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Abstract
Apolipoprotein E (ApoE) e4 allele and cerebral blood flow (CBF) changes are related to the increased risk of cognitive

impairment independently. However, whether there are interactions between ApoE e4 and CBF on memory performance in

older adults with normal cognition remains unknown. This study determined whether the association between CBF and

memory performance could be moderated by ApoE e4 within a sample of cognitively normal older adults from the ADNI.

62 participants, including 23 with ApoE e4 (ApoE e4?) and 39 without ApoE e4 (ApoE e4-), underwent resting CBF

measurement and memory testing. CBF was measured by arterial spin labeling MRI and memory performance was

evaluated by the Rey Auditory Verbal Learning Test. By using linear regression models, CBF was negatively associated

with memory function in ApoE e4? group, whereas positively in ApoE e4- group by contrast. This study suggests that

different CBF-memory relationships can be detected in cognitively normal ApoE e4 carriers compared to ApoE e4 non-

carriers. Associations between hyperperfusion and worse memory performance in ApoE e4 carriers may reflect vascular

and/or cellular dysfunction.
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Introduction

Cerebral blood flow (CBF) refers to the rate at which

arterial blood delivers to the tissue capillary bed. It is a

measure of neural function and brain metabolism. The

precise measurement of CBF can be obtained by ASL, a

novel MRI technique. CBF reduction (hypoperfusion) is

related to cognitive impairment, indicating that cere-

brovascular mechanisms are of great importance in the

maintenance of cognitive performance (Knopman and

Roberts 2010; Montagne et al. 2015b; Wierenga et al.

2014).

The conclusions of previous studies determining the

correlation between cognitive performance and CBF in

cognitively normal older adults were inconsistent. Some

reported positive correlation using arterial flow measure-

ments of carotid and basilar (Rabbitt et al. 2006), while

some showed negative association using ASL MRI

(Bertsch et al. 2009). For instance, Heo et al. (2010) found

that CBF of hippocampal was positively correlated with

spatial memory function by using flow-enhanced signal

intensity MRI. By contrast, another study by Steffener et al.

(2013) found that memory performance was negatively

associated with CBF in the posterior central gyrus, part of

the temporal cortex and hippocampus, but positively

associated with CBF in the orbital frontal lobe. Those

results showed that associations between CBF and cogni-

tive function may have clinical significance for the pre-

vention of AD.

Whether the associations between CBF and cognitive

function could be regulated by AD risks is still under-

studied. It is well established that cerebrovascular
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dysfunction is related to mild cognitive impairment (MCI)

and AD (Kelleher and Soiza 2013). ApoE e4 is crucial to

the integrity of cerebral vascular structure (Bell et al. 2012;

Zlokovic 2011). The risk for AD is two to three folds

higher in individuals carrying one ApoE e4 allele (Corder

et al. 1993) and 12-folds higher in those carrying two ApoE

e4 alleles (Corder et al. 1993; Roses 1996; Saunders et al.

1993). However, previous studies determining the associ-

ation between ApoE e4 and CBF showed mixed results.

For example, compared to ApoE e4- individuals, ApoE

e4? individuals represented increased CBF in the medial

temporal lobe, left lingual gyrus, precuneus and the right

insular gyrus according to positron emission tomography

(PET) studies (Bangen et al. 2012; Thambisetty et al. 2010;

Wierenga et al. 2013). On the contrast, an ASL study

showed that decreased regions of CBF in ApoE e4? group

compared to ApoE e4- group include right caudate, left

middle temporal gyrus, right inferior parietal lobe, and

right insula (Kim et al. 2013). Those studies seemed in

contradiction with each other, which may be due to the

different measurement methods of CBF (i.e., PET versus

ASL MRI), but they all revealed the correlation between

ApoE e4 and CBF. However, those studies mainly con-

centrated on individuals with MCI or AD, and research on

whether ApoE e4 could modulate the association between

CBF and memory function in cognitively normal older

adults has been scanty.

This study investigated whether there was an association

between regional ASL CBF and memory performance, and

whether this association was modulated by ApoE e4 in

cognitively normal older adults.

