcome. In radiogenomics, qualitative and/or quantitative 

imaging features are extracted and correlated with genetic profiles of the imaged tissue. Thus far, 

several studies have evaluated the use of radiomics and radiogenomics in patients with colorectal 

cancer; however, there are challenges to be overcome before its routine implementation including 

challenges related to sample size, model design and interpretability, and the lack of robust 

multicenter validation set. In this article, we will review the concepts of radiomics and 

radiogenomics and their potential applications in rectal cancer. Radiologists should be aware of the 

basic concepts, benefits, pitfalls and limitations of new radiomic and radiogenomics techniques to 

achieve a balanced interpretation of the results.
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1. Introduction

As computational capabilities have advanced, radiologists and their collaborators have 

looked for novel ways to analyze diagnostic images. This has resulted in the development of 

radiomics and radiogenomics as new fields in medical imaging.

Radiomics involves the selection and segmentation of an area of interest on imaging, and 

subsequently the high-throughput extraction of quantitative data from the area of interest 

using a computer program (1). The quantitative data is analyzed with a specific clinical 

question in mind, such as correlation with tumor histology or genetic variants (2), 

classification of benign and malignant tissue (3), prediction of response to therapy prior to 

initiation (4, 5), and assessment of response to therapy following its completion (6).

In the current era of personalized medicine in oncology, while genetic and molecular 

analysis improves our ability to predict which treatment will work best for a specific patient, 

it comes at a high cost and has limited availability. In this context, the concept of 

radiogenomics which involves the identification of qualitative and/or quantitative imaging 

phenotypes that are characteristic of a specific genetic profile has the potential to 

significantly improve decision making in treatment selection and thereby improve patient 

outcomes (8, 9).

Radiomics and radiogenomics can dramatically change the practice of medicine, particularly 

in oncology. In this article, we will review the concepts of radiomics and radiogenomics and 

their potential applications in rectal cancer.

2. Radiomics

a. General concepts

i. Definition—Radiomics corresponds to the extraction and analysis of numerous 

quantitative imaging features from conventional imaging modalities in correlation with 

several endpoints, including the prediction of pathology, genomics, therapeutic response, 

and clinical outcome (1).

ii. Workflow process—The radiomics workflow encompasses the following steps: (a) 

image acquisition; (b) creation of a dataset with appropriate clinical and radiological data; 

(c) export of DICOM images from PACS (Picture Archiving and Communication System) to 

the computer software that will be used to perform the radiomics analysis; (d) image 

segmentation of the region of interest (ROI), which corresponds to one slide of the image or 

volume of interest (VOI), the volume of a specific area; (e) feature extraction; (f) selection 

of the most relevant features to generate the appropriate model to predict the chosen 

endpoint; and (g) validation of the model with an internal and/or external dataset (1). Figure 

1 summarizes the main steps in the radiomics workflow.

During imaging acquisition and dataset creation, it is important to identify the appropriate 

clinical variables and include high-quality imaging exams. To develop and validate radiomic 

models, large datasets are needed. As variations in the imaging protocol may cause 

differences in the textural features unrelated to biological changes and consequently impair 
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the accuracy of the algorithm (11), it is important to include exams with similar 

reconstruction algorithms. The use of correction and calibration algorithms may be helpful 

to enhance retrospective datasets (12).

Frequently, the selected imaging exams are exported from the PACS to a radiomics software 

program for analysis. Several software packages are available for radiomics analysis, some 

as a free open source tool and others that are sold commercially (12).

Image segmentation of the target ROI or VOI (the entire volume of the area is preferable) 

can be done manually, automatically or semi-automatically. There are advantages and 

disadvantages to each approach. Automatic and semi-automatic segmentation methods have 

higher repeatability but are not as precise as manual segmentation in some situations, e.g., 

delineating the rectal tumor bed after neoadjuvant therapy. On the other hand, manual 

segmentation is prone to inter-reader variability and is much more time consuming (13). 

There is ongoing research to develop improved segmentation tools that can provide fast, 

accurate, and less time-consuming workflows, which will significantly improve radiomics 

research.

iii. Feature extraction and categories—Quantitative information derived from the 

voxels of segmented images are called “features.” A high number of features can be 

extracted from segmented images. Following feature extraction, the features can be 

evaluated in different ways and grouped into different categories.

Morphological features depict the size, shape and location of the segmented area (12). 