Materials and methods

Participants

Data used in this study came from the ADNI database

(adni.loni.usc.edu). The ADNI was launched by Principal

Investigator Michael W. Weiner, MD in 2003. The primary

goal of ADNI is to test whether serial MRI, PET, other

biological markers, and clinical and neuropsychological

assessments can be combined to measure the progression of

MCI and early AD. Following the establishment of the

ADNI, ADNI-GO, ADNI-2 and ADNI-3 have been laun-

ched one after another. Participants included in this

manuscript were cognitively normal older adults from the

ADNI-2.

Inclusion criteria

1. Age between 55 and 90 years old;

2. Years of education[ 6;

3. Mini-mental state examination (MMSE) score C 24;

4. Clinical Dementia Rating (CDR) score = 0;

5. Participants who have completed RAVLT.

Exclusion criteria

1. A history of cerebral infarction or brain injury;

2. Existence of other neurological diseases that may cause

cognitive impairment such as severe depression, brain

tumor, Parkinson’s Disease, brain trauma and normal

pressure hydrocephalus, etc.;

3. Existence of other systemic diseases that may lead to

cognitive impairment, such as impairments of liver or

kidney function, thyroid dysfunction, folate and/or

vitamin B12 deficiency, specific infections (e.g.

syphilis and HIV), etc.;

4. Consumption of drugs that may affect cognitive

function, including sedatives, anxiolytics, nootropics

or cholinergic drugs;

5. Systemic disease with significant symptoms, such as

heart failure, tumor, drug dependence, drug addiction,

etc.;

A total of 70 participants were selected in accordance

with the above criteria, of whom 25 carried with ApoE e4
and 45 without ApoE e4. We further excluded participants

who were diagnosed as cognitively normal but met criteria

for MCI, with scores of neuropsychological measures one

standard deviation lower than normative expectations

within a cognitive domain (Bondi et al. 2014; Edmonds

et al. 2015; Jak et al. 2009). A final sample of 62 partici-

pants were included.

Neuropsychological assessment

Memory function was evaluated by the RAVLT. The

detailed procedures were as follows: first, the participants

were required to learn 15 words (list A) for 5 times and

recall freely (trials 1–5). Then, the participants were asked

to learn 15 interfered words (list B) and recall list B freely,

followed by recalling list A immediately (trial 6) and

30 min later (trial 7). We calculated total scores of the

trials 1–5 as memory performance.

MRI data acquisition

MRI was conducted on a Siemens MAGNETOM Verio 3.0

Tesla scanner. Structural images and ASL images were

downloaded. The structural MRI data were acquired uti-

lizing a three-dimensional (3D) magnetization-prepared

rapid acquisition with gradient echo (MPRAGE) T1-

weighted sequence. Pulsed ASL (Wong et al. 1997) data

were acquired by QUIPS II with thin-slice TI1 periodic
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saturation sequence (Luh et al. 1999). The acquisition

parameters of 3D_T1 were: repetition time (TR) = 2300

ms, echo time (TE) = 2.98 ms, inversion time (TI) = 900

ms, field of view (FOV) = 256 mm 9 240 mm, slice

number: 176 (sagittal) and flip angle (FA) = 9�. The

acquisition parameters of pulsed ASL were: TR = 3400

ms, TE = 12 ms, TI1 = 700 ms, TI2 = 1900 ms, FOV =

256 mm 9 256 mm, slice number: 24 (axial), thick-

ness = 4 mm and image matrix = 64 9 64.

MRI data processing

ASL data processing was conducted by SPM8. To mini-

mize the effect of head motion, ASL images were aligned

to the intermediate time point. Perfusion weighted images

were calculated from the difference between control and

labeled images. ASL images were normalized to the

Montreal Neurological Institute (MNI) space. Then, each

participant’s brain was spatial smoothed with a Gaussian

kernel at full-width-at-half-maximum (FWHM) of

8 mm 9 8 mm 9 8 mm. Finally, to correct CBF in the

gray matter, partial volume effect (PVE) correction was

performed.

The following cerebral regions which are closely related

to aging and AD were selected as regions of interest (ROI)

in this study: medial temporal lobe (hippocampus,

parahippocampal gyrus and uncus), parietal lobe (supra-

marginal gyrus, angular gyrus, precuneus and posterior

cingulate), and frontal lobe (anterior cingulate gyrus,

middle and medial frontal gyrus). Average CBF was

extracted for each ROI.