Textural features evaluate the distribution and relationships of the pixels or voxels. Several 

methods can be used to evaluate textural features: (a) statistical, which evaluates the 

distribution of the grayscale values; (b) model-based, which evaluates the irregularity of the 

area; and (c) transform-based, which transforms a spatial information into frequency (14).

Of these, the statistical method is most commonly used, and the number of stages required to 

obtain the quantitative information in that model determines the “order” (14). First-order 

statistical textural analysis is based on an intensity histogram that takes into account the 

pixel values, regardless of their interactions with the neighboring pixel values, and provides 

no information on the spatial distribution of pixels (12, 14, 15). The most common first 

order parameters (Figure 2) are:

• Mean: average intensity of the pixels in the ROI/VOI. The higher the mean, the 

whiter the image.

• Standard deviation: dispersion from the mean. High values indicate a wide range 

in pixel intensity across the ROI/VOI.

• Skewness: asymmetry of histogram It measures the asymmetry of the 

distribution of the values in the image comparing to the mean of the values. 

Positive skewness indicates that the right side of the histogram is longer than the 

left, while negative skewness indicates that the left side is longer than the right.
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• Kurtosis: magnitude of pixel distribution. Positive kurtosis indicates that the 

histogram is taller than the normal distribution, and negative kurtosis indicates 

that the histogram is flatter than the normal distribution.

• Entropy: irregularity of the structure. High values indicate a more heterogeneous 

area, while low values indicate a more homogeneous area (16).

Second-order statistical texture analysis considers the spatial relationship between 2 pixels. 

The second-order statistical features are classified into 3 classes: (a) grey level co-

occurrence matrix (GLCM), (b) run length matrix (RLM) and (c) grey level size zone matrix 

(GLSZM). GLCM takes into account the frequency of specific gray values along a distance 

or direction, RLM takes into account the length of consecutive pixels or voxels with the 

same grey values in a specific direction, and GLSZM takes into account the length of 

consecutive pixels or voxels with the same grey values in all directions.

Superior order statistical texture analysis takes into account the neighborhood gray 

difference matrices and the relationship between 3 or more pixels (12, 14, 15).

Artificial intelligence and machine learning can be helpful in the evaluation of radiomic 

features. Deep learning convolutional neural networks can perform massive texture analysis 

and training of the data to create prediction algorithms. In addition, clinical and pathological 

variables can also be included in radiomic models to enhance their accuracy (12). After the 

construction of a model, validation is a final and extremely relevant step to better assess the 

performance of the model. Validation can be performed with internal or external datasets.

iv. Limitations and challenges to be overcome—There are several limitations and 

challenges to overcome before radiomics can be implemented into clinical routine. Protocol 

and scanner variations between different institutions and even within the same institution can 

reduce the robustness of the models. To date, radiomic studies that have been published have 

featured variations in the methodology used for texture extraction and model interpretation. 

Furthermore, numerous features can be extracted, and frequently the number of features is 

larger than the study population, which can lead to overfitting of a radiomic model. Lastly, 

unbalanced data is frequent in clinical practice and may necessitate the use of oversampling 

techniques which may possibly artificially improve the performance of the radiomic model 

(17, 18).

Internal and especially external validation is of key importance to assess the accuracy of 

radiomic models. However, data sharing among institutions is met with patient privacy 

challenges and can be a limiting factor. Further studies are necessary to overcome these 

limitations. The use of a standard imaging protocol, reproducible and consistent 

segmentation processes, and collaboration among various institutions to create a large 

annotated dataset will facilitate the establishment of reliable radiomic models.

b. Rectal applications

Several studies are already exploring the potential applications of radiomics in colorectal 

cancer (CRC). These applications can be categorized into the following groups: (a) 

evaluation of the repeatability of textural features; (b) prediction of pathological complete 
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response after neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer 

(LARC); (d) prediction of other pathological features; (c) prediction of survival; (e) 

prediction of genetic profile (radiogenomics).

i. Repeatability of textural features—Several studies have evaluated the inter- and/or 

intra-reader agreement among radiomic features in their population and have demonstrated 

high values of concordance (Tables 1-3) (28, 36-38, 43-47). Few studies have been 

performed to specifically assess the repeatability of texture features in CRC. Badic et al. 

showed that textural features obtained from contrast and non-contrast enhanced CT were not 

equivalent, and they concluded that both images should be included when available (48). 

Gourtsoyianni et al. conducted a study with a small sample size on the repeatability of MRI 

texture features in rectal cancer on MRI and showed that first order textural features and 

fractal parameters had higher repeatability than high order parameters (47). Horvat et al. 

demonstrated that inter-reader agreement was not significantly different between readers 

when comparing different magnetic field strengths (1.5T vs 3T) (25).

Consistency in the attainment of quantitative features is one of the most important 

characteristics of a robust radiomics model. Therefore, more data regarding repeatability are 

necessary to enhance the accuracy of radiomic models. This is particularly relevant for CRC, 

since the delimitation of the tumor and normal bowel wall can be challenging, particularly 

after neoadjuvant CRT.

ii. Prediction of pathological complete response after CRT in patients with 
LARC—Currently, the main clinical challenge in rectal cancer is to preoperatively diagnose 

pathological complete response in patients with LARC after neoadjuvant CRT. As 

approximately 25% of the patients will demonstrate complete response after CRT, the 

concept of nonoperative approach has emerged to be viable (19) and has been solidified (20) 

as an alternative to surgery. However, at present there is no reliable method to diagnose 

complete response. In this scenario, radiomics has emerged as a promising tool that may 

serve as an imaging biomarker for tumor response. Table 1 summarizes the main studies that 

have evaluated this issue.

Studies have demonstrated that several first-order radiomics features extracted from T2 

weighted images (WI) were associated with pathological complete response with area under 

the curve (AUC) values ranging from 0.67 to 0.91 (21-24). However, none of these studies 

created an advanced prediction model. Other authors have evaluated more complex radiomic 

features and created prediction models that demonstrated promising results (25-29). The 

AUC of these models in predicting pathological complete response ranged from 0.72 to 0.93 

(25-30).

T2WI has been the main sequence used in the segmentation of the ROI or VOI of the tumor; 

however, a few studies have used other sequences including T1WI, diffusion-weighted 

imaging (DWI) and apparent diffusion coefficient (ADC) maps (27, 29). Cui et al. developed 

a nomogram incorporating T2WI, contrast-enhanced T1WI and ADC maps as well as 

imaging findings on MRI (T-stage during primary staging MRI) the nomogram achieved a 

C-index (concordance index) higher than 0.95 in both the training and validation set (27). 
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Liu et al. developed a nomogram incorporating radiomics and tumor length on restaging 

MRI that showed an AUC of 0.98 (29).

Horvat et al. compared radiomics with conventional imaging interpretation and showed that 

the radiomics signature outperformed qualitative subjective analysis on diffusion weighted 

images and T2WI (25). Radiomics has also been shown to outperform quantitative 

assessment obtained on DWI and DCE (22).

While the majority of radiomic studies in patients with rectal cancer have used MRI-based 

features, two groups have exploited textural features extracted from computed tomography 

(CT) images. Chee et al. demonstrated that first order radiomics features from CT were 

associated with response to CRT (32), and Bibault et al. reported that a prediction model 

developed using deep learning had an AUC of 0.72 (28).

Despite the encouraging results, there is still a long way to go before radiomics can be 

implemented in clinical practice. The methodologies in these studies differ: some have 

involved mathematical corrections that may have resulted in overoptimistic results; a few 

performed internal validation; and only one performed external validation. Consequently, 

further studies, especially with large datasets as well as consistent methodology and 

validation, are needed to assess the potential of radiomics in the prediction of pathological 

complete response.

iii. Prediction of other pathological features—Besides the prediction of pathologic 

complete response to neoadjuvant CRT, studies have evaluated radiomics for the prediction 

of other pathological features based on the imaging features obtained during primary staging 

(Table 2). Some radiomic features extracted from CT (33) and MRI using T2WI (34) and 

ADC map (31) have shown promising results in the prediction of T-staging.

Radiomics has also been studied in the prediction of lymph node metastasis in patients with 

CRC using CT (35) and in patients with rectal cancer using endorectal ultrasound, CT and 

shear-wave elastography (36). In the first study, Huang et al. developed a nomogram using 

radiomic features, nodal status on qualitative CT and carcinoembryonic antigen (CEA) 

positivity; this nomogram achieved a C-index of 0.74 in training set and 0.78 in validation 

set (35). In the second study, Chen et al. produced several nomograms; the multiparametric 

nomogram obtained the higher performance (c-index of 0.87 in the training section and 0.86 

in the validation section) compared with the conventional nomogram that was based on 

enhancement changes in the tumor (36).