Statistical analysis

In order to compare intergroup differences in demographic

data and cognitive function scores, the continuous variables

in this study were analyzed by the independent sample

t test and categorical variables were analyzed by the Chi-

squared test. A hierarchical linear regression model was

employed to investigate whether there are interactions

between ApoE genotype and CBF on memory function.

CBF of ROIs, ApoE genotype and the interaction term

were chosen as independent variables and memory per-

formance was the dependent variable. All analyses were

performed using the Statistical Package for the Social

Sciences (SPSS) version 19.

Results

There were no significant differences between the two

groups with respect to age, sex, education and cognitive

performers (Table 1). Significant interactions of CBF and

ApoE genotype on memory performance were found in

three ROIs by regression analyses. Spearman’s correlation

showed that memory scores were negatively associated

with CBF of the medial temporal lobe (r = - 0.45,

p = 0.03), parietal lobe (r = - 0.56, p = 0.007), and fron-

tal lobe (r = - 0.51, p = 0.02) in the ApoE e4? group.

Contrarily, memory scores were positively associated with

CBF of the medial temporal lobe (r = 0.48, p = 0.002),

parietal lobe (r = 0.37, p = 0.02), and frontal lobe

(r = 0.38, p = 0.03) in the ApoE e4- group (Fig. 1).

Discussion

Our study explored whether there were interactions

between regional CBF and ApoE genotype on memory

function in older adults with normal cognition. In specific,

results suggested that among ApoE e4? individuals,

memory function was negatively associated with CBF of

regions relating to AD and aging. Contrarily, among ApoE

e4- individuals, memory function was positively associ-

ated with CBF. The study indicated that for individuals

who are without genetic risk of AD, hyperperfusion

maintains memory performance, however, for individuals

with the ApoE e4, heightened CBF may not maintain

memory performance any more.

Typically, decreased regional CBF are explained as

representing decreases of cognitive function, while

increased CBF in preclinical AD are often thought to

reflect a compensatory strategy to pathologic process (Dai

et al. 2009). Indeed, previous studies demonstrated that

increased CBF was significantly correlated to better

memory function in MCI with AD risk factors, and it was

explained as a compensatory response since higher CBF

can provide more oxygen and glucose to support neuronal

activity (Fleisher et al. 2009; Bangen et al. 2012; Zlatar

et al. 2014), as the case for the ApoE e4- participants in

this study. Contrarily, for cognitively normal older adults

with ApoE e4, heightened CBF may not support better

cognitive function any more. Unlike previous studies that

focused on MCI or AD patients, we chose cognitively

normal older adults as participants and, crucially, there was

no significant difference in cognitive function between the

ApoE e4? and ApoE e4- group. In ApoE e4? group,

increased CBF may indicate that these participants’

RAVLT performance is decreasing (although still normal),

and more CBF are needed to maintain the decreasing

memory function. It has been showed that early MCI was

characterized by hyperperfusion and later MCI by hypop-

erfusion when transiting to dementia (Wierenga et al. 2014)

and it is possible that ApoE e4? participants in our study

are more vulnerable to develop MCI. To further determine
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the role of increased CBF, a longitudinal study is in need to

explore CBF differences across the trajectory of AD.

Normal neuronal computation and information pro-

cessing requires sophisticated regulation of the chemical

composition of the neuronal environment maintained by

the blood–brain barrier (BBB) (Iadecola 2004, 2013; Zlo-

kovic 2008). BBB limits the entry of neurotoxic blood-

derived products and macromolecules into the brain (Zlo-

kovic 1995; Zlokovic et al. 1985, 1987). It also plays a

critical role in removing neurotoxic products from brain

such as amyloid b (Ab). BBB is composed of endothelial

cells, perivascular mural cells and pericytes, of which

pericytes plays a key role in maintaining the integrity of

BBB. ApoE4, the corresponding protein of ApoE e4, is
associated with neurovascular dysfunction in patients with

neurological disorders (Kim et al. 2009; Verghese et al.

2011) (e.g. AD, traumatic brain injury and haemorrhage) as

well as in individuals with normal cognition (Reiman et al.