Two studies have assessed radiomics on CT to predict perineural invasion (37) and to 

differentiate high- from low-grade CRC (38). In the first study, nomogram incorporating a 

radiomics signature and CEA level which achieved a c-index of 0.82 (37). In the second 

study, radiomics had a moderate AUC (0.74-0.81) for differentiating high- from low-

histological grade CRC,; however, the performance among rectal tumors was higher than in 

colon tumors (AUC: 0.89 vs. 0.72) (38).

iv. Prediction of survival—Radiomics analysis based on 18F-FDG PET/CT (39, 40) 

and MRI (41,42) has also been used to estimate survival parameters in patients with CRC 

Horvat et al. Page 6

Abdom Radiol (NY). Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Table 3). Several radiomic features were found to correlate with survival and overall (39, 

40, 42). Meng et al. found that the model incorporating both radiomics and clinical data 

obtained the best performance (41). Radiomics also was associated with the presence of 

synchronous metastasis in patients with rectal cancer, with AUC above 0.80 for the models 

that associated clinical variables (43).

3. Radiogenomics

As the interest in genetic testing has grown over the last several decades, the need to match 

diagnostic imaging to gene expression patterns of different cancers has emerged as a critical 

area of research. In radiogenomics, qualitative and/or quantitative imaging features are 

extracted and correlated with genetic profiles of the imaged tissue (8). The development of 

high quality, reproducible radiogenomics profiling tools has tremendous potential to further 

the role of imaging biomarkers, particularly in oncologic imaging.

To date, there is relatively limited published literature on radiogenomics in CRC. One area 

of radiogenomics in CRC that has gained traction is the KRAS mutation status for a given 

patient. KRAS mutations in CRC are present in approximately 40% of cases (49) and are 

associated with low responsiveness to drugs targeting epidermal growth factor receptors 

(EGFR). Currently, the published literature on radiogenomic features of KRAS status in 

CRC has focused on both the primary neoplasm and distant metastases (49-56). It is worth 

mentioning that high concordance, on the order of 96% and 97%, has been reported for the 

KRAS status of primary tumors and metastases in a given patient (57, 58), which implies 

that when a CRC metastasis has been biopsied and KRAS status has been determined, it is 

almost always the case that the primary tumor will have the same KRAS mutation status.

In a cohort of patients with rectal cancer being evaluated with MRI, Shin et al. (49) found 

that tumors with KRAS mutations are associated with polypoid morphology, increased axial 

length, increased axial-to-longitudinal tumor ratio and N2 nodal status. An additional study 

by Lubner et al. (59) involved studying the radiomic features of hepatic metastases in CRC 

using texture features and included a radiogenomic analysis to identify associations of the 

radiomic features with KRAS mutations. They found that the skewness feature was inversely 

associated with the presence of a KRAS mutation.

Beyond CT and MRI, a number of studies have examined the role of 18F-FDG PET in the 

radiogenomics assessment of KRAS mutations in CRC. Mao et al. found that CRC liver 

metastases had a higher SUVmax when KRAS mutations were present on both early and 

delayed acquisitions (50). Kawada et al. limited their analysis to only tumors greater than 10 

mm in size and reported that KRAS mutation can be reliably predicted with an accuracy of 

71.4% using an SUVmax cutoff of greater than 6.0 in their cohort (53). Lastly, Chen et al. 

reported in two studies that higher SUVmax and TW40% were associated with KRAS 

mutated tumors (56, 60). They also reported an association with these parameters in TP53 

mutated tumors in one of those studies (60). However, a number of studies have refuted 

these findings and found that PET parameters could not predict KRAS status in a 

meaningful way (52, 55, 61). In summary, the role of 18F-FDG PET in radiogenomics for 
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the assessment of KRAS status in CRC remains controversial but may still have a great 

potential.

The potential for future research in radiogenomics analysis of CRC is tremendous. The 

ability to determine the presence or absence of KRAS mutations in CRC reliably with 

routine diagnostic imaging would be clinically useful. It is interesting that to date, most of 

the research on this question has focused on 18F-FDG PET in patients with CRC; however, 

this modality is less commonly used for staging in routine clinical practice. There may be 

more practical potential to investigate these questions using CT and MRI, which are 

performed in the vast majority of patients with newly diagnosed CRC in the United States 

today. The opportunity to use radiogenomics to study KRAS status as well as other 

mutations in CRC is wide open.

4. Conclusion

Radiomics and radiogenomics may change the practice of medicine, particularly for patients 

with CRC. Thus far, several studies have evaluated the use of radiomics for this patient 

population; however, there are challenges to be overcome before its routine implementation 

including challenges related to sample size, model design and interpretability, and the lack 

of robust multicenter validation set. Radiologists should be aware of the basic concepts, 

benefits, pitfalls and limitations of new radiomic and radiogenomic techniques to achieve a 

balanced interpretation of the results.
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Fig. 1. 
Radiomics workflow.
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Fig. 2. 
First-order statistical textural features.
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Table 1.

Characteristics of studies that have evaluated radiomics in predicting pathological complete response after 

chemoradiotherapy in patients with locally advanced rectal cancer.

Authors n Aim IM C Segmentation Readers
(n) FE M Main results V

Aker et al. 
2019

114 Predict pCR 
in LARC

MRI 1 Manual
ROI (T2WI)
Rectal tu
Post-CRT

1(114)
2(20)

FO
TF

N ICC: 0.96 (intra-reader)
ICC: 0.92 (inter-redear)
Some FO TF correlate with 
pCR (AUC: 0.77-0.88)

N

Horvat et al. 
2018

114 Predict pCR 
and compare 
it with 
subjective 
analysis in 
LARC

MRI 
(1.5T 
and 
3T)

1 Manual
ROI (T2WI)
Rectal tu area
Post-CRT

2
consensus

FO
TF
FO
TF
SO
TF

Y Radiomics: AUC: 0.93, S: 
1.00, Sp:0.91 T2WI: S: 
0.57, Sp: 0.73
DWI: S: 0.63, Sp: 0.63
No difference between 
1.5T and 3T

N

Cusumano et 
al. 2018

198 Predict pCR 
in LARC

MRI 2 Manual
VOI (T2WI)
Rectal tu
Pre-treatment

1 Morf
FO
TF
SO
TF
SupO

Y AUC: 0.77 (T)
AUC: 0.79 (V)

E

Cui et al. 
2018

186 Predict pCR 
in LARC

MRI 1 Manual
ROI (T2WI, T1WI, 
ADC map)
Pre-treatment

1 (186)
2 (30)

Morf
FO
TF
SO
TF

Y AUC radiomics (T): 0.94
AUC radiomics (V): 0.84
AUC nomogram* (T): 0.95
AUC nomogram* (V): 0.97
*radiomics + t-stage on 
MRI

I

Bibault et al. 
2018

95 Predict pCR 
in LARC

CECT 3 Manual
VOI
Rectal tu
Pre-treatment

2 Morf
FO
TF
SO
TF
SupO

Y Deep neural network 
predicted pCR AUC: 0.72

N

Liu et al. 
2017

222 Predict pCR 
in LARC Q

MRI 
(3T)

1 Manual
VOI (T2WI and 
DWI)
Rectal tu
Pre- and post-CRT

1 (222)
2 (80)

FO
TF
SO
TF
SupO

Y Satisfactory inter- and 
intrareader
AUC (T): 0.97
AUC (V): 0.98
C-index* (T): 0.98
C-index* (V): 0.97
*Radiomics + tu length 
post-CRT on MRI

I

Chee et al. 
2017

95 Predict 
response to 
CRT and 
DFS

CECT 1 Manual
ROI
Rectal tu
Pre-treatment

2
consensus

FO
TF

N Several features were 
associated with response to 
CRT and some were 
associated with DFS

N

Meng et al. 
2017

59 Predict pCR 
response in 
LARC

MRI 
(3T)

1 Manual
ROI (T2WI)
Rectal tu
Pre- and post-CRT

2 FO
TF

N ICC (inter-reader): 
0.60-0.99
Some features (kurtosis, 
energy, and 
entropy)predicted pCR 
with AUC varying from 
0.67-0.76

N

Nie et al. 
2016

48 Predict pCR MRI 
(3T)

Manual
ROI (DCE and 
transferred to the 
other sequences)
Rectal tu
Pre- and post-CRT