2004; Thambisetty et al. 2010; Sheline et al. 2010). The

mechanisms may be due to toxic effects of ApoE4 on

cerebrovascular and/or neurons. First, ApoE4 can lead to

pericyte loss via cyclophilin A (Bell et al. 2012), and

reduction of pericytes can result in a long-term BBB

leakage and microvascular changes contributing to neu-

rodegenerative diseases (Armulik et al. 2010; Bell et al.

2010; Daneman et al. 2010). For instance, accelerated

pericyte degeneration and BBB breakdown have been

reported in ApoE e4 carriers with AD (Halliday et al.

2016). Moreover, using contrast MRI, subtle BBB leakages

can be detected during normal aging in the medial temporal

lobe, which worsens with MCI (Montagne et al. 2015a).

Second, it is well established that ApoE4 is associated with

increase of Ab in brain (Kim et al. 2009; Zlokovic 2013)

and impairment of Ab removal across the BBB (Bell et al.

2007; Castellano et al. 2011). Finally, ApoE4 has direct

toxic effects on neurons which may be mediated by its role

in tau phosphorylation, synaptic plasticity and neuroin-

flammation (Zlokovic 2013; Kim et al. 2009; Mahley et al.

2009). Therefore, for ApoE e4? individuals, although the

CBF does increase during the preclinical phase of cognitive

Table 1 Demographic statistics

and cognitive characteristics of

the participants

ApoE e4- (n = 39) ApoE e4? (n = 23) F/X2 p

Mean SD Mean SD

Age 71.08 6.87 73.27 5.94 F = 2.8 0.24

Sex (female/%) 30/76% – 16/70% – X2 = 0.7 0.62

Years of Education 15.87 2.32 16.02 2.14 F = 2.47 0.33

MMSE 27.3 1.3 26.7 1.5 F = 1.03 0.51

RAVLT trials 1–5 total 49.74 10.74 47.04 10.62 F = 3.12 0.47

ApoE e4 apolipoprotein E e4 allele, RAVLT Rey Auditory Verbal Learning Test, MMSE mini-mental state

examination, SD standard deviation

Fig. 1 Scatterplots of interaction of ApoE e4 and CBF on memory

performance (RAVLT trials 1–5 total) for 3 regions of interest.

Medial temporal lobe includes: hippocampus, parahippocampal gyrus

and uncus; parietal lobe includes: supramarginal gyrus, angular gyrus,

precuneus and posterior cingulate; frontal lobe includes: anterior

cingulate gyrus, middle and medial frontal gyrus. Solid line represents

the ApoE e4? group, dotted line represents the ApoE e4- group.

ApoE e4 apolipoprotein E e4 allele, CBF cerebral blood flow, RAVLT

Rey Auditory Verbal Learning Test
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function disorder, this increase can no longer help to

maintain their memory function because of the various

pathological neurovascular changes caused by ApoE4.

Taken together, the discussion above may help to interpret

why heightened CBF in ApoE e4? group was correlated

with worse memory function compared to that in the APOE

e4- group.

An increasing number of studies have demonstrated that

ASL CBF can be considered as a useful biomarker in

individuals with AD risks as this technique can distinguish

the vulnerable from normal participants (Fleisher et al.

2009; Bangen et al. 2012). Furthermore, ASL CBF can

predict progression from the preclinical phase to AD sen-

sitively (Beason-Held et al. 2013; Chao et al. 2010). Our

present research underlined the vital correlation between

CBF and memory performance. Moreover, it further

demonstrated that ASL CBF is a reliable biomarker of

genetic risk of AD (i.e. ApoE e4) and is associated with

memory function in cognitively normal older adults.

Additionally, our research highlighted the potential value

of detecting vascular factors in the pathogenesis of AD.

The strength of our study was that we included a well-

matched sample of cognitively normal older adults who

have completed ASL MRI and multiple cognitive assess-

ments. Our research has several limitations. First, the

sample size was small and the distribution of ApoE groups

was unbalanced (62.9% ApoE e4- versus 37.1% ApoE

e4?). Second, A longitudinal study should be conducted in

the future to richen the research. It is possible that some of

the ApoE e4? participants remain cognitively normal and,

likewise, some of the ApoE e4- participants may develop

cognitive impairment over time. Despite these limitations,

ASL CBF may prove to be a sensitive biomarker in terms

of very early AD.
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