1 FO
TF
SO
TF

Y AUC: 0.85 (using mean 
ADC from DWI and one 
SO TF from DCE)
Features from T1WI and 
T2WI showed lower 
prediction values

I

De Cecco et 
al. 2016

12 Predict pCR 
using DWI, 
DCE, and 
radiomics

MRI 
(3T)

1 Manual
ROI (T2WI)
Rectal tu
Pre- and post-CRT

1 FO
TF

N Pre-treatment kurtosis 
better predicted pCR - 
AUC: 0.86
Radiomics better than DWI 
and DCE

N
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Authors n Aim IM C Segmentation Readers
(n) FE M Main results V

De Cecco et 
al. 2015

15 Predict pCR 
in LARC

MRI 
(3T)

1 Manual
ROI (T2WI)
Rectal tu
Pre- and post-CRT

1 FO
TF

N Pre-treatment kurtosis
AUC: 0.91 (cutoff <0.91)

N

ADC: apparent diffusion coefficients; AUC: area under the curve; C: centers; CECT: contrast enhanced computed tomography; CRT: 
chemoradiotherapy; DCE: dynamic contrast-enhanced; DFS: disease-free survival; DWI: diffusion-weighted imaging; E: external; FE: feature 
extraction; FO: first order; I: internal; ICC: intraclass correlation; IM: imaging modality; LARC: locally-advanced rectal cancer; M: model; Morf: 
morphological; N: no; pCR: pathological complete response; ROI: region of interest; S: sensitivity; SO: second order; Sp: specificity; SupO: 
superior order; T: training; TF: texture features; Tu: tumors; V: validation; VOI: volume of interest; WI: weighted images; Y: yes.
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Table 2.

Characteristics of studies that have evaluated radiomics in predicting several pathological features after 

surgery in colorectal cancer. All studies were single-center studies.

Author n Aim IM Segmentation Readers
(n) FE M Main results V

Li et al. 
2018

50 Predict 
pathological 
features in rectal 
tu

MRI 
(3T)

Manual
VOI (ADC map)
Rectal tu and 
normal wall
Pre-treatment

2 FO
TF
SO
TF

N 
c

ICC: 0.72-0.97 (intra and 
inter-reader)
Entropy predicts T stage

N

Sun et al. 
2018

119 Predict 
pathological 
features in rectal 
tu

MRI 
(3T)

Manual
VOI (T2WI)
Rectal tu
Pre-treatment

2 or 3
consensus

Morf
FO
TF
SO
TF
SupO

Y Better performance in predict 
T-stage
AUC: 0.85

I

Huang et 
al. 2018

346 Predict perineural 
invasion in CRC

CECT Manual
ROI
CRC tu
Pre-treatment

1 (346)
2 (80)

FO
TF
SO
TF

Y ICC: 0.75-0.90 (inter-reader)
ICC: 0.79-0.91 (intra-reader)
C-index radiomics (T): 0.81
C-index radiomics (V): 0.78
C-index radiomics + CEA 
(T): 0.81
C-index radiomics + CEA 
(V): 0.80

I

Huang et 
al. 2018

366 Differentiate 
high-grade from 
low-grade CRC

CECT Manual
VOI
CRC tu
Pre-treatment

2 FO
TF
SO
TF

Y ICC> 0.75
AUC (T): 0.81
AUC (V): 0.74
AUC rectal tu: 0.89
AUC colon tu: 0.72

I

Chen et 
al. 2018

115 Predict lymph 
node metastasis 
in rectal tu

ERU 
CECT 
SWE

Manual
ROI and VOI
Rectal tu
Pre-treatment

2 Morf
FO
TF
SO
TF

Y C-index radiomics (T): 0.74
C-index size criteria ERUS 
(T): 0.55
C-index size criteria CT (T): 
0.74
C-index radiomics + size (T): 
0.87
C-index radiomics (V): 0.70
C-index size criteria ERUS 
(V):0.54
C-index size criteria CT (V): 
0.67
C-index radiomics + size 
(V): 0.86

I

Liang et 
al. 2016

494 Differentiate 
stages I-II vs III-
IV CRC

CECT Manual
ROI
CRC tu
Pre-treatment

1 FO
TF

Y AUC clinical (T): 0.63
AUC radiomics (T): 0.79
AUC both (T): 0.81
AUC clinical (V): 0.59
AUC radiomics (V): 0.71
AUC both (V): 0.72

I

Liu et al. 
2016

60 Predict T (pT1-2 
vs pT3-4) and N 
stages (pN0 vs 
pN1-N2) in rectal 
tu

MRI 
(3T)

Manual
VOI (ADC map)
Rectal tu
Pre-treatment

2 FO
TF
SO
TF

N ICC: 0.78-0.97
Skewness and entropy: T 
stage (AUC: 0.74)
ADC max and entropy: N 
stage (AUC: 0.75)

N

Huang et 
al. 2016

326 Predict node 
metastasis in 
CRC

CECT Manual
ROI (CECT)
Colorectal tu
Pre-treatment

2 FO
TF
SO
TF

Y ICC: 0.76-0.91 (inter-reader)
ICC: 0.81-0.95 (intra-reader)
Nomogram with radiomics, 
CT node status and CEA: C-
index: 0.74 (T) / C-index: 
0.78 (V)

I

ADC: apparent diffusion coefficients; AUC: area under the curve; CEA: carcinoembryonic antigen; CECT: contrast enhanced computed 
tomography; CRT: chemoradiotherapy; DCE: dynamic contrast-enhanced; DFS: disease-free survival; E: external; ERUS: endorectal ultrasound; 
FE: feature extraction; FO: first order; I: internal; ICC: intraclass correlation; IM: imaging modality; LARC: locally-advanced rectal cancer; M: 
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model; Morf: morphological; N: no; pCR: pathological complete response; ROI: region of interest; S: sensitivity; SO: second order; Sp: specificity; 
SupO: superior order; shear-wave elastography; T: training; TF: texture features; Tu: tumors; V: validation; VOI: volume of interest; WI: weighted 
images; Y: yes.
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Table 3.

Characteristics of studies that have evaluated radiomics in predicting survival and presence of synchronous 

metastases in colorectal cancer. All studies were single-center studies.

Author n Aim IM Segmentation Reauers
(n) FE M Main results V

Van Helde et 
al. 2018

99 Predict response 
and survival in 
patients with 
mCRC

18F-
FDG
PET/CT

Semiautomatic
VOI
All tu lesions
Pre-treatment

1 Morf
FO
TF

N Some radiomics features 
correlates with survival

N

Liu et al. 2018 177 Predict 
synchronous 
metastases in 
patients with 
rectal cancer

MRI 
(3T)

Manual
VOI (T2WI)
Rectal tu
Pre-treatment

2 Morf
FO
TF
SO
TF

Y ICC> 0.80
AUC clinical (T): 0.79
AUC clinical (V): 0.77
AUC clinical-radiomics 
(T): 0.85
AUC clinical-radiomics 
(V): 0.83

I

Meng et al. 
2018

108 Predict DFS MRI 
(3T)

Manual
VOI (DCE)
Rectal tu
Pre-treatment

2
consensus

Morf
FO
TF
SO
TF
SupO

Y ICC>0.80
C-index radiomics (T): 
0.83
C-index clinical (T): 0.66
C-index both (T): 0.80
C-index radiomics (V): 
0.77
C-index clinical (V): 0.64
C-index both (V): 0.79

I

Lovinfosse et 
al. 2017

86 Predict survival in 
patients with 
LARC

18F-
FDG
PET/CT

Semiautomatic
VOI
Rectal tu
Pre-treatment

1 FO
TF
SO
TF
SupO

N Coarseness was associated 
with DFS and DSS

N

Jalil et al. 
2016

56 Predict long term 
survival in 
patients treated 
with CRT

MRI 
(15T)

Manual
ROI (T2WI)
Rectal tu
Pre- and post-CRT

1 FO
TF

N Several texture features 
were associated with long 
term survival, particularly 
mean of positive pixels 
pre-CRT and kurtosis 
post-CRT

N

ADC: apparent diffusion coefficients; DCE: dynamic contrast-enhanced; DFS: disease-free survival; DSS: disease-specific survival; FE: feature 
extraction; FO: first order; I: internal; ICC: intraclass correlation; IM: imaging modality; LARC: locally-advanced rectal cancer; M: model; Morf: 
morphological; N: no; ROI: region of interest; SO: second order; SupO: superior order; T: training; TF: texture features; Tu: tumors; V: validation; 

VOI: volume of interest; WI: weighted images; Y: yes; 18F-FDG PET: 18fluorodeoxyglucose positron emission tomography
